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1. Introduction

In the literature, Pareto distributions have been extensively employed for modeling
and analysis of statistical data under different contexts. Orginally, the distribution
was first proposed as a model to explain the allocation of wealth among individuals.
Later, various forms of the Pareto distribution have been formulated for modeling
and analysis of data from engineering, environment, geology, hydrology etc. These
diverse applications of the Pareto distributions lead researchers to develop different
kinds of bivariate(multivariate)Pareto distributions. Accordingly, Mardia (1962)
introduced two types of bivariate(multivariate) Pareto models which are referred as
bivariate Pareto distributions of first kind and second kind respectively. Since then
there has been a lot of works in the form, alternative derivation of bivariate Pareto
models, their extensions, inference, characterizations and applications to a variety
of fields. Various types of bivariate (multivariate) Pareto distributions discussed
and studied in literature include those of Lindley and Singpurwalla (1986), Arnold
(1985), Arnold (1990), Sankaran and Nair (1993), Hutchinson and Lai (1990),
Langseth (2002), Balakrishnan and Lai (2009) and Sankaran and Kundu (2014).

The models discussed above are individual in nature and are appropriate for a
particular data set that meet the specified requirements. However, when there is
little information about the data generating process, it is desirable to start with
a family of distributions and then choose a member of the family that agrees
with the patterns in the data. Motivated by this fact, we introduced a family of
bivariate Pareto distributions arising from a generalization of the univariate dull-
ness property (Talwalker (1980)) that characterized the univariate Pareto law.(see
Sankaran et al. (2014))
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The major aim of the present paper is to develop characterizations of the above
family of Pareto distributions. One of the problems that is usually addressed while
examining the characteristic properties of the bivariate distribution is to investi-
gate how far the characterizations of the corresponding univariate version can be
extended to the bivariate forms. Among the characterizations of the univariate
Pareto I law, one with important practical applications is the dullness property.
The bivariate version of the dullness property is employed to characterize the
family of Pareto distributions.

A second concept that has applications in economics is income gap ratio which
is used for developing indices of affluence (Sen (1988)). The bivariate general-
ization of the concept is proposed and characterizations using this concept are
derived. Another function of interest that has applications in reliability also is the
bivariate generalized failure rate. Characterizations of the family of distributions
using the generalized failure rate are also discussed. As the bivariate versions of
these functions are not unique, different versions of these concepts lead to various
types of bivariate Pareto distributions which are members of the family.

The rest of the paper is organized as follows. In Section 2, we present a family
of bivariate Pareto distributions characterized through a generalized version of
the univariate dullness property. In Section 3, we introduce bivariate versions of
dullness property and present characterizations using these versions. The bivariate
version of income gap ratio and related concepts in economics are discussed in
Section 4. The forms of these functions for various bivariate Pareto distributions
are given. Section 5 discusses bivariate generalized failure rate. Characterizations
using the generalized failure rate are also developed. Finally, Section 6 provides
brief conclusions of the study.

2. Bivariate Pareto family

Let (X,Y ) be a non-negative random vector having absolutely continuous survival
function F̄ (x, y) = P (X > x, Y > y). Assume that Z is a non-negative random
variable with continuous and strictly decreasing survival function Ḡ(z) and cumu-
lative hazard function H(z) defined by H(z) = − log Ḡ(z). Then the family of
distributions specified by the survival function

F̄ (x, y) = [g(x, y)]−1, x, y > 1 (1)

is a bivariate Pareto family if and only if there exist a function g(x, y) satisfying

H(log g(x, y)) = H(a log x) +H(b log y) (2)

Notice that g(x, y) is a function of (x, y) in R+
2 = {(x, y)|x, y > 0} satisfying the

following properties

(a) g(1, y) = yb, g(x, 1) = xa,

(b) g(∞, y) = ∞, g(x,∞) = ∞,

(c) since H(.) is increasing and continuous, g(x, y) is also increasing and con-
tinuous in x and y and
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(d) it is assumed that g(x, y) satisfies the inequality 2
g(x,y)

∂g
∂x

∂g
∂y − ∂2g

∂x∂y ≥ 0.

