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1. To determine the probability that a phenomenon A takes place x times in s
future observations, is a problem that frequently occurs and the importance of
which is such that it would be unnecessary to emphasize it.

Most of the time we are not in a position to solve it on the basis of a priori
notions of the probability of A taking place. Notions of this type are found in the
games that human beings have conventionally set up, provided that the instru-
ments used do not show detectable irregularity in their makeup. But usually, to
assess the probability of phenomenon A taking place in s future observations, we
must base our reasoning on its frequency in the previous n observations, by resort-
ing to the hypothesis that the probability of its taking place is constant during the
n + s observations. In such a case, we proceed to the a posteriori determination
of the probability.

The problem of a posteriori determining the probability of future events, in
its more general form, can be formulated as follows: Determine the probability
that the phenomenon A occurs x times in s future observations, knowing that in
A previous observations it did occur in times and supposing that, during the n+ s
observations, its probability to occur remains unchanged.

2. In this study, we shall generally define Pb,c, the probability1 that the phe-
nomenon A takes place b times in c observations; specifically P1,1, more briefly P ,
will denote the probability of the occurrence of A, with d,ePb,c let us denote the
probability that A takes place b times in c observations, when it has taken place d
times in e observations. Hence, the probability that A occurs x times in s future
observations, when it has occurred m times in A past observations, will be m,nPx,s;
in particular m,nP1,1, that is more briefly m.nP , will denote the probability of the
occurrence of A when it has occurred m times in n previous observations. m,nP

1 During the course of this work, when we speak of “probability” of a phenomenon,
we mean the “mathematical probability”, given by the ratio of the number of favourable
cases to the number of equally possible cases of the phenomenon; to define its “empirical
probability” or “statistical probability”, the word “frequency” has been used.
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is usually called the a posteriori probability of A.

3. To say that the probability of occurrence of A remains unchanged during n+ s
observations, is equivalent to saying that what remains unchanged is the ratio of
favorable events of A occurring to the unfavorable events. We will than say that
phenomenon A is dependent on A same system of causes, during the course of
n+ s observations2.

Now we can present two situations: either phenomenon A allows only one sys-
tem of causes; or it allows several. For example, sunrise, from the beginning till
the end of the world, is the consequence of A unique system of causes; the pro-
portion of wins of A competitor (cyclist, racing driver, fencer or target shooter)
over another, in one-day competitive games, permits instead as many systems of
causes, as are the possible combinations of strength, with which, in one day, the
two competitors may find themselves faced with. But, the first can be looked at
as the limiting case of the second, which occurs when, among the various systems
of causes on which A may depend, one has a probability equal to 1 and the others
a probability equal to 0. One can therefore consider the second case only as the
general one.

4. Let ν be the systems of causes compatible with phenomenon A. Let us denote
with m,nry the probability that, when A has occurred m times in n observations,
the system of causes yth is in action and, with yPx,s the probability that, if it is
acting, phenomenon A takes place x times in s observations.

It will be

m,nPx,s =
ν∑

y=1

m,nry · yPx,s (1)

If py is the probability that generally the system of causes yth takes place
and yPm,n is the probability that, if it is acting, A takes place m times in n
observations, it will be (for the well known Bayes theorem):

m,nry =
py

yPm,n
ν∑

y=1

py
yPm,n

(2)

2 Usually, in the treatises on probability calculus, the phenomenon A is said to depend,
in such a case, on the same “cause” during the n+ s observations. The word cause has a
different meaning than that currently used: “cause” is not the complex of circumstances
which necessarily determines the occurrence of A, but the complex of circumstances
which gives A a certain probability of occurrence. There are as many “causes” of A as
there are probabilities of A occurring during n+ s observations. We preferred to speak
of “system of causes”, so as not to deviate from the common meaning of the words.
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hence

m,nPx,s =

ν∑
y=1

py
yPm,n

yPx,s

ν∑
y=1

py
yPm,n

(3)

The practical importance of this result is at any rate almost nil. The value
of yPm,n and yPx,s could easily be determined if the probability yP was known,
that A occurs when the system of causes yth is in action. But (except for certain
conventionally arranged games) we lack in this case the knowledge of yP , as well
as that of py, becoming thus impossible to determine the value of m,nPx,s, on the
base of (3).

