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1. Introduction

The explorer about to discover the mysteries of a country, before setting foot in
it, looks at the panorama and takes time to find his orientation and to structure
his plan of action. After a long walk, he feels the need to gather his information
in order to assess the part of the program that has been achieved and to value
what he has learnt, for the remaining part of his journey. Similarly, when I left
the University of Bologna and decided to dedicate my scientific activity mainly
to statistics, I felt the need to form my personal opinion regarding its aims and
relationships in regard to probability theory, as well as the concepts which are at
its basis, and the importance of its applications by statistics and the meaning of
the regularities which are defined by it1.

After a very busy period of thirty years - spent, on one hand, organically
developing statistical theory, so that it became more closely related to the aims of

1 The following publications are the result of my viewpoints of that time:
1. Sul concetto di probabilità, in “Atti del II Congresso della Società Filosofica Italiana”
(Parma, 25-27 September 1907), Formiggini, Bologna-Modena, 1908.
2. Che cosè la probabilità?, in “Rivista di Scienza (Scientia)”, vol. III, year II, 1908.
3. Contributo alle applicazioni statistiche del calcolo delle probabilità, in “Giomale degli
Economisti”, December 1907.
4. Il sesso dal punto di vista statistico, Roma, “Biblioteca del Metron”, 1908, in particular
chapters II L’ufficio della statistica nella questione dei sessi ; IV Misura della regolarita
dell’eccedenza dei maschi nelle nascite umane; V Portata della regolarità dell’eccedenza
dei maschi nelle nascite umane.
5. Intorno al metodo dei residui dello Stuart Mill e alle sue applicazioni alle scienze
sociali, in “Studi economico-giuridici della R. Universita di Cagliari”, year II, 1910.
6. Considerazioni sulle probabilità a posteriori e applicazioni al rapporto dei sessi nelle
nascite umane, in “Studi economico-giuridici della R. Università di Cagliari”, year III,
1911. Other studies remained partially or totally unpublished, in particular a large
manuscript on La teoria logica e psicologica delle probabilità, of which I have integrally
reported the discussion Sul concetto di casa in the Communication presented in July
1941 at the Italian Statistical Society (see 7 of the quoted bibliography at the following
note).
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concrete research by new procedures and the improvement of those already known
and, on the other hand, testing its suitability and usefulness by application to the
most varied scientific fields, and, by doing so, sometimes finding suggestions for
further developments - felt the urge to reconsider the critical examination of the
logical bases and gnosiological importance of the statistical method.

The period of isolation, imposed by the war, was particularly useful for such
attentive consideration.

Now that contacts with the international scientific world have been re-opened,
it might be appropriate - as is suggested to me by the Editor of “Statistica”- to
summarize the results of such a re-examination2 for the benefits of Italians and

2 These are the titles of the publications in which such an examination was carried out.
In the text of the paper the quotation will be replaced by the related order number.
1. I pericoli della Statistica, opening talk at the Italian Statistical Society (Pisa, 9th Oc-
tober 1939), published in the Proceedings of the First Scientific Meeting of the Society
and reprinted in “Rivista di Politica Econornica”, November 1939.
2. Sur La théorie de la dispersion et sur la vérification des schèmas théoriques, report
presented at the “Réunion d’etudes sur l’application du Calcul des probabilités” (Gen-
eve, 12-15 July 1939) and published in “Metron”, vol. XIV, n. 1, 15 June 1940.
3. II principio della compensazione degli errori accidentali, Communication presented at
the II Congress of the Italian Mathematical Union (Bologna, 4-6 April 1940) published
in the Proceedings of the Congress and printed in the “Statistical Supplement to Nuovi
Problemi di Politica, Storia ed Economia”, year VI, number I, 1940.
4. Di alcune questioni fondamentali per la metodologia statistica, Communication pre-
sented at the II Scientific Meeting of the Italian Statistical Society (Rome, 26-28 June
1940) and published in the Proceedings of the Meeting.
5. Sulle basi del metodo statistico. II principio della compensazione degli errori acciden-
tali e la legge dei grandi numeri, in “Metron”, vol. XIV, n. 2-3-4, 31 December 1941.
6. Degli indici sintetici di correlazione e delle loro relazioni con l’indice interno di cor-
relazione (intra class correlation coefficient) e con gli indici di correlazione tra serie di
gruppi, in “Metron” voL XIV, n. 2-3-4,31 December 1941.
7. Sul concetto di caso, Communication presented at the III Scientific Meeting of the
Italian Statistical Society (Rome, June-July 1941) and published in the Proceedings of
the Meeting.
8. A proposito dei “testi di significativita”, Communication presented at the VI Scientific
Meeting of the Italian Statistical Society (January 1943) and published in the Proceed-
ings of the Meeting.
9. I testi di significativita, opening speech at the VII Scientific Meeting of the Italian
Statistical Society (Rome, 27-30 June 1943), and published in the Proceedings of the
Meeting.
10. Osservazioni alla comunicazione della Dott. Geppert sul valore dei cos̀ı detti “testi
di significativita”, Communication presented at the VII Meeting of the Italian Statistical
Society (Rome, 27-30 June 1943) and published in the Proceedings of the Meeting.
11. Sulla probabilità inversa nel caso di grandezze a distribuzione costante, Communica-
tion presented at the VII Meeting of the Italian Statistical Society (Rome, 27-30 June
1943) and published in the Proceedings of the meeting.
12. (In collaboration with Dr. Gregorio Livada) Sulla probabilità inversa nel caso di
grandezze intensive ed in particolare sulla sua applicazione a collaudi per masse a mezzo
di campioni, Communication presented at the VII Meeting of the Italian Statistical So-
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foreigners. And to do this before moving on to tackle other important problems,
which have yet to be solved for the complete settlement of methodological statistics
from a logical viewpoint.

2. The necessity of statistical techniques

First of all, it is worth recalling what the circumstances are that make it necessary
to resort to statistical technique. We are often interested in a quantitative study
of phenomena whose characteristics cannot be detected by one observation alone,
nor by a number of observations which are so limited that the normal human
mental 1941. Faculties are unable to synthesize their result. In fact the human
mind has limited power for numerical synthesis: this is a general limitation of
our mental faculties, which matches the particular limitations of our senses. As,
sometimes, one finds a remedy for these particular limitations by resorting to spe-
cial techniques, microscopes, binoculars, megaphones, amplifiers, acoustic horns,
etc, in the same way one finds a remedy for such a general limitation by resorting
to statistical techniques3. Thus, statistics appears to be a suitable technique for
the quantitative study of phenomena requiring collection or mass observation and
therefore can be defined as collective or mass phenomena4.

The reasons which make such a technique necessary for mass phenomena are
various:

A) without the statistical technique, it becomes impossible to be aware of the
phenomena under consideration, as for the sex ratios at births;

B) without the statistical technique it is possible to draw qualitative information

ciety (Rome, 27-30 June 1943) and published in the Proceedings of the Meeting.
13. Di alcune questioni attinenti al concetto di causalità e a concetti connessi ed affini,
forthcoming [see Analisi, III, IV, 1946].
14. Rileggendo Bernoulli, forthcoming [see Metron, XV, 1-4, 1949].
15. Del passaggio dall’indice di variabilità di un campione all’indice di variabilità della
massa, forthcoming [see Metron, XVI, 1-2, 1951].

3 For such a concept of Statistics see Il sesso etc., op. cit., pp. 12-13, and for a wider
explanation, the various editions of our Course in Statistics, held successively at the
Universities of Cagliari (1909-1913), Padua (1914-1925), Rome (from 1926 onwards) and
published as a lithography by students and colleagues. Finally it has been translated into
Spanish by Dr. J. Vandellos, Curso de Estadistica, Editorial Labor, Barcelona (1935).

4 Usually collective or mass phenomenon is defined as a phenomenon resulting from a
mass or a collection of individual phenomena, instead of a phenomenon that, in order
to be studied statistically, needs a mass or a collection of observations. However, such
a definition is not correct: the male frequency among born and the male frequency
among married couples both result, for instance, from a mass of individual phenomena
(single born or single married): but, in order to be determined, the first needs a mass
of observations, hence it belongs to the field of statistics and it must appropriately be
called a collective phenomenon; not so for the second one, which we know a priori to be
equal to 50%.



168 C. Gini

for mass phenomena, but not quantitative measurement, as for the frequency
of high, average or low heights;

C) without the statistical technique it is possible to obtain a quantitative mea-
surement of phenomena, but this is an approximate one, due to the errors
to which it is subject5.

This last necessity may occur in various circumstances:

a) when the intensity of the phenomenon one wishes to study is constant, but,
in the observations we take of it, perturbing influences intervene, causing
the results to be affected by errors that may be called measurement errors;

b) when the intensity of the phenomenon one wishes to study is always cor-
rectly detected, but it actually varies from one observation to another so
that in order to know the phenomenon, it would be better to extend the
observations to all the cases in which it occurs: wherever this is not done,
in the observations carried out, the various intensity of the phenomenon will
show (or they might show) with a different frequency from that in the total
of the cases, and the results will be affected by errors that may be called
frequency errors; when the intensity of the phenomenon one wishes to study;

c) when the intensity of the phenomenon one wishes to study varies from one
observation to another and the observations are extended to the total cases
of the phenomenon, but perturbing influences intervene in them, so that the
results are affected by measurement errors;

d) when the intensity of the phenomenon one wishes to study varies from one
observation to another, the observations do not extend to the total cases
of the phenomenon and, in addition, perturbing circumstances intervene
in them, so that results are affected at the same time by frequency and
measurement errors.