Further, (2) holds if and only if

P (Z > log g(x, y)|Z > a log x) = P (Z > b log y). (3)

The proof of this is given in Sankaran et al. (2014). Notice that the marginal dis-
tributions of X and Y are Pareto I distributions with survival functions F̄X(x) =
x−a, x > 1 and F̄Y (y) = y−b, y > 1. The property (3) is referred as extended
dullness property. The family (1) includes various known and unknown bivariate
distributions. The members of the family can be derived by choosing appropriate
univariate distribution of Z. Table 1 provides some members of family according
to different choices of the distribution of Z. It may be noted that the proper-
ties of F̄ (x, y) can be inferred from the corresponding properties of Ḡ(z). The
members of the family listed in Table 1, include bivariate Pareto with indepen-
dent marginals, Mardia’s(1962) Type 1 model and bivariate Burr distribution. For
more properties one could refer to Sankaran et al. (2014).

3. Bivariate dullness property

We first discuss the univariate dullness property. Let Z1 be a non-negative random
variable representing the income in a population. Then the distribution of Z1 is
said to have dullness property if

P (Z1 > xy|Z1 > x) = P (Z1 > y) (4)

for all x, y ≥ 1. This means that the conditional probability that true income Z1 is
at least y times the reported value x is the same as the unconditional probability
that Z1 has at least income y. In otherwords, the distribution of error in an income
is independent of the reported value. It is proved that the property (4) holds if and
only if the distribution of Z1 is Pareto I (Talwalker (1980)). There have been many
works on models that accounts for underreporting, characterizations and related
concepts, like those of Wong (1982), Xekalaki (1983), Korwar (1985), Artikis et al.
(1994), Pham-Gia and Turkkan (1997) and Nadarajah (2009). Sometimes it is
more convenient to work with an equivalent form of dullness property, as the
property (4) is not helpful in practice to verify whether a given data set follows
Pareto distribution or not. In this context, we have the following result.

Theorem 1. The random variable Z1 satisfies dullness property (4) if and
only if

m(x) = E(Z1|Z1 > x) = µx (5)

for all x > 1, where µ = E(Z1) < ∞.

Proof. Assume that (4) holds. Then we can write

S(x, y) = S(x)S(y) for all x, y > 1 (6)
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TABLE 1
Some members of bivariate Pareto family

Type Survival function of the distribution of Z Survival function of the bivariate Pareto distribution
1 Ḡ1(z) = exp(−λ z), z > 0 F̄1(x, y) = x−ay−b; x > y > 1; a, b > 0

2 Ḡ2(z) = exp[−θ(eαz − 1)]; z ≥ 0;α, θ > 0 F̄2(x, y) = (xaα + ybα − 1)
−1
α ;x, y > 1, α, a > 0

3 Ḡ4(z) = (1 + βz)−α F̄4(x, y) = x−a−c log yy−b, x, y > 1, a, b > 0; 0 ≤ c ≤ 1

4 Ḡ5(z) = 2(1 + e
z
σ )−1, z > 0, σ > 0 F̄5(x, y) = [ 12 (x

α + yβ + xαyβ − 1)]−σ;α = a
σ > 0, σ > 0, β = b

σ > 0

5 Ḡ6(z) = (1 + zc)−k, z > 0; c, k > 0 F̄6(x, y) = exp[−(a log x)c − (b log y)c − (ab log x log y)c]
1
c

6 Ḡ7(z) = (2ez − 1)−σ, z > 0;σ > 0 F̄7(x, y) = (1 + 2xayb − xa − yb)−1

7 Ḡ8(z) = e−(λz)α α, λ > 0, z > 0 F̄8(x, y) = exp[−1
λ {(λa log x)α + (λb log y)α} 1