Due to this ignorance, some believe they can resort to the hypotheses that ν
is infinitely large, that py is equal for all the ν systems of causes and that yP
assumes, as y varies, all the infinite values between 0 and 1.

In such A case it is demonstrated3 that it is

m,nPx,s =
s!(m+ x)!(n−m+ s− x)!(n+ 1)!

x!(s− x)!(s+ n+ 1)!m!(n−m)!
(4)

and in particular

m,nP =
m+ 1

n+ 2
(5)

But, it is evident that these hypotheses are totally arbitrary. It is true that
some authors have stated that, if n is very large, one might assume to use formula
(5), even when these hypotheses are not satisfied4, but there is no valid proof of
such a statement and we will later note (§ 9) how, generally, this is not correct.

5. The determination of a posteriori probability, according to the outline con-
sidered in the previous paragraph, presumes some a priori information, regarding
the number and the probability of the different systems of causes and regarding
the probability that when each of them takes place, phenomenon A occurs. We
may say that this is an a priori outline for the a posteriori determination of prob-
ability. We shall call it: method for the a posteriori probability determination of
A phenomenon on the base of the probability of causes.

I believe that to this, one can conveniently counterpoise an a posteriori way
for the a posteriori determination of probability.

Instead of starting from the consideration of the various systems of causes,
which might affect the occurrence of A in n+s observations, when it has occurred
m times in n observations, we start from the consideration of the various times A
can occur in n+ s observations, when it has occurred m times in n observations.

3 See, for the proof, E. Czuber, Warhrscheinlichkeitsrechnung. 1. Hälfte Leipzig, Teub-
ner, 1902, p. 165.

4 See, for example, E. Czuber, op cit. p. 166.
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Each one of these numbers represents a direct result.
When A has taken place m times in n observations, in the n+ s observations

it can occur m,m+ 1,m+ 2, . . . ,m+ s times. Therefore there are s+ 1 possible
direct results.

We shall call ith direct result the one according to which the phenomenon A
occurs m+ i times in n+ s observations.

We shall call this scheme: method for the a posteriori determination of the
probability of phenomenon based on the probability of direct results.

m+1,n+sPi,s denotes the probability that, when one obtains the ith direct result,
that is when A has occurred m + 1 times in n + s observations, A has occurred
m times in the first n observations, i.e. i times in the last s observations. This
holds, in the hypothesis that the probability of A occurring keeps constant during
the n+ s observations.

With fi = Pm+1,n+s we denote the probability that the ith result occurs, with
Pm,n, the probability that phenomenon A occurs m times in n observations.

The probability that A occurs m times in n observations and i times in
the following s observations will be, by the theorem of conditional probability,
Pm,n m,nPi,s.

The probability that A occurs to m+ i times in n+ s observations and i times
in the last s observations will be, by the same theorem, fi m+i,n+sPi,s.

On the other hand, to say that phenomenon A occursm times in n observations
and i times in the following s observations, amounts to say that A occurs m + i
times in the n+ s observations and i times in the last s observations.