Thus, the elimination of frequency and measurement errors is one of the main
aims of statistics. As such errors depend on accidental perturbing circumstances,
it is believed that their elimination is in fact obtained by resorting to mass ob-
servations, because the impact of accidental errors on the average intensity of the
phenomenon would decrease with the increasing number of observations, until it
becomes negligible when this is large enough. Regarding frequency errors, this
thesis is expressed by the “law of large numbers” and, regarding measurement
errors, by the “principle of random errors compensation”.

In papers 3 and 4 and, more comprehensively, in 5 (and 6 for one subject
related to this), the foundation of these two propositions has again been taken
into serious examination, thus reaching the conclusions that are summarized and
completed here.

5 Such a division in three parts of the aims of statistics has also been dealt with and
developed in the publications quoted in note 4.
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3. The law of large numbers

It was formulated by Poisson, who generalized Bernoulli’s theorem, extending it
to the case where the probability of the event is different in successive trials and
likewise considering, besides the intensive quantities, hence relative frequencies,
also extensive quantities, hence means of absolute values. The definition “Pois-
son’s theorem” or, in order to keep to his words as much as possible, “theorem
of large numbers”, would have been well-suited for the generalization. Instead,
Poisson, with an incredible logical jump, called it the “law of the large numbers”,
declaring in addition that it represents a general and indisputable fact, the result
of experiences that cannot be contradicted. It was a logical jump because a the-
orem expressing necessary relationships among abstract entities is not necessarily
a law expressing constant relationships among concrete phenomena. The jump
creates a gap that cannot be filled, one which - in my viewpoint - Castelnuovo
thought, although in vain, he would be able to fill by resorting to an “empirical
law of chance” by which the experience would show that as the number of trials
increases, the frequency of a phenomenon oscillates converging around a limit set
by its mathematical probability. In vain, because, in order to define such a law,
the trials should be increased to infinity, which is by itself humanly impossible
and moreover the trials should be increased to infinity not only once, but as many
times as it would be necessary to define a law.

It is true that in gambling games and other experiments set up so that they
occur in the most uniform conditions possible - so as to assume that the probabil-
ities of the various results remain constant - the (relative) frequency oscillations
for such results go on decreasing while the observations increase. This might lead
to the conclusion - with one of those inevitable generalisations in the inductive
disciplines - that a limit frequency exists; but it remains to be demonstrated that
such a limit frequency exactly corresponds to the mathematical probability. One
cannot really see how this might be done without accepting that equally possi-
ble cases (i.e. equally probable cases), on which the mathematical probability
is based, show the same limit frequency, that is accepting as demonstrated that
correspondence between probability and limit frequency, which should instead be
demonstrated.

Faced with this difficulty of going from Bernoulli’s and Poisson’s theorems to
the law of large numbers, various authors have tried to follow the inverse path by
defining probability not as the ratio of favorable cases to all the equally possible
ones, but as the limit to which frequency tends as the number of observations
increases, and deriving Bernoulli’s and Poisson’s theorems from such a definition,
that implies the law of large numbers. This line of thinking obtained scientific
formulation and organic development thanks to R. von Mises. However, I do
not see how it is possible to avoid the following contradiction: if, analytically,
probability is the limit of frequency (in the sense of calculus), it must always be
possible to define a large enough number n of observations, such that, beyond
it, the divergence between frequency and probability positively remains smaller
than ε, a quantity however small. Instead, according to Bernoulli’s and Poisson’s
theorems, however large n is, there is always a probability, however small, that a
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divergence greater than ε occurs6.

On the other hand, how can one explain the widespread and indisputable trust
in the law of large numbers or in an empirical law of chance, a trust that is at
the basis of many scientific researches? I believe that it may be explained by
the fact that the word “probability”, occurring in the formulation of such laws,
is in practice attributed a meaning which is different from the abstract one of
“mathematical probability”, which is at the basis of the probability calculus.

Indeed, as soon as in any statistical study one wants to specify the ideas, by
defining the phenomenon one is interested in either for practical purposes or study,
one immediately realizes that the number of cases within it may be more or less
large, and sometimes very large, but always equal to a finite number. This is true
whether we are dealing with gambling games, or the census of births and deaths in
a population, or the stars in the sky, or the molecules in a gas. In this case at least,
if not in all the cases, the idea of infinity arises unduly from the really different
notion of indefinite7. As we will explain later, in relation to a finite number of cases
of the phenomenon, the probability of one of its characteristics is represented by
its frequency in the total number of cases. Hence, the law of large numbers states
that when the number of observations of the phenomenon increases, getting nearer
and nearer to their whole, the frequency of a characteristic of the phenomenon in
the number of cases observed, comes closer while oscillating to its frequency in the
total number of cases included in the phenomenon, until it coincides with it when
all the cases have been observed8. Such a proposition, which may be empirically

6 Von Mises answers an objection that might appear, but is not, similar and it is anyway
formulated in such a way that the contradiction does not appear evident. He says that
there is no contradiction between stating that, in a group of 11 observations, number m
of times in which a phenomenon with a probability p (0 < p < 1) occurs, may take all
the values from 0 to 11 - as resulting from Bernoulli and Poisson’s theorems - and the
statement that the ratio of the number of times N1 in which a phenomenon occurred, to
the total number of observations N tends to probability p with the indefinite increasing
of N1 and N . The two frequencies m/n and N1/N are - according to him - of a different
type: between the two above mentioned statements there is no evident link. (See R.
von Mises, Probability, Statistics and Truth, translated by J. Neyman, D. Sholl and E.
Rabinowitsch, Hodge, Edirnburgh, 1939, pp. 127-128). One replies: in order to see
the link and the contradiction between the two statements under consideration, let us
say n = N , as there is no impediment to this. Indeed, if one can make N grow as much
as one wishes, one can also make n grow in the same way. However large is the number
N of the observations made, these may always be considered to be a group of the infinite
possible observations. This is the essential point: so that m/n and N1/N are not at all
two frequencies of a different type and, for n = N , become the same frequency. But,
however large n = N is, Bernoulli and Poisson’s theorems maintain their validity and
all the values of m/n from 0 to 1 are possible, while, if it was true that N1/N tends to
limit p (in the true sense attributed to the expression in the analysis), there should be a
large enough number N = n, so that the frequencies which diverge from p of more than
a specific quantity would be excluded.

7 Regarding this see what is said further.

8 In publication 5 one may find the formulas which give the maximum possible devia-
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verified and theoretically demonstrated, states precisely what is needed to give a
basis to the mass observations.

4. The probability concept

In order to explain what is stated above, it is worth dwelling on the probability
concept that has been just stated9.

What do we ask to probability?
The word “probability” itself suggests that we ask the most plausible criterion

in order to regulate our conduct. This may happen either when facing a single
event, whose characteristics are uncertain, or a series of events that may show
one or the other of some characteristics in single cases, without the possibility
of foreseeing, from the definition of the category under consideration, which one
will occur. In the first case of single events, when possible, the determination
of probability is inevitably a subjective one, which will be explained further on.
In the second case of series of events, or mass phenomena, the determination of
probability may be objective. If we adopt as a more plausible criterion that which
renders the errors sum nil and the sum of their squares minimum, we are led to
conclude that the probability of a characteristics will be given exactly from its
mean frequency in the single events which belong to the considered class. Except
that we can exactly determine such a probability only for events entirely belonging
to the past, while practically speaking its determination is of interest mainly for
events partly or totally belonging to the future, or even purely hypothetical events.
Thus, in practice, we are forced to resort to indirect paths, which are substantially
only two: one based on the frequency of the characteristics observed in the past,
leading to an approximate a posteriori determination of probability, and another
based on the knowledge of the phenomenon mechanism, leading to an approximate

tion; the standard deviation and the limit, within which a deviation is maintained with
a given probability, when n of the N cases belonging to the phenomenon, have been
observed.

9 Such a concept has been dealt with since 1908. See the paper Che cosè la probabilità?,
in “Rivista di Scienza (Scientia)”, vol. III, year II, (1908), n. VI and the Communication
Sul concetto di probabilità, in Questioni Filosofiche, “Atti del II Congresso della Soci-
eta Filosofica Italiana” (Parma, 25-27 September 1907), Formiggini, Bologna-Modena,
1908. Although I did not deal with it until 1941, it did not remain without a follow-
up. See, in particular, L. G. Du Pasquier, Sur les nouveaux fondements philosophiques
et mathématiques du calcul des probabilités, in “Atti del Congresso Internazionale dei
Matematici”, Bologna 3-10 September 1928, Vol. VI, page 5 and following; L. Galvani,
Punti di contatto e scambi di concetti tra la Statistica e la Matematica, in “Giornale
dell’Istituto Italiano degli Attuari”, IV, n. 3, July 1933, pp. 413–414, and Introduzione
matematica alto studio del metodo statistico, Giuffre, Milan, I Ed.1934, pp. 167–168,
II Ed, 1945, pp. 261–263; G. Pietra, Metodologia Statistica, in Societa Italiana per il
Progresso delle Scienze, Un secolo di progresso scientifico italiano, 1839-1939, vol. I, p.
305; La Statistica Metodologica e la Scienza ltaliana, in “Supplemento Statistico ai Nuovi
Problemi”, V, series II, nn. 2–3–4, p. 137 and Sur la statistique méthodologique italienne,
in “Revue de L’Institute Internationale de Statistique”, 8, 3/4, 1940, p. 187.
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a priori determination of probability.

The approximate a posteriori determination leads to a definition of the so-
called empirical probability, according to which the probability of a characteristic
of a phenomenon is given by the ratio of the number of times the characteristic
has occurred in a large number of observations, to the number of times it might
have occurred. The approximate a priori determination leads to a definition of
the socalled mathematical probability, according to which the probability of the
characteristic of a phenomenon is given by the ratio between the cases favourable to
the characteristic occurring and the possible cases, all cases being equally possible.