α ]

8 Ḡ9(z) =
p

eλz−q
, z > 0;λ > 0, 0 < p < 1, q = 1− p F̄9(x, y) = (q + p−1(xaλ − q)(ybλ − q))

−1
λ

9 Ḡ10(z) = (1 + eλz−1
α )−1, α, λ > 0 F̄10(x, y) = (1 + α−1(α+ xaλ − 1)(α+ ybλ − 1)− α)

−1
λ
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where S(x) = P (Z1 > x). Integrating (6) from 1 to ∞, we obtain

∞∫
1

S(xy) dy = S(x)

∞∫
1

S(y) dy

or
∞∫
x

S(t) dt = xS(x)(µ− 1) (7)

Since left side of (7) is E(Z1 − x|Z1 > x), we get

m(x)− x = x(µ− 1)

which leads to (5).
Conversely, when (5) hold, we obtain (7) and hence

S(x)
∞∫
x

S(t) dt

=
1

x(µ− 1)
(8)

Integrating (8), we obtain
∞∫
x

S(t) dt = cx− 1
µ−1 (9)

where c is the integrating constant. Differentiating (9) with respect to x, we get

S(x) =
c

µ− 1
x− µ

µ−1 (10)

Since S(1) =1, we obtain c = µ− 1 and thus

S(x) = x− µ
µ−1

which means that the distribution of Z1 is Pareto I. From Talwalker (1980) it
follows that the Pareto distribution satisfies (4), which completes the proof. 2

Now we propose bivariate versions of (5) and examine whether they charac-
terize members of the bivariate Pareto family. A natural extension of (5) with
respect to the random vector (X,Y ) is the vector (m1(x, y),m2(x, y)) where

m1(x, y) = E(X|X > x, Y > y) (11)

and

m2(x, y) = E(Y |X > x, Y > y). (12)

We first observe that the joint survival function F̄ (x, y) of (X,Y ) can be deter-
mined from (11) and (12).
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The joint survival function F̄ (x, y) is obtained as

F̄ (x, y) = exp

− x∫
1

∂m1(t,1)
∂t

m1(t, 1)− t
dt−

y∫
1

∂m2(x,t)
∂t

m2(x, t)− t
dt

 (13)

= exp

− y∫
1

∂m2(1,t)
∂t

m2(1, t)− t
dt−

x∫
1

∂m1(t,y)
∂t

m2(t, y)− t
dt

 (14)

The proof follows from Nair and Nair (1989) by using the relationship between
(m1(x1, x2),m2(x1, x2)) and bivariate mean residual life functions.

Definition 2. The distribution of the random vector (X,Y ) is said to have
bivariate dullness property one (BDP-1) if and only if for x, y > 1

P (X > xt|X > x, Y > y) = P (X > t|Y > y), t > 1

and
P (Y > ys|X > x, Y > y) = P (Y > s|X > x), s > 1.

Definition 3. The distribution of (X,Y ) satisfies bivariate dullness property
two (BDP-2) if and only if for x, y > 1

P (X > xt, Y > ys|X > x, Y > y) = P (X > t, Y > s). (15)

Now we have the following theorems characterizing bivariate Pareto distributions
belonging to the family by two versions of the bivariate dullness property.

Theorem 4. Let (X,Y ) be a bivariate random vector as described in Section
2, with µX = E(X) < ∞ and µY = E(Y ) < ∞. Denote µX(y) = E(X|Y > y)
and µY (x) = E(Y |X > x). Then the following statements are equivalent.

(a) F̄4(x, y) = x−(a+c log y)y−b; x, y > 1, a, b > 1, 0 < c ≤ a b

(b) (X,Y ) satisfies BDP-1.