The approximation of the empirical determination of probability depends on
the hypothesis that the frequency of the characteristic in the observed cases of
the phenomenon is equal to its frequency in the cases yet to be observed. This
hypothesis can reasonably be made as an approximation, when there are no cir-
cumstances making the two frequencies systematically different. On the other
hand, even when a systematic difference exists, it is not excluded that it might be
approximately evaluated, hence allowing us to define a correction coefficient to be
applied to the frequency of the characteristic for the observed cases, in order to
calculate its frequency for future cases or the total cases where the phenomenon
occurs. The more the number of observations increases, getting nearer to the to-
tal cases of the phenomenon, the more the empirical probability, determined on
the basis of the observations carried out, approaches the exact probability of the
characteristic of the phenomenon.

The approximation of the determination of the mathematical probability de-
pends on the impossibility of judging a priori when two or more cases rigorously
have the same chance. The inevitable approximation, by which the equi-possibility
of cases is judged, is reflected in the approximation of the mathematical probabil-
ity. Rigorously, the equal possibility of the various possible cases might be deduced
only a posteriori, from their frequency in the total observations of the considered
phenomenon, in which case the mathematical probability of a characteristic would
coincide with its frequency in the said total.

It is not always possible to determine the empirical probability, or the math-
ematical probability. The determination of the empirical probability assumes a
phenomenon that, although not exhausted (in which case one could use the direct
determination of true probability), has however occurred many times. The deter-
mination of mathematical probability assumes that, in the mechanism by which
the phenomenon occurs, various hypotheses can be differentiated, some of which
are favorable and some contrary to the presence of a specific characteristic and all
considered as equally possible, a fact that practically does not occur except for a
limited number of phenomena, artificially set up by us, as is the case of gambling
games.

My viewpoint is that both the determinations of empirical and mathematical
probabilities have been wrongly identified with the exact definition of probability.
In particular, this has happened for the determination of mathematical probability.

Unknown to the first modern authors who dealt with the concept of probability
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and derived probability from experience10, it was introduced by Jacob Bernoulli11,
and became the basis of all the subsequent construction of probability calculus.
As the attention of those who followed probability calculus was finally drawn
to gambling games, for which the determination of mathematical probability is
particularly suitable, it became easier to adopt. On the other hand, for practical
purposes, it offers the advantage of generality, so it may be applied to an indefinite
group of experiences related to a specific object, instrument or phenomenon. For
instance, one may speak of the mathematical probability of a specific result of
a dice game, roulette, baccarat, no matter which are the dice, the roulette, or,
respectively, the cards used, no matter who the players are, and so on. However,
this generality is only obtained at the cost of some approximation, which in fact
represents the approximation of probability determination through mathematical
probability. It is not at all true that the probability of a result is always the
same for all the roulettes. Actually, each roulette has its own probability for the
various numbers, a fact of which a group of Monte Carlo gamblers cleverly took
advantage. They had studied all the trends of the various roulettes and by playing,
no longer on the basis of mathematical probability, but on empirical probability,
instead, they were able to make enormous profits, until the Casino management,
suspicious of the losses, found out the trick and defeated it by changing the roulette
plates every night. This is also the reason why in card games, where the stakes are
very high, a new pack of cards is used for each game. It cannot be excluded that
accurate studies of large number of observations might verify that the game results
for dice or roulettes are sensibly different, not only depending on the roulettes or
dice being used, but also on the person who turns the roulette or throws the dice.

Hence, it is not that the frequency represents an approximation of exact proba-
bility, given by the mathematical probability, it is instead the mathematical proba-
bility that represents an approximate a priori determination of the true probability
represented by its frequency. It is however necessary to agree on the word “fre-
quency”. It must be understood as a frequency of a phenomenon characteristic in
all the cases within the concept of the phenomenon itself; which we might call its
totalitarian frequency12. A partial frequency, even if based on very many cases,

10 Regarding the concept of probability according to Port Royal Logic (1662) and ac-
cording to Locke, An Essay concerning Human understanding (1690), see J. M. Keynes,
A Treatise on Probability, Macmillan, London, 1921, p. 80.

11 Reality, Bernoulli did not consider the ratio of cases favorable to a phenomenon,
to all the favorable or opposite cases, as a definition of probability, but only as its
measurements. A probability of a phenomenon is defined by him as a level or fraction of
the certainty of its existence. Such a level or fraction is obtained from the number and
the probatory strength of the arguments demonstrating the existence of the phenomenon
and the probatory strength is derived from the ratio of the cases favourable to the
phenomenon, to all the favorable or opposite cases. Regarding this see publication 14.
In Bernoulli, the subjective concept of probability, with which we will deal later, appears
to be clearly formulated.

12 This expression must not be confused with that of “total frequency” used by Borel
and, following his example, by other French experts in probability calculus, for the def-
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can only lead to an approximate a posteriori determination of probability.

Several modern mathematicians base the definition of probability on frequency,
but on limit frequency instead of totalitarian frequency. Let us find out if and how
such a concept may be justified.

One may note that there are phenomena occurring under the same conditions
at various circumstances of time and place, so that one sees no reason for admitting
that they have a different probability: for instance, like the sex ratios at births for
one year and those for the following year, tonight’s roulette game and tomorrow’s.
On the other hand, even when the various phenomena are exactly defined by
stating the time and place of their occurrence, when they do not entirely refer to
the past, the number of cases in which they occur remains generally undefined.
Thus, may we say that a probability concept, such as the one derived from limit
frequency, one which is not linked to a finite number of cases, nor to particular
circumstances of time and space, does not represent an advantage?

It is easy to answer that even if we cannot perceive the difference between the
probabilities of some characteristics in various phenomena differentiated according
to time and place (for instance, the probability of certain results in roulette games
carried out today or tomorrow), it does not mean that differences between such
probabilities cannot exist for circumstances unperceived by us, as in effect it will
show when the phenomena will have exhausted itself in all its cases and it will
belong to the past; nor the fact that the number of cases, part of each phenomenon,
is indefinite, in the sense of “impossible to be determined a priori”, must be
confused with the statement that it is not finite, but infinite.

Hence, from a theoretical viewpoint, to calculate probability from the limit
frequency does not represent any advantage, so it might be only justified from a
practical aspect in order to supply a uniform criterion for cases where we cannot
in practice differentiate the different probabilities of the phenomenon. However,
practically speaking, the limit frequency cannot be determined and it would in-
stead be worth resorting either to an a priori approximate determination of it, by
mathematical probability, or to an a posteriori approximate determination of it,
by empirical probability. As we stated above, these procedures are already justifi-
able as approximate measurements of totalitarian frequency, without the need to
resort to the concept of limit frequency.

One might still point out that, if it is true that in controlling our behavior we
practically find ourselves facing phenomena limited in time and space, and includ-
ing a finite number of cases, nevertheless nothing prevents us from grouping such
phenomena in wider phenomena, for which we may as well determine the proba-
bilities. For instance, we may decide to determine the probabilities of obtaining
certain results in roulette games, not tonight or tomorrow night and for a specific

inition of “limit frequency”, with which we will deal later. For example, regarding this,
see M. Fréchet, in Exposé et discussion de quelques recherches récentes sur les fonde-
ments du Calcul des probabilités, Hermann, Paris 1938, p. 25. But, actualy, I do not
see the advantage of substituting such a clear expression and one already adopted by the
scientific language, like that of “limit frequency” with another that may be misleading,
as this one of “total frequency”.
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table, but for all the tables where the game is played, has been played or will be
played. Similarly, we may decide to determine the sex ratios at births, not of a
specific population, in one year or the other, but for all the human population, for
all time.

However, this would lead to a very large number of observations, yet always
a finite number, and on the other hand by widening the number of cases beyond
those which directly interest us, probability would lose its function of supplying
the most plausible criterion for the control of our behavior.

Nor, would it be worth insisting on this, saying that one might think of roulette
games or other similar events considered in an abstract way, structuring the various
hypotheses allowed by its results, independently of actual trials or observations and
with the reference to the general possibility that these repeat themselves as many
times as one wishes, because, in such a case, the determination of probability would
loose the a posteriori characteristics of limit frequency returning to mathematical
probability, a priori determined on the basis of cases theoretically possible.

On the other, one must keep in mind, as it has been previously pointed out
with regard to the law of large numbers, that the probability definition as limit
frequency leads to a contradiction, likely to be unavoidable, with Bernoulli’s and
Poisson’s theorems, so that such a definition seems to have to be discarded.

Before leaving this topic, I will say a few words regarding the so called “subjec-
tive theory of probabilities”, a theory that, according to my viewpoint, is wrongly
judged by many people to be incompatible with the probability concept derived
from frequency and set as the basis of the theory, which in antithesis is said “ob-
jective”.

Some authors assume that, when probability is applied, not to a series of cases
(e.g. death probability in the people of a country, of a certain age, and in the
course of a specific interval of time; probability of a shipwreck, in the course of a
certain trip, for the ships insured with a specific company), but to a single case
(e.g., the sex of an as yet unborn child, the condition of a historical event), it
cannot be based on frequency - that for a single case is necessarily equal to 0
or equal to 1- but it only expresses the subjective confidence level that in the
single case one condition, rather than the other, occurs. Because usually (in fact
“always”, as some say, purposely exaggerating) probability is applied to the single
cases, this should be the definition to be adopted for the term probability.

When the topic is further investigated, one realizes that, even when probability
is attributed to a single case, it is still always defined for a series of cases, to which
the considered single case belongs. We do not know enough about the antecedents
of the phenomenon (or, even in the hypothesis of a phenomenon not belonging
to the future, of the circumstances occurring or following it) which are related to
the event we are interested in, to decide if this occurs or not in the case under
consideration. Hence, we must reckon that these antecedents might occur either
in the case in which the event occurs or, in the case in which it does not occur,
with the real or hypothetical cases forming the category for which the defined
probability is valid. The confidence level that the event occurs in the single case
under consideration is just the frequency by which, on the basis of a priori and a
posteriori considerations, we assume that the event occurs in the conceptual class,
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to which the single case under consideration belongs. It is such a conformity that
makes it reasonable to bet on the occurrence or not, of the event in the single case.
But not always can such a frequency be numerically expressed; often we can only
say that it is high, low or medium. On the other hand, the definition of the class
in which the considered single case may be placed, does not represent a datum of
the problem, but it depends on the more or less vast knowledge or in the more
or less sophisticated studies conducted by he who wishes to define the probability
and also on the major or minor importance that the person assigns to one or the
other of the various circumstances that might affect the occurrence of the event.
In this manner the probability determination for single cases may well be called
subjective13.

5. The concept of chance

To the contrast between “objective theory” and “subjective theory” of probability,
from a certain similar viewpoint a contrast corresponds between ”chance in the
objective sense” and “chance in the subjective sense”. The two contrasts are
similar because, like the subjective concept of probability, so the subjective concept
of chance refers to single events, while the objective concept of chance, like the
objective concept of probability, refers to classes of events.

We call a single event “random” when we cannot foresee it. If we suppose that
all events have a cause, the conclusion is that only our ignorance allows us to speak
of chance. For a being of superior intelligence, who, as such, would know all the
causes of phenomena, nothing would be unforeseen and chance would not exist.
Such is the subjective concept of chance, as found in the classics of probability
theory, but it can be found much earlier, at least in Spinoza (1677).

To this, Cournot explicitly opposed the objective concept of chance, that,
on the other hand, is already formulated in a treatise by Jean de Laplacette
(1714) and, according to Cournot himself, it had been foreseen by S. Thomas in
the Middle Ages and, even before that, by Boethius. Having defined a class of
phenomena B, when we cannot foresee the occurrence of a phenomenon A, from
the occurrence of B, we will say that the occurrence of A is random in relation to
B. Cournot says that this happens whenever A and B derive from independent
causes. But this does not occur only in the case of such a hypothesis: if a negative
relationship exists between A and B, it is even more likely that the occurrence of
A appears as random in relation to the occurrence of B. Hence, in relation to B,
a phenomenon A which, in its occurrence, is not at all consistent with B, may be
defined as random. It results as such, not because of the ignorance of this or that
person, but for all people, independently of their knowledge. Thus, it is objective.

13 The thesis that each probability is determined in relation to a class of cases and that
the definition of probability in relation to such class is objective, while the size of the
class is subjective, has finally been supported by Fréchet, by modifying his previously
expressed opinion (see Exposé quoted above, p. 50). We have dealt with it since 1908
(see the quoted article Che cos’è la probabilità?, pp. 7-11). We do not know if Fréchet
knew about our thesis of so many years before.
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It results as such because, of the circumstances preceding or following phe-
nomenon A, one assumes knowing only those defining phenomenon B, to which A
is related. In relation to the knowledge of B, A is casual. There might be those
who know and those who do not know the reasons, why a person became a delin-
quent: anyway, it must declare as casual the fact that the delinquent was born
on one day of the week, rather than another. Hence, the event which is casual in
the objective sense, may be called so in the relative sense, because it is such in
relation to some of our information, while an event, casual in the subjective sense,
may in contrast be called so in an absolute sense, because it is so in relation to all
our information.

It may be observed that, even in the objective sense, the concept of chance
implies some ignorance, the ignorance of those circumstances preceding or con-
comitant with A, which are not those defining phenomenon B, with which A is
compared: but it is an hypothetical ignorance, not an actual one, artificial, not
real.

The actual ignorance of causes, from which chance derives in the subjective
sense, may or may not be inevitable. This second alternative occurs in gambling
games, purposely set up so that the result will be unpredictable. In relation to
them one may speak of chance in an almost objective sense.

Does an antithesis really exist between the concepts of chance and cause?
Nowadays there is a lot of talk about it, especially by physicists, who oppose
deterministic laws to statistical laws. What can one say regarding this?

A cause is always followed by its effect, so that between the former and the
latter there is a frequency ratio equal to 1, but often the effect is determined,
instead of by only one cause, by a complex of causes, which can be split into
various “concomitant causes”. Therefore between the concomitant cause and the
effect, there is a probability ratio that translates into a frequency smaller than
1, but greater than 1/2. A frequency equal to 1/2 is a sign of independence
between the event and the circumstances to which it is related, and, finally, a
frequency smaller than 1/2 shows, among the said circumstances, the presence
of some counter-effecting factor, we might say of a “counter-cause”. An event
appears to be casual to us when the circumstances to which it is related do not
include either its cause, or one of its concomitant causes.

Thus the antithesis between cause and chance is without foundation, whenever,
by it, one means that a phenomenon, which is attributed to chance, evades the
principle of casuality; but it is right, if one means that the phenomenon is called
casual in relation to a circumstance or a set of circumstances, which does not
represents, nor includes, the cause or a concomitant cause of the phenomenon14.

6. Principle of random error compensation

Some people define as random those errors whose probable value is equal to zero,
that is to say, errors that tend to compensate themselves. If understood in this

14 Regarding the concept of case, see publications 5 and 7; regarding the causality
principle in relation to the so called indetermination principle, see publication 13.



178 C. Gini

way, the principle of random errors compensation becomes a mere tautology15.
Random errors may be otherwise defined, intending as random errors those which
are the result of perturbing circumstances that tend to compensate themselves.
Then, the problem of whether random errors tend to compensate themselves as the
number of observations increases, acquires a different meaning which is as follows:
provided that a phenomenon is observed for the cases in which it occurs under the
influence of a specific circumstance (or of a specific group of circumstances), whose
effects we are interested in studying, and, at the same time, under the influence
of other perturbing circumstances which we consider as independent from the
first, hence, accidental in relation to it, so that, equally, they tend to compensate
themselves, can we say that the effects of these accidental circumstances also tend
to compensate as the number of observations increases? This is precisely the
meaning attributed to the question by statisticians, since Quetelet 16.

15 In a very recent article Sulla teoria della media tipica (“Analisi”, I, 2 quarter 1945)
Boldrini - obviously referring to our publication 5 - states that the “classic definition of
random errors”, according to which observation errors are called random if their sum
tends to 0 as the number of observations increases, “has recently been declared as tauto-
logical”. And he dwells upon the evaluation of such an accusation of tautology (see pp.
10–12). The fact is, anyway, that I never dreamt of stating that such a definition - with
which I will deal later (see note 16) - is tautological. What I stated instead was that the
compensation principle becomes tautological when such an assumption is adopted for
the random errors. These are my actual words: “Allowing such a definition for random
errors, the principle of compensation for random errors is obviously true; but it becomes
a tautology: that is, it becomes the statement that, as the number of observations in-
creases, those errors whose influence, as a definition, tends to disappear as the number of
observations increases, tend to compensate.” (pp. 11–12). I feel that such a statement
is, on one hand, indisputable and, on the other, so clear that it should not have led to
misunderstanding. Such an article by Boldrini represents the first part of a publication
of the same title, presented at the meeting of the Accadermia Pontificia delle Scienze,
5th April 1945. At this very moment, while I am correcting the proofs, I am receiving
an abstract, that will be considered in the following notes.

16 Quetelet differentiated the causes of statistical phenomena in constant, variable and
accidental and assigned to statistics the task of finding the effects of the systematic
causes (constant or variable), eliminating those of accidental causes [see Lettres sur La
Théorie des probabilités appliquée aux sciences morales et politiques (Bruxelles, Hayez,
1846)]. He defines the accidental causes as: “Les causes accidentelles ne se manifestent
que fortuitement, et agissent indifferemment dans l’un or l’autre sens” (p. 159). Instead,
he does not define accidental errors; but it is clear that he thinks of them as the effects
of accidental causes.
Regarding this Gauss was clearer. In the first paragraph of the famous Theoria Combina-
tionis Observationum Erroribus Minimis Obnoxiae (1821), he said: “Quaedam errorum
causae ita sunt comparatae, ut ipsarum effectus in qualibet observatione a circumstantiis
variabilibus pendeat, inter quas et ipsam observationem nullus nexus essentialis concip-
itur: errores hinc oriundi irregulares seu fortuiti vocantur, quatenusque illae circumstan-
tiae calculo subiici nequeunt, idem etiam de erroribus ipsis valet”. (Karl Friedrick Gauss
Werke, Vierter Band, Zweiter Abdruck, Göttingen, 1880).
Regarding this Gauss was clearer. In the first paragraph of the famous. Theoria Combi-
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Hence, the principle of random error compensation admits that - being equal
to 0 the probable value of the differences between the intensities of some circum-
stances and their arithmetical mean, while another circumstance (or a group of
circumstances) remains constant the probable value of the effects of such differ-
ences is also equal to 0.