(c) m1(x, y) = xµX(y) and m2(x, y) = yµY (x)

Proof. To prove (a) ⇒ (b), we have

P [X > xt|X > x, Y > y] =
(xt)−(a+c log y)y−b

x−(a+c log y)y−b
= t−(a+c log y) = P (X > t|Y > y)

The second part is proved similarly.
To establish (b) ⇒ (c), we note that the first statement in (b) is same as

F̄ (xt, y)

F̄ (x, y)
=

F̄ (t, y)

P (Y > y)
= F̄X(t|Y > y) (16)

where F̄X(t|Y > y) is the conditional survival function of X given Y > y. Inte-
grating (16) with respect to t in (1,∞), we obtain

E(X|X > x, Y > y) = xE(X|Y > y)
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or
m1(x, y) = xµX(y).

The expression for m2(x, y) is proved similarly.
Now we establish (c) ⇒ (a). From (c), we have

∂m1(t, 1)

∂t
=

∂

∂t
(tµX(y)) = µX ,

∂m2(1, t)

∂t
= µY

m1(t, y)− t = tµX(y)− t

and
m2(x, t)− t = tµY (x)− t.

Substituting the above expressions in (13) and (14) and equating the resulting
expressions, we get, after some simplifications,

µX

µX − 1
log x+

µY (x)

µY (x)− 1
log y =

µY

µY − 1
log y +

µX(y)

µX(y)− 1
log x

which leads to the functional equation(
µX

µX − 1
− µX(y)

µX(y)− 1

)
log x =

(
µY

µY − 1
− µY (x)

µY (x)− 1

)
log y (17)

To solve (17), we rewrite it as

log x
µY

µY −1 − µY (x)
µY (x)−1

=
log y

µX

µX−1 − µX(y)
µX(y)−1

(18)

The right(left) side of (18) is a function of y(x) alone and therefore the equality of
the two sides hold good for all x, y > 1 if and only if each side must be a constant
say 1

c . Hence
µY (x)

µY (x)− 1
=

µY

µY − 1
− c log x

and
µX(y)

µX(y)− 1
=

µX

µX − 1
− c log y (19)

Using (19) in (13) or (14), we get

F̄4(x, y) = x
− µX

µX−1 y
− µY

µY −1+c log x

Taking µX = a
a−1 and µY = b

b−1 , a, b > 1, we obtain

F̄4(x, y) = x−ay−(b+c log x)

since x−c log y = y−c log x, we have (a) and the theorem is completely proved. The
parameter values a, b > 1 is required for the existence of the means. 2
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Setting c = 0 in F̄4(x, y) and working similarly, we have the following result.

Theorem 5. For the random vector (X,Y ) in Theorem 4, the following state-
ments are equivalent

(a) F̄1(x, y) = x−ay−b; x, y > 1, a, b > 1

(b) (X,Y ) satisfies BDP-2.

(c) (m1(x, y),m2(x, y)) = (xµX , yµY )

Remark 6. It may be noticed that BDP − 1 is stronger than BDP − 2.

Remark 7. The properties BDP−1 and BDP−2 can be interpreted in income
analysis as follows. Let X and Y be the incomes from two different sources of a
unit in a population. Assume that the incomes of X and Y are at least x and
y respectively. The average under-reporting error is proportional to the amount
by which the income exceeds the tax exemption level. The under-reporting error
in X(Y ) is a linear function of the reported income if and only if the incomes
(X,Y ) follow bivariate Pareto law. In the case of BDP − 1, the proportionality is
independent of x and y, while in BDP − 2, it is independent of x in the case of
X and independent of y in the case of Y .

Remark 8. Hanagal (1996) has considered another version of the dullness
property defined as

P (X > xt, Y > yt) = P (X > x, Y > y)P (X > t, Y > t)

which characterized a Marshall-Olkin type bivariate Pareto model. Note that this
distribution does not belongs to the family (1).