Having defined in such a way the content of the principle of random errors
compensation, it becomes evident that such a principle is not necessarily true. It
is in fact obvious that, if the expected value of a variable - in our case represented
by the whole of perturbing circumstances - is equal to 0, it is not necessarily the
expected value of any of its functions. For the value of one of its function to be
equal to 0, this function must satisfy certain conditions. Several of the conditions,
sufficient for the above, were taken into consideration:

a) linear relationship between the intensity of the perturbing circumstances and
the intensity of the resulting errors;

b) symmetry, either in the frequency curve of the intensity of perturbing cir-
cumstances, or in the relationship between the intensity of these, and the
intensity of the resulting errors;

c) concordance between mean and median, either for the perturbing circum-
stances and the resulting errors, and monotonic relationship between the
intensity of the perturbing circumstances and the intensity of the resulting
errors, so that greater errors correspond to stronger perturbances;

d) coincidence between the arithmetical mean and the mode of the observed
values and inverse relationship between frequency and intensity of the er-
rors17.

nationis Observationum Erroribus Minimis Obnoxiae (1821), he said: “Quaedam errorum
causae ita sunt comparatae, ut ipsarum effectus in qualibet observatione a circumstantiis
variabilibus pendeat, inter quas et ipsam observationem nu!lus nexus essentialis concip-
itur: errores hinc oriundi irregulares seu fortuiti vocantur, quatenusque i!lae circumstan-
tiae calculo subiici nequeunt, idem etiam de erroribus ipsis valet”. (Karl Friedrick Gauss
Werke, Vierter Band, Zweiter Abdruck, Gi:ittingen, 1880).
It is obvious that both Gauss and Quetelet understand random errors as the effects of
causes acting independently of the constant quantity one wishes to observe. This concept
well suits the definition we have given for accidental errors; a definition that in itself does
not have as essential the condition of errors compensation.
Instead, Boldrini says that, according to the classic concept of random errors, “numerous
errors of unknown origin are called by that name, usually small, which inevitably are
made when attentively measuring the same statistical quantity several times, the sum of
which tends to zero with the increasing number of observations” (see Sulla teoria della
media tipica p. 9 of the paper in “Analisi” p. 2 of the extract from “Atti della Pontificia
Accademia delle scienze”), a definition that I would suggest to refuse in order to present
one of my own. I now have a really strong wish that Boldrini would quote from the
classics - as among these neither Gauss nor Quetelet are present -who give of random
errors the definition that he attributes to them.

17 By following Quetelet, many statisticians assumed as a sufficient condition for the ap-
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From the detailed examination carried out, the result was that not always one
of the above-described condition occurs. It is concluded that the application of
the principle of compensation of the effects of accidental perturbing circumstances
(a procedure which forms the basis for so many statistical methods) will not be
legitimate. For it to be so, it is worth examining each individual case if there
is reason to assume that one of the above listed conditions is occurring, if not
exactly, at least with the approximation required by the nature of the studies. It
is true though that, even if none of the above-mentioned condition occurs, one
cannot rule out that the application of the said principle might lead to exact con-
clusions. Some more complicated hypotheses occur, which make the application
of the said principle proper, but, until one has demonstrated that a more compli-
cated hypothesis corresponds to reality, the application of the principle will not
be justified.

7. Prevalence principle of constant causes

We would therefore ask ourselves if we cannot indicate a principle for more general
applications than that of the accidental errors compensation, a principle on which
to base the elimination of measurement errors. In this regard, one may observe
that, when the errors are rare, the more intense they are, the maximum frequency
of the observed values will correspond to an error equal to 0, that is, the mode of
the observed values will correspond to the true value of the quality. The validity
of this condition is more general than that of the above-mentioned condition d),
because it does not require the hypothesis of correspondence between mode and

plication of the random errors principle, the fact that the curve of the observed quantities
follows the normal or Gaussian distribution, so that the arithmetic mean of a normal
distribution would give the value of the phenomenon, that would occur due to the sys-
tematic cause or the causes, apart from the intervention of perturbing circumstances.
However, as I pointed out in publication 5, the statement is not proved and in fact ev-
erything seems to make us believe that it is without foundation, at least until we refer
to the approximately normal distributions met in reality. In such a publication I exactly
supplied an example of distribution - that practically would certainly be judged as nor-
mal - for quantities resulting from the combination of a constant quantity and of the
disturbances brought in by two circumstances whose intensities compensate but whose
effects do not compensate. The mean of the observed quantities for such a distribution
is equal to 17.42, considerably different from the intensity of the constant quantity equal
to 16.58.
In the quoted publication Sulla teoria della media tipica, presented at the “Accademia
Pontificia delle Scienze”, Boldrini insists on Quetelet’s theory, although he introduces
limitations that, according to him, would represent points of contact with my objections;
but, according to my viewpoint, unsuccessfully. In fact, he does not exclude, and he
does not even take into consideration the possibility, that I had exemplified too, that
perturbing circumstances with non-constant effect and intensity which do not compen-
sate for one another, might cause the mean of the observed quantities to diverge from
the constant quantity, without the distribution of these essentially diverging from the
normal type. When one does not take into consideration hypotheses contrary to one’s
own thesis, one may pretend to demonstrate anything one wishes.
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arithmetic mean of the observed values. It must be added that it does not even
imply the hypothesis that perturbing causes have an accidental aspect. Such a
proposition may be called prevalence principle of constant causes. It leads us
to resort to mode instead of arithmetic mean as the most plausible value of the
true intensity of the phenomenon, independently of the influence of the perturbing
factors18.

8. Analysis of variance

Besides the influence of random errors on the mean intensity, their influence on
variability must be taken into consideration.

It is known that the probable value of the total variance of a series of measure-
ments affected by accidental errors is equal to the variance of the exact quantities
(systematic variance) plus the probable value of the variance, to which the sin-
gle observed measurements are subjected due to the accidental errors (accidental
variance).

When extended to the subjective means, this result leads us to consider the
variance of a phenomenon under the influence of two groups of circumstances A
and B, as the sum of the variance Vma which the mean values of the phenomenon
show with the variation of circumstance (or a group of circumstances) A, and of
the variance aVb, that, with the same A, the single values of the phenomenon
show as B varies (procedure α); or also as the sum of the variance Vmb, which
the mean values of the phenomenon show with the variation of circumstance (or
group of circumstances) B and of the variance bVa that, with the same B, the
single values of the phenomenon show as A varies (procedure β). One or the other
of the procedures is used to split the total variance of the phenomenon into two
parts, respectively, due to the two groups of circumstances A and B.

An objection which does not seem to be avoidable is that the results of the
two symmetrical procedures (α and β) do not coincide, except for particular cases,
and in fact often differ considerably. For instance, one procedure applied to the
analysis of the variance of the number of Drosophila’s ocelli according to the
genetic constitution and temperature, derived from Krafka’s experiments, leads to

18 In publication 5 it was noted that “the principle of random errors compensation has
the advantage of the arithmetic mean, to which it leads, being less affected, in relation
to the mode to which the principle of constant causes prevalence leads, by the influence
of the limited number of observations. Even when its probable error is not negligible,
this may nonetheless be determined, while the probable error of the mode cannot yet be
determined” (p. 207).
The probable error of a mode had really been determined - as I verified later - by Kazutaro
Yasukawa, in the laboratory of Prof. K. Pearson (On the probable Error of the Mode of
Skew Frequency Distributions, in “Biometrika”, vol. XVIII, Parts III IV, 1926), assuming
hyper geometric distribution. As it is known, starting from this distribution, Pearson
deduced his well known types of curves. Recently, the study of this problem has again
been undertaken at the Institute of Statistics of Rome University, either regarding the
single types of curves studied by Pearson, or starting from more general hypotheses.
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attributing, to the two groups of circumstances, respectively the weight of 55 and
45% and the other, instead, of 68 and 32%.

It seems more acceptable to stick to a third procedure, by comparing the
variance bVa, shown by the phenomenon under a group of circumstances A, when
the group of circumstances B is kept constant, or the variance aVb shown by the
phenomenon under a group of circumstances B, when the group of circumstances
A is kept constant, to the sum of the two variances bVa and aVb. It corresponds to
the procedure followed in the experimental method, where each factor’s influence
is isolated by observing how things develop when other factors remain constant.
In our example by such procedure the influence of the genetic constitution and
that of temperature on the variance of the number of Drosophila’s ocelli is 60 and
40% respectively19.

9. The relationships of casuality and probability cannot be inverted

Given that by increasing the number of observations, the frequency of acciden-
tal errors can practically be eliminated and measurement errors can compensate
themselves when specific conditions occur, one is motivated to look for the re-
lationships between the number of observations and the intensity of such errors
- another fundamental problem of statistical methodology for the assessment of
reliability of the available data.

When the probability of a phenomenon, corresponding to its frequency in the
total observations, is known, from Bernoulli’s theorem it is easy to calculate the
probability of a random frequency error and, when the true value and the standard
deviation of an absolute quantity are known, it is easy to calculate the probability
of a measurement error from the curve of accidental errors.

Except that, usually, nor the probability in the first case, nor the true value
and the standard deviation of the absolute quantity, in the second case, are known.
Therefore, such values are usually substituted by those of frequency and, respec-
tively, of the mean value and of the standard deviation, obtained from a large
number of observations. Such substitutions - and particularly that of the ob-
served standard deviation for the theoretical standard deviation - lead to some
reservations (see paper 1); but the main difficulty is not related to this. In order
to move - however approximately - from the observed quantity to the probable
value of the true quantity, are the same known facts, which are necessary in order
to move from the true quantity to the probable value of the observed quantity,
enough? This is the crucial point of the matter. This is the problem around which
all the discussions on inverse probability, tests of significance, confidence levels,
gravitate20.

In order to solve the problem, it is worth starting from the undisputed proof
of non reversibility of the relationships of casuality. After it rains, roads are wet;

19 For the analysis of variance see publications 3, 4, 5, 6.

20 In the paper Considerazioni sulle probabiltà a posteriori e applicazioni al rapporto dei
sessi nelle nascite umane, in “Studi economico–gioridici” of the R. Università of Cagliari,
year III, 1911
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but if a road is wet, this does not prove that it did rain; the road might have been
watered, or some flooding might have occurred, or further, the water might be
the cause of the burst of a pipeline. Besides, if we do not have some information
regarding the frequency of rain, watering, flooding and water pipeline bursting,
we will never be able to assess with which probability the wetness of the roads is
due to one or the other of the above-mentioned causes.

Probability relationships differ from those of causality because the same an-
tecedent or the same system of antecedents does not always cause the same effect,
but sometimes one type of effect and some other times another, each with a specific
probability; but for them as well it might occur that the same effect might derive
from a system of antecedents and it is impossible to determine the probability that
an effect is due to an antecedent rather than another without some information
about the frequency by which these various antecedents occur. This information
is not required, when, an antecedent being known, one wants to determine the
probability of its various possible effects. For instance, it is easy to calculate what
is the probability that, at one or the other game of cards, a player holds four aces
in his hands; but, if you see a player with four aces in his hands, you cannot calcu-
late what is the probability that one game, rather than the other, is being played,
if you do not know what are the games being played and with what frequency.

When keeping in mind this obvious considerations, it appears clear that the
task of the probability theorem inversion - and particularly of building up the tests
of significance and assessing confidence intervals - without having, or assuming to
have, any information regarding the frequency of the possible causes of the results,
is a desperate attempt. Only by a misunderstanding could someone have thought
to have managed to do so.

Let us examine where the misunderstanding might have come from.

10. Probability that a result occurs in a random combination and
probability that a result depends on a random combination

Let us consider a family with 10 daughters. The probability that such a combi-
nation occurs due to chance is very small: as less females than males are born,
the result is smaller than 1/210 = 1/1024. From this some assume that there is a
probability greater than 1023/1024 that the parents had a tendency to generate
females.

Let us consider a genealogy where grandfather, father and four children have
died of a specific illness. For such an illness the probability of death is 1/200. As-
suming that it is not the case of a contagious disease, 1/2006 will be the probability
that such a combination occurs due to chance. Many people draw the conclusion
that the considered illness, or at least a predisposition to it, had hereditary char-
acteristic, as there is only one possibility out of 2005 favorable to the opposite
hypothesis. This type of debate is often met among geneticians, to support the
importance of inheritance in the assessment of some characteristics.

The following debate, which aims at demonstrating the practical impossibility
that organic matter is derived from inorganic matter, is one of greater impact.
It is said that the probability of one of the simplest organic molecules, made of
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only just 2000 atoms, to be originated by a casual combination of the considered
atoms, is less than 1/10600. Hence, there is less than one possibility out of 10600

that it does not originate from a predetermined plan. The mystical reaction to the
materialistic concept of the beginning of life, tries to find an objective foundation
in this and other similar arguments.

Many people believe that the validity of these arguments cannot be contested;
but their fallacy is clearly perceived when one resorts to a similar argument in-
terfering with our interests, because then our logical sensibility is awakened and
stimulated.

Think, you have won the lottery with a set of four winning numbers and call
to collect your winnings. You find that at the lottery shop there is a policeman
who stops you and says: “The probability that your numbers were extracted as a
pure chance is 1/511038. Hence, there are 511037 probabilities to one that your
winning is the result of some cheating. This is enough for me to declare that you
are under arrest”. I am quite sure that this reasoning does not persuade you!

In order to be sure of the fallacy of this and the previous reasoning it is sufficient
to consider that, among the 1024 sex combinations that may occur for 10 births,
among the 2006 combinations for death causes that may occur in the sequence of
two ancestors and four brothers, among the 10600 or more combinations for 2000
atoms, among the 511038 combinations for four of the five extracted numbers, one
combination had to occur anyway, and the one which did occur was as probable as
any other. The same reasoning could have been repeated for any other combination
that happened to occur, thus concluding, with the same basis, that it could not
have been casual.

Where then is the mistake? The mistake lies in confusing the probability that
a specific result occurs in a series of combinations by chance with the probability
that it does occur by a casual combination, rather than by one due to systematic
causes. Some authors, and among them some very esteemed ones, ran into such
a misunderstanding that appears to be a banal one. The misunderstanding is, for
instance, obvious in a paper by Karl Pearson, to which the modem formulation
of the tests of significance, provided by the English School, can be traced back.
The paper is entitled: On the Criterion that a given System of Deviations from
the Probable in the Case of a Correlated System of Variables is such that it can
be reasonably supposed to have arisen from Random Sampling (“Philosophical
Magazine”, 1900). The title says “From random sampling”; but soon enough in
the text the expression is substituted by the other “on a random selection” and it
is this expression which corresponds to the demonstration that is actually given
in the paper. Therefore Pearson aimed to supply a criterion so that it could
reasonably be assumed that a specific system of deviations was derived from a
random selection and, instead, he demonstrated a criterion so that in a random
selection the desired system of deviation is obtained.

A very simple relationship exists between the probability aPe, that a specific
event e occurs in a casual combination and the probability eπa that the same
event, which has occurred, derives from a casual combination. The relationship,
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that I recalled in paper 1 and to which I returned to in paper 9, is

eπa =
aPe

aPe +
1−Pa

Pa
sPe

(1)

where aPe and eπa have the meanings explained above, Pa is the probability
that accidental causes intervene, 1− pa, the complementary probability that non-
accidental causes intervene and sPe the probability that, if non-accidental causes
have intervened, the considered event occurs.

Let us apply this formula to the four winning numbers. As we have seen, in
such a case, it is aPe = 1/511038; but, suppose that the lottery game is carried out
with total impartiality. In it only accidental causes intervene; that is Pa = 1 hence
(1− Pa)/Pa = 0 and consequently eπa = 1. There is therefore the certainty (and
not a probability equal to 1/511038) that the winning is due to casual combination.
Naturally, there would be a different conclusion if the game was not carried out
with the necessary impartiality.

Again, let us apply the formula to the formation of the organic molecule. In
this case it is aPe < 1/10600; but which are the values of Pa and sPe? The
misbeliever refuses to take into consideration other causes rather than the natural
ones and he denies the possibility of a preestablished end in nature. For him it is
Pa = 1 hence eπa = 1. Instead the believer is convinced of the contrary: for him
it is 1 − pa = 1 and also sPe assumes a high value, so that eπa acquires a fading
value.

It must be observed that when non-accidental factors intervene, so that it is
Pa < 1, (1−Pa)/Pa > 0, the value of sPe and hence of eπa is not the same for all
the possible combinations, for which the value aPe is instead the same. For those
who admit that the process of nature is directed towards an aim, there is a strong
probability sPe (if not perhaps the certainty) that the pre-set combination of the
atoms did originate the organic molecule, but there is not the same probability
that it might have originated any other combination. In a hypothetical country,
where the lottery game is not carried out honestly, there will be a more or less
strong probability that a large win is the result of some cheating, while there is
no equivalent reason for assuming that the extraction of some numbers, of which
nobody can take advantage, is the result of that cheating.

Regarding this, it is also worth considering that the usefulness of formula (1)
is not just to allow the numerical determination of eπa, that in reality can only be
done exceptionally, but it is to show the relationship between aPe and eπa, which is
useful from a dual viewpoint From a negative viewpoint, because it enlightens how
arbitrary it is, and even resulting as dangerous, to go from aPe to eπa without any
other information. From a positive viewpoint, because it shows how in particular
cases, when one has this type of knowledge, actually concerning the values of Pa

(hence of 1− pa) and of sPe, it is possible to reach founded conclusions, however
not always numerically expressible, about the value of eπa.

However, the misunderstanding between direct and inverse problems of proba-
bility did not occur for the first time in the modern English Statistical School. It
actually dates much further back.

It is commonly known that Jacob Bernoulli has demonstrated that when the
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probability ν of a phenomenon is known, it is possible to calculate the probability
that in a given number of observations its frequency f deviates from ν of less
than a given quantity. This is the theorem - a theorem of direct probability
- known as Bernoulli’s theorem. But, indeed, he tackled a problem of inverse
probability, that of the a posteriori determination, from the observed frequency
f of the phenomenon, of its unknown probability ν with an error smaller than a
given intensity, when it might not have been possible to determine a priori such a
probability as the ratio of favorable cases to the possible-cases of the phenomenon.

The contrast between the assumption and its demonstration is obvious for
anybody who attentively reads Ars Conjectandi and, if it is usually not noticed, I
believe this happens because many speak of Bernoulli, but very few have read him.
Keynes, who read him, noticed the contrast and thought that Bernoulli actually
had in mind - after having demonstrated the direct theorem - to demonstrate the
inverse related theorem, but he had been unable to do so because of his sudden
death, thus leaving his work unfinished. There is now no doubt that Ars Con-
jectandi is an incomplete work, but what is missing is the application to civil,
moral and economic subjects, while, with regard to the theoretical part, from a
careful reading of the book and of the letters exchanged between the Author and
Leibniz there is no doubt that Bernoulli thought he had successfully demonstrated
his assumption (see paper 14). Hence, he openly misunderstood a direct proba-
bility theorem and an inverse probability theorem. Bernoulli is rightly regarded
as the founder of Probability theory. Hence, the misunderstanding dates back to
the same origin. It might be called the “original sin of probability theory”. Thus
one understands why it has been so difficult to eliminate it.