Theorem 9. Let (X,Y ) be a non-negative exchangeable random vector with
absolutely continuous survival function and µ = E(X) = E(Y ) < ∞. Then

(m1(x, y),m2(x, y)) = (µx+ (µ− 1)p(y), µy + (µ− 1)p(x)) (20)

for some non-negative function p(.) with p(1) = 0 iff the survival function of
(X,Y ) is

F̄10(x, y) =

(
x+ y − cxy − 1

1− c

)− µ
µ−1

; x, y > 1 (21)

where c is a real constant different from unity.

Proof. Assume that (X,Y ) has the distribution (21). Then

m1(x, y) = x+
1

F̄ (x, y)

∞∫
x

F̄ (t, y)dt

= x+
x+ y − cxy − 1

1− cy
(µ− 1)

= µx+
y − 1

1− cy
(µ− 1)
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which is of the form (20) with p(y) = y−1
1−cy and p(1) = 0. The proof for m2(x, y)

is similar.
Conversely, if the relation (20) holds, from (14),

F̄ (x, y) = exp

− x∫
1

µ

(µ− 1)t
dt−

y∫
1

µ

(µ− 1)t+ (µ− 1)p(x)
dt


=

(
x(y + p(x))

1 + p(x)

)− µ
µ−1

. (22)

From (14) and (20), we obtain

F̄ (x, y) =

(
y(x+ p(y))

1 + p(y)

)− µ
µ−1

. (23)

Equating (22) and (23) and simplifying,

xp(x)

1 + p(x)− x
=

yp(y)

1 + p(y)− y
. (24)

Since (24) holds for all x, y > 1, one should have

xp(x)

1 + p(x)− x
=

1

c
,

a constant independent of x and y. Solving the above, we get

p(x) =
x− 1

1− cx
.

Substituting p(x) in (22), we have (21). This completes the proof. 2

Remark 10. The distribution specified by (21) is a bivariate distribution with
Pareto I marginals. It contains some members of our family. When c = 0

m1(x, y) = µx+ (µ− 1)(y − 1)

and

m2(x, y) = µy + (µ− 1)(x− 1)

characterized the bivariate Pareto distribution

F̄3(x, y) = (x+ y − 1)
−a

;x, y > 1,

the well known Mardia’s(1962) type I bivariate Pareto model. Similarly when
c = −1, we have

(m1(x, y),m2(x, y)) =

(
µx+ (µ− 1)

y − 1

y + 1
, µy + (µ− 1)

x− 1

x+ 1

)
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characterized the bivariate Pareto distribution

F̄11(x, y) = [
1

2
(x+ y + xy − 1)]−a, x, y > 1, a > 1

which is a special case of F̄5(x, y) in Table 1 when α = β = 1 so that σ = a.
Finally c = 1

q , q > 0 gives

m1(x, y) = µx+
(µ− 1)q(y − 1)

q − y

and

m2(x, y) = µy +
(µ− 1)q(x− 1)

q − x

that characterizes

F̄12(x, y) = (q + p−1(x− q)(y − q))−a

a special case of F̄9(x, y) obtained by taking λa = λb = 1.

Remark 11. It is easy to see that all the bivariate distributions discussed in
Remark 10, including our models F̄3(x, y), F̄5(x, y) and F̄9(x, y) do not satisfy the
dullness properties BDP − 1 and BDP − 2.
The extent to which they depart from BDP −1 is accounted for by the terms µp(x)
and µp(y).

Remark 12. A closely related function to (m1(x, y),m2(x, y)) used extensively
in reliability analysis is the bivariate mean residual life function (see Nair and
Nair, 1988) defined as

(E(X − x|X > x, Y > y), E(Y − y|X > x, Y > y)) = (m1(x, y)− x,m2(x, y)− y)
(25)

It follows that Theorems 4 through 9 provide useful characterizations of the con-
cerned distributions by the form of the bivariate mean residual life function that
can be easily deduced from the relationship (25).