11. The inversion of bernoulli’s theorem carried out by Laplace
with the hypothesis of equiprobable causes. proposal of a more
general scheme and its application to batch testing by samples

The above recalled formula (1) is only one particular case of a more general formula
used in the probability theory to determine the a posteriori probability on the basis
of the probability of causes. In this particular case the causes are grouped in two
categories: accidental and systematic causes. Instead, when the considered causes
are many (theoretically infinite) and they all intervene with the same probability
and lead to different probabilities for the event, which are uniformly distributed
between 0 and 1, Laplace demonstrated that Bernoulli’s theorem can be inverted,
that means to say that probability νP+ef that in n cases a frequency f occurs,
which differs from the corresponding true value (that is from the corresponding
probability) ν of more than

e

√
2ν(1− ν)

n

in such an hypothesis, is equal to the probability fΠ+eν at the unknown probability

ν differs from frequency f , which occurred in n cases, of more than

e

√
2f(1− f)

n
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The hypothesis of equiprobable causes, which the different values from 0 to 1 of
the event a priori probabilities imply, cannot generally be verified, and many times
it clearly does not correspond to truth: so, one understands why so many authors
tried to demonstrate that such an hypothesis is not necessary. They believe to
have done so, provided that the number n of observations is large enough that the
terms of order 1/n can be neglected; but their demonstrations are not exempt from
objections, as I have demonstrated in paper 9. Indeed, in paper 12 (prepared in
collaboration with Dr.G. Livada), reconsidering and developing a scheme already
proposed in 191121, I demonstrated that, when the causes corresponding to a
priori probabilities of the event gather around a mode value k/(k + h) and they
have a value included between x and x+ dx with probability

px =
(k + h+ 1)!

k!h!
xk(1− x)hdx

the values of fΠ+eν depend on k and h, as well as on the number fn of times in

which the event occurred and on the number of times (1 − f)n in which it did
not occur. As there is no restriction on the values k and h, it appears clear that,
even when the number n of observations is so large that terms of order 1/n can
be neglected, the results essentially depend on the values k and h, that is, on the
distribution of causes.

This scheme is more general than that considered by Laplace, which can be ob-
tained in the particular case when k = 0, h = 0. Practically it can also be applied,
and in fact I did apply it, to the testing of product batches by sampling, when the
firms calling for the testing had previously submitted other samples from which
the values k and h can be calculated. I demonstrated that by making various
hypothesis on the percentages of faulty elements resulting from previous samples,
the probability that in the submitted batch the percentage of faulty elements does
not go beyond a specific limit may result to be very different, depending on the
percentages of faulty elements resulting from previous samples and, nonetheless,
very different than that which one would have obtained on the basis of Laplace’s
hypothesis of equiprobability of causes. In the example I gave, according to this
hypothesis, one would have expected a probability equal to 0.1438 that the per-
centage of faulty elements in the hatch was not greater than 8%, while, according
to the various hypothesis considered in the application of our scheme, the respec-
tive probability was 0.8773; 0.2996; 0.0004; 0.3107.

If I am not wrong, the introduction of this more general scheme, applied to tests
by sampling, represents a substantial progress in dealing with inverse probability
problems, either from a theoretical viewpoint and a practical one.

21 In the paper Considerazioni sulle probabilità a posteriori e applicazioni al rapporto dei
sessi nelle nascite umane, in “Studi economico-giurdici” of the R. Universita of Cagliari,
III, 1911.



188 C. Gini

12. Inversion of error probability for absolute quantity. estima-
tion theory

R. A. Fisher gave to the study of the tests of significance a different trend than
that given by Laplace. He did so in a 1930 publication, in which he showed that
he considered as intuitive - because he did not give a demonstration - that, if for
instance there is a probability of 95% or 997�that the observed value t of an
extensive or intensive known quantity θ or of one of its functions is greater than
limit t, there is also the probability of 95%, or respectively of 997�, that, having
observed a value t, the true value of quantity θ remains smaller than θ. Fisher does
not think any other hypothesis necessary except the continuity of the quantity t.
It is substantially on such a thesis that the formulation of the confidence intervals
method, later developed by J. Neyman and E. S. Pearson22 is based.

By recalling the subject in paper 11, I demonstrated that such a thesis is
without foundation and that the legitimacy of inversion is subordinated to two
hypotheses:

a) that the true value of quantity θ might take a priori, with the same proba-
bility, any of the values smaller or greater than θ from which the observed
value t may derive.

b) that the distribution of the observed values t does not vary with the variation
of θ, at least within the limits from which the observed value t may derive.

Instead, it is not indispensable that neither the continuity of quantity t, nor
the continuity of θ occurs.

The mentioned hypotheses are not identical to those on the basis of which
Laplace demonstrated the inversion of Bernoulli’s theorem for the relative fre-
quencies. While hypothesis a) in fact matches the similar hypothesis of Laplace
on equiprobable causes implying a priori probabilities between 0 and 1, hypothe-
sis b) cannot occur in Laplace scheme regarding relative frequencies, because the
binomial model, according to which these are distributed, notoriously varies its
shape depending on whether the binomial terms are the same or different, and, in
this second case, depending on whether they are more or less different. Hypothesis
b) can only occur for absolute quantities.

22 Neyman himself, writing about it in 1934 (“Journal of the R. Statistical Soc.” Vol.
XCVII) treated this method as an extension of the previous results by Fisher. From
a paper which appeared during the war, (“Biometrika” Vol. XXXII, Part II, October
1941), of which only now, while I am correcting the proofs, I am able to have knowledge -
I realize that later Neyman radically changed his opinion and now reckons that between
the two theories - that by Fisher and the other by himself and E. S. Pearson - there
is no relationship. However, the groundlessness of the method by Neyman and E. S.
Pearson has been demonstrated by me - independently of its derivation from that by
Fisher - either in publication 9, on the basis of the article by Clopper and E. S. Pearson
in “Biometrika” (VoL XXVI, Part III-VI) in 1934, or in publication 10, on the basis of
the presentation made for such a method, in 1943, at the Italian Statistical Society, by
Dr. Geppert
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By an appropriate example I have also separately examined, in both cases, the
sensible impact that may affect the results if hypothesis a) does not occur or if
hypothesis b) does not occur.

The above-mentioned system of hypotheses, if sufficient, is not however nec-
essary, because it may be substituted by different systems of hypotheses, which
would also result as sufficient.

Indeed, such an inversion is equally allowed when the following two hypotheses
occur:

α) the logarithm of the true value of quantity θ may a priori, with the same
probability, take any of the values smaller or greater than θ from which the
observed value t may derive;

β) the distribution of the logarithms of the observed values does not vary with
the variation of value θ, at least within the limits from which the observed
value t may derive.

These two hypotheses may be assumed as verified (while the previous hypothe-
ses a) and b) may not be assumed verified) when the true quantity θ is represented
by the variability index of a collective phenomenon and the observed quantity t by
the variability index of one of its samples. The inference from the variability index
of the sample to the variability index of the collective phenomenon is authorized
by the two hypotheses α) and β) (see paper 15).

In order for the estimation theory - which in fact aims at arriving at the
corresponding characteristics of the collective phenomenon from the sample char-
acteristics - to undertake a rigorous aspect, it is necessary:

1. to be absolutely clear that it is not possible to arrive at the collective phe-
nomenon characteristics, from the sample characteristics, without formulat-
ing hypotheses;

2. to define - generally or from time to time - the hypotheses sufficient for such
an inference to be allowed.

The problems mentioned in 2) can present two forms:

A) to define which are the hypotheses sufficient for a given inference to be
allowed, e.g. to define the hypotheses sufficient for Bernoulli’s theorem in-
version to be allowed or for the inversion from the standard deviation of the
collective phenomenon to the standard deviation of one of its samples to be
allowed;

B) given some hypotheses, to define which is the allowed inference, e.g. to define
the probable value of probability p after a frequency m/n has occurred in
n observations, in the hypotheses that, before the n observations, all the
values of p were equally possible. As known, in such a hypothesis, the
probable value of p is equal to (m+ 1)/(n+ 2).
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13. Probatory value of an event favouring a hypothesis and relia-
bility of the hypothesis after the event has occurred

The importance of the conclusions reached in publications 8, 9, 10, 11, 12, 15
really goes beyond the applications of probability theory. Indeed, the problem put
forward in such publications is only a particular case of a more general problem,
one which covers the very theory of knowledge.

Let us assume that we have several hypotheses A, B, C, ..., Z, all assumed as
admissible at a specific stage of our knowledge. A fact α occurs. We ask for the
probatory value of fact a favoring hypothesis A. Generally speaking, the problem
may be solved.

The probatory value for hypothesis A (rather than for the alternative hypothe-
ses B, C, ..., Z) indeed depends on the compatibility of α with A, rather than with
B, C, ..., Z, that is on the probability that, assuming that hypothesis A is true
event α occurs in comparison to the probability that, assuming one of the alter-
native hypothesis B, C, ..., Z to be true, such an event α occurs.

Rightly so, but one must not confuse the probatory value, that has just been
determined, of α for hypothesis A, with the reliability of hypothesis A, after event
α.

The reliability of hypothesis A, after event α, evidently depends, not only
on the probatory value of event α for hypothesis A, but also on the reliability
of hypothesis A, before event α. The pretence to determine the reliability of
hypothesis A after event α is absurd if one does not know (or assumes not to
know) the reliability of hypothesis A before such an event α.

Only if, before event a, the reliability for the various hypotheses A, B, C, ..., Z,
was the same, the reliability of any one of these, after such an event, would result
as proportional to the probatory value of event α for the considered hypothesis.
However, many times the reliability for the various hypotheses A, B, C, ..., Z,
before event α, is different from one hypothesis to another and, in such a case,
their reliability after event α does not only depend on the probatory value of event
α, and sometimes depends on this only a lesser extent23.

These conclusions might appear to be obvious: one must believe that none
of the unconditional supporters of the tests of significance and of the confidence
intervals will refuse his agreement. This shows how sometimes, in logical problems,
instead of clarifying ideas, mathematics might confuse them. This occurs when
operations, which are expressed by the same or similar symbols, have a different
logical meaning, as in fact occurs for the direct and inverse theorems of probability
calculus24.