4. Bivariate income gap ratio

In the context of applications in economics, in the univariate case, two functions
that are closely related to m(x) are the income gap ratio and the left proportional
residual income. For a continuous non-negative random variable Z which repre-
sents the income of a population, those with income exceeding x are deemed to be
affluent or rich. We call Z = x to be the affluence line. Then Ḡ(z) = P (Z > z)
represents the proportion of rich in the population. The proportion of rich, their
average income and the measures of income inequality are important indices dis-
cussed in connection with income analysis and also for comparison between the
rich and poor. Of these, Sen (1988) defines the income gap ratio among the affluent
as

i(x) = 1− x

E(X|X > x)
(26)



Characterizations of a family of bivariate Pareto distributions 285

TABLE 2
Bivariate income gap ratios

Distribution (i1(x, y), i2(x, y))

F̄1(x, y)
(

µX−1
µX

, µY −1
µY

)
F̄2(x, y)

(
µX(y)−1
µX(y)

, µY (x)−1
µY (x)

)
F̄3(x, y)

(
(µ−1)(x+y−2)
µx+(µ−1)(y−1)

, (µ−1)(x+y−2)
µx+(µ−1)(y−1)

)
F̄11(x, y)

(
(µ−1)(x+y+xy−1)

µx(y+1)+(µ−1)(y−1)
, (µ−1)(x+y+xy−1)
µx(y+1)+(µ−1)(y−1)

)
F̄12(x, y)

(
(µ−1)(x(q−y)+q(y−1))
µx(q−y)+q(µ−1)(y−1)

, (µ−1)(y(q−x)+q(x−1))
µx(q−y)+q(µ−1)(y−1)

)
The measure i(x) is used in defining indices of affluence in Sen (1988). On the
other hand, Belzunce et al. (1998) defined the mean left proportional residual
income(MLPRI) as

l(x) = E

(
X

x
|X > x

)
= 1− 1

i(x)
. (27)

We propose bivariate generalization of these concepts. For a non-negative random
vector (X,Y ), the bivariate income gap ratio is defined by the vector

(i1(x, y), i2(x, y)) = (1− x

E(X|X > x, Y > y)
, 1− y

E(Y |X > x, Y > y)
)

= (1− x

m1(x, y)
, 1− y

m2(x, y)
). (28)

Equation (28) shows that there is one-to-one relationship between (i1(x, y), i2(x, y))
and (m1(x, y),m2(x, y)), so that each determine other and the corresponding dis-
tribution uniquely. The functional forms of (i1(x, y), i2(x, y)) characterizing some
members of our family are given in Table 2.
The bivariate generalization of MLPRI is proposed as the vector

(l1(x, y), l2(x, y)) =

(
E

(
X

x
|X > x, Y > y

)
, E

(
Y

y
|X > x, Y > y

))
= (

m1(x, y)

x
,
m2(x, y)

y
) (29)

The calculation of (l1(x, y), l2(x, y)) is easily facilitated from those of (m1(x, y),m2(x, y)).
Thus the characterizations established in Section 3 using (m1(x, y),m2(x, y)) can
be translated in terms of (l1(x, y), l2(x, y)).

5. Bivariate generalized failure rate

For a non-negative random variable Z, the generalized failure rate is given by

r(x) = −x
dlogḠ(x)

dx
(30)
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Lariviere and Porteus (2001) and Lariviere (2006) discussed the properties of r(x)
and its applications in operations management. The well known income model
derived by Singh and Maddala (1976) is based on a relationship between r(x) and
Ḡ(x) as

r(x) = αxβ(Ḡ(x))γ , α, β, γ > 0.

For a non-negative random vector (X,Y ), the bivariate generalized failure rate
vector is defined by

(r1(x, y), r2(x, y)) =

(
−x

∂ log F̄ (x, y)

∂x
,−y

∂ log F̄ (x, y)

∂y

)
. (31)

There exists an identity connecting (r1(x, y), r2(x, y)) and (m1(x, y),m2(x, y)).
Differentiating

m1(x, y) = x+
1

F̄ (x, y)

∞∫
x

F̄ (t, y) dt

with respect to x and rearranging terms,

F̄ (x, y)
∂m1(x, y)

∂x
= (m1(x, y) + x)

∂F̄ (x, y)

∂x
.