23 Particularly, regarding this, see publication 8.

24 It could be said that the misunderstandings are not due to mathematics but to the
mismanagement of it. Naturally, they can be avoided by introducing new symbols, which
allow us to properly differentiate different operations. Proposals of this type will be found
in our forthcoming publication: Di alcuni simboli che sarebbe opportuno impiegare nella
trattazione matematica dei fenomeni statistici.
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14. The importance of the applications of the dispersion theory and
of theoretical schemes in general

Let us go back to the problem from which we started: the problem of deciding
whether or not an observed combination depends on accidental causes. As long as
one deals with the only observation in which the combination occurred, it remains
but to resort to formula (1), but when, besides such an observation others have
been made, in a sufficiently large number, one might face the problem of whether
the frequency of the combination under consideration is more or less higher than
it should be for the effect of chance. For instance, this study was carried out
extensively for sex combinations in families. This is the case of one of those
inductive applications of probability theory, which belong to the dispersion theory
by Dormoy and Lexis.

Now, in this regard some considerations should be made, which limit the pur-
port of such a comparison.

The first is that such a comparison tells us nothing about the accidental or
systematic characteristic of a single observed combination. If we find, as in fact
it was found, that the sex combinations in single families depend for one tenth or
a little more on the systematic tendencies of the parents to conceive one rather
than the other sex, and for the rest they are the result of chance25, this does not
mean that the same can be said for any single family. For instance, if a family
has 10 daughters in ten births, this might totally depend on chance, with the
family really not having any particular tendency to give birth to females and even
having a tendency to conceive males, and it might instead depend exclusively on
the inability of the parents to conceive males, without any accidental inf1uence.

The second observation is that, even considering all the observations, the com-
parison of the observed results with the forecast derived from the probability the-
ory cannot lead to certain conclusions. There is always the possibility that a coin-
cidence of actual data with theoretical data represents the effect of chance, while
groups of consecutive observations might show that in reality the phenomenon
has a dispersion greater or smaller than the theoretical one. Equally, there is
the possibility that a difference between observed results and theoretical forecasts
depends on chance, while subsequent groups of observations might reveal that
the phenomenon actually has a normal dispersion. It has often happened that in
statistics a seeming regularity, that was calculated from a number of observations
which seemed large enough, was later on denied as such by further observations.
Therefore, one must calculate the probable error for the result of the comparison
between actual data and theoretical forecasts, expressed by the dispersion index;
but the calculation of the probable error is, on one hand, subordinated to the
above stated hypotheses, implicit in the probability inversion and, on the other
hand, it cannot itself be free from the influence of chance. In conclusion, it must
never be forgotten that the applications of probability theory lead to conclusions
which are often hypothetical and always more or less probable, never certain.

25 Il sesso dal punto di vista statistico, 1908, Rome, Biblioteca del “Metron”, X: La
variabilità individuale nella tendenza a produrre i due sessi.
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Finally, a third consideration must be made regarding the cognitive importance
of such comparisons. The observation stretches to all the theoretical schemes, to
which the dispersion theory belongs as a particular case.

A theoretical scheme is a logical construction that generally implies several
hypotheses. The ascertainment that the results of the observation correspond to
the data of the theoretical scheme does not at all allow for the conclusion that the
hypotheses related to the scheme must correspond to reality, but only that they
might correspond to reality. Indeed, the correspondence may also be explained by
different hypotheses. In order to conclude that the said hypotheses - assumed in
a numbers - implied in the scheme, correspond to reality, it must be proved that
not only the global result, foreseen on the basis of the theoretical scheme, but also
s− 1 hypotheses, implied in the scheme, correspond to reality.

In the case of dispersion, the Lexis scheme assumes that the probability of the
considered event is constant and that the occurrence of an event in one case is
independent of its occurring in previous cases; but a normal dispersion may still
be obtained when there is compensation among the subsequent events, while the
probability of the event is subjected to variations in the course of the observation.
So the normal dispersion - assessed by several studies - of sex ratios in human births
for various territorial districts or consecutive time intervals, did not by itself justify
Lexis’ conclusion that the probability of a male birth or a female one did not vary
from the territorial district to another and from one considered time interval to
another. Such a conclusion became justified only after the compensating tendency
- stated by many authors - among the sex ratios for consecutive groups of births
was excluded. It then allowed us to drop several theories on sex determination,
which by such constancy resulted as being incompatible26.

Similarly, the genetic uniformity for the various individuals of a population,
in relation to a characteristic, dependent for its phenotype manifestations on the
perturbing influence of the environment, leads to a Gauss distribution of the char-
acteristic intensities; but it is wrong to derive, as Quetelet did, from such a Gauss

26 For all this see the quoted publication II sesso dal punto di vista statistico (1908),
in which two chapters are dedicated to the application of the dispersion theory to sex
ratios at births for various territorial districts and consecutive time intervals (Cap. IV:
Misura della regolarità dell’eccedenza dei maschi nelle nascite umane; Cap. V: Portata
della regolarità dell’eccedenza dei maschi nelle nascite umane). In chapter V, the sub-
stantial meaning of the normal dispersion is examined, and the conclusions which can be
drawn regarding the theory of sex determination are enlightened. Also explained are the
ways in which a probability of a phenomenon may vary during the observations or may
be influenced by the frequency of the phenomenon, in the previous cases, and of each
the influence which affects dispersion tending to make it hypemormal or hyponormal is
shown. We take into consideration the positive or vice versa negative interdependencies,
among the probabilities assumed by the phenomenon in the single cases which are part
of each term of the series, an interdependence that I am now realising was vastly elabo-
rated by Hilda Griringer in an article that appeared during the war A New Explanation
of Non–normal Dispersion in the Lexis Theory, in “Econometrica” (January 1942). Ob-
viously, the author, who speaks of “New Explanation”, ignored the explanation of the
subject given by me 34 years before.
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distribution the genetic uniformity of the population in relation to the character-
istic under consideration.

The problem - examined in publication 1 and more extensively in 2 - of the
cognitive value of the influence of theoretical schemes is very important today,
when such schemes multiply, often without taking care of the necessary checks.
The necessity to carry out such checks must be stressed, and not only regarding
the forecasts to which the scheme leads, but also regarding the single hypotheses
implied in the scheme.

15. The claimed contradictions of statistics

Another problem examined in publication 1 regards the contradictions that are
claimed to exist between the conclusions on the same phenomena arrived at by
several statisticians, sometimes all of them skilled. Generally, such contradictions
are only apparent. They often depend on the fact that, in reality, the diverging
conclusions do not refer to the same phenomenon. Thus, comparing the mortal-
ity of two populations, different statisticians may arrive at different conclusions
depending on whether they compare the raw coefficients of mortality or, instead,
they eliminate the influence of age, or also that of sex, of marital status, or of
profession, or wealth, and so on. Actually, the conclusions made by the various
authors refer to different phenomena; those by one to the total mortality; those by
another to the total mortality the age composition of the populations being equal;
those by a third author the sex composition of the populations being equal; those
by a fourth the age and profession composition of the populations being equal
and so on. On the other hand, it must be acknowledged that the many factors
influencing the statistical phenomena and the need to carry out a sufficient num-
ber of observations for each of them, make difficult to eliminate all the factors of
no interest; nor all the researchers, because of the material available to them, are
able to do so for the same factors and in the same amount, so that such seeming
contradictions are actually more frequent in statistics than in any other area.

Other seeming contradictions arise from the fact that the temporary effects of
a factor may be different - sometimes opposite - from its permanents effects, as
occurs for the influence of economic conditions on birth–rate. Similarly, the effects
of the same factor may be different depending on whether its intensity remains
within specific limits or it, instead, overcomes them, as, for instance, is the case
of tobacco or alcohol consumption, or meat consumption. Still, one must consider
that the indirect effects are sometimes in contrast with direct ones, and eventually
prevail over them, as it is in the case of the effect of a favorable environment
influencing mortality, because it prolongs the life of people who enjoy it, but,
on the other hand, by diminishing the effect of natural selection, it makes future
generations less strong. In their studies, some authors consider one or another type
of effects and, when such a diversity of objectives does not appear clear enough,
their diverging conclusions may appear wrongly incompatible.
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16. The dangers of statistics

These seeming contradictions and the acknowledged facility to run into them for
particularly complex phenomena such as those dealt with by statistics; the possi-
bility to achieve only probabilistic conclusions and never certain ones, when one
wants to extend the results beyond the observed data; the required need to carry
out checks, not always possible or satisfactory, of the various statements, besides
the forecasts of the theoretical schemes; the inevitable hypotheses and which often
do not correspond to reality, to which the tests of significance of statistical data
and the elimination of accidental errors are subordinated, all surround statistical
applications with dangers, of which one must be aware without t, statistics is an
avant garde discipline and as such it is normal that it implies particular risks;
but, on the other hand, it must be reckoned that often it would not be possible
to reach where it reaches, to see or perceive what it sees or perceives, to reap the
crop (however, sometimes not ripe) that it gathers; in other words, nothing could
replace it. Nietzsche said that to live dangerously is an essential condition for
obtaining maximum benefit and maximum satisfactions: perhaps in no other field
better than in statistics does his quotation apply.

Summary

The Author deals with a number of arguments inherent statistical inference and probabil-
ity as the frequency limit by von Mises, the correlation between probability and chance,
the concepts of casualty and causality, the inversion of Bernoullis theorem and the tests
of significance.

Keywords: Empirical and mathematical probability; subjective and objective probabil-
ity; subjective and objective chance.