This gives

r1(x, y) =
x∂m1(x,y)

∂x

m1(x, y)− x
(32)

and similarly

r2(x, y) =
y ∂m2(x,y)

∂y

m2(x, y)− y
. (33)

A redeeming feature of (r1(x, y), r2(x, y)) is that it allows simple analytically
tractable expression for various distributions in the bivariate Pareto family, while
the other functions can be expressed in terms of special functions only for many
members. See Table 3 for expressions of (r1(x, y), r2(x, y)). It may be noted
that the characterizations developed in Section 3 can be transformed in terms of
(r1(x, y), r2(x, y)).
From Theorems 4 and 5 and the above deliberations, the following result is ap-
parent.

Theorem 13. The following statements are equivalent:

a. (X,Y ) possesses BDP − 1(BDP − 2)

b. (i1(x, y), i2(x, y)) is constant(locally constant)

c. (l1(x, y), l2(x, y)) is constant(locally constant)

d. (r1(x, y), r2(x, y)) is constant(locally constant)

e. (X,Y ) is distributed as F̄1(x, y)(F̄4(x, y))

(Local constancy of a vector means that the first component is independent of x
and the second component is independent of y).
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TABLE 3
Bivariate generalized failure rates

Distribution (r1(x, y), r2(x, y))

F̄1(x, y)
(
a = µX

µX−1
, b = µY

µY −1

)
F̄2(x, y)

(
axaα

xaα+ybα−1
, bybα

xaα+ybα−1

)
F̄3(x, y)

(
ax

x+y−1
, by
x+y−1

)
F̄4(x, y)

(
µX(y)

µX(y)−1
, µY (x)
µY (x)−1

)
F̄5(x, y)

(
σαxα(1+yβ)

(xα+yβ+xαyβ−1)
, σαyβ(1+xα)
(xα+yβ+xαyβ−1)

)
F̄6(x, y) (cac(log x)c−1(1− (b log y)c), cbc(log y)c−1(1− (a log x)c))
F̄7(x, y) (1 + 2xayb − xa − yb)−1

(
axa(2yb − 1), byb(2xa − 1)

)
F̄8(x, y) λα−1 {λαaα (log x)α + λαbα(log y)α}1−

1
α (aα(log x)α−1, bα(log y)α−1)

F̄9(x, y)
[
pq + (xλa − q)(yλb − q)

]−1
ap

(
xλa(yλb − q), yλb(xλa − q)

)
F̄11(x, y) a(x+ y + xy − 1)−1 (x(1 + y), y(1 + x))

F̄12(x, y) ap [pq + (x− q)(y − q)]−1 (x(y − q), y(x− q))
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6. Conclusion

In this paper, we have developed characterizations of a family of bivariate Pareto
distributions. The well known dullness property was extended to the bivariate set
up and characterizations of bivariate Pareto distributions using this property were
derived. The measures of income inequality such as income gap ratio and mean left
proportional residual income were proposed and studied in the bivariate case. The
generalized failure rate was extended to the bivariate set up and characterizations
using this concept were derived. The properties of the family of bivariate Pareto
distribtions using copula theory are yet to be studied. The work in this direction
will be reported elsewhere.
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Summary

In the present paper, we study properties of a family of bivariate Pareto distributions.
The well known dullness property of the univariate Pareto model is extended to the
bivariate setup. Two measures of income inequality viz. income gap ratio and mean
left proportional residual income are defined in the bivariate case. We also introduce
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bivariate generalized failure rate useful in reliability analysis. Characterizations, using
the above concepts, for various members of the family of bivariate Pareto distributions
are derived.

Keywords: Bivariate Pareto distributions; characterization; dullness property; income
gap ratio; generalized failure rate.