Hence we can write:

fi m+i,n+sPi,s = Pm,n m,nPi,s

from which

m,nPi,s =
fi m+i,n+sPi,s

Pm,n

It follows that
m,nPx,s

s∑
i=0

m,nPi,s

=
fx m+x,n+sPx,s
s∑

i=0

fi m+i,n+sPi,s

and, as it is
∑s

i=0 m,nPi,s = 1

m,nPx,s =
fx m+x,n+sPx,s
s∑

i=0

fi m+i,n+sPi,s

(6)

When the probability P of the phenomenon A occurring remains constant in
the n+ s observations, the value of m+i,n+sPi,s, is given by the formula5

5 If the probability P of phenomenon A is constant in the n + s observations, then
the probability that it takes place i time in the last s observations is independent of the
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m+i,n+sPi,s =
s!(m+ i)!(n+ s−m− i)!n!

i!(s− i)!(n+ s)!m!(n−m)!
(7)

Then (6) becomes

m,nPx,s =

fx
(m+ x)!(n+ s−m− x)!

x!(s− x)!
s∑

i=0

fi
(m+ i)!(n+ s−m− i)!

i!(s− i)!

(8)

In the particular case s = 1, x = 1, it is

m,n+1P0,1 =
n−m+ 1

n+ 1
m+1,n+1P1,1 =

m+ 1

n+ 1

hence

m,nP =
R(m+ 1)

R(m+ 1) + n−m+ 1
(9)

where R = f1
f0

Often statistical surveys allow to determine, from A large enough number of
observations, the frequencies with which the various direct results occur. Such
frequencies can be thought of, as approximate values of the related probabilities
fi.

Then it becomes easy to calculate the value of m,nPx,s.
Let us give some examples.

6. Example 1. We are dealing with A trigeminous birth. The woman con-
cerned has already given birth to 2 males. The third baby is expected. What is
the probability that it will also be a male?

There are 2 possible direct results: 3 males; 2 males and 1 female.

frequency with which it has taken place in the previous n observations. It is then

Pm,n m,nPi,s = Pm,nPi,s

And remembering that it is fi = Pm+1,n+s

Pm+i,n+s m+i,n+sPi,s = Pm,nPi,s

m+i,n+sPi,s =
Pm,nPi,s

Pm+i,n+s

By substituting, in this equation, for Pm,n, Pi,s, Pm+i,n+s the values given by the known
formula

Pb,c =
c!

b!(c− b)!
P b(1− P )c−b

(7) is obtained.
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Statistics points out that in 100 trigeminous births, in 24 cases all 3 were males
and in 27 cases there were 2 males and 1 female (Italy: 1884-95).

When the direct result obtained is: 3 males, the probability that the first two
born were males is equal to 1.

When the direct result obtained is: 2 males and 1 female, the probability that
the first two born are males is 1/3, on the hypothesis that the probability of a
male birth does not vary with the generation order.

The theoretical probability that the third born in a trigeminous birth is a male,
when the first two were males, will be

24× 1

24× 1 + 27× 1/3
=

24

33

that is, approximately, 3/4.
From here onwards, I use the expression “theoretical probability” to define

the probability m,nPx,s calculated on the hypothesis that probability P remains
constant for the n+ s observations.

Example 2. A two-race match is run between A and B. Competitor A has
already won one race. What is the probability that he will win the second as well?

The race bulletin allows us to establish that, in the course of the numerous
encounters between A and B, A won both races 35 out of the 100 times, 50 out
of the 100 he won one race only, and 15 out of the 100 he lost both races.

In our case, only two direct results are possible: either A wins both of the
races, or he wins only one. If A wins both the races, there is a probability equal to
1 that he has won the first race. If A wins one race out of two, and the probability
of winning is independent of the order of the races, there is a probability equal to
1/2 that he has won the first race.

The theoretical probability that he wins the second race, when he has won the
first, will therefore be

35

35× 50/2
=

7

12
.

Example 3. A couple has up to now given birth to 3 males and 1 female:
what is the probability that they will have, in the next two deliveries: 2 males; 1
male 1 female; 2 females?

There are 3 possible direct results: 5 males and 1 female; 4 males and 2 females;
3 males and 3 females.

Statistics shows that the frequencies of these three direct results are related to
each other almost at the ratio 10:23:30 (Saxony 1876-85).

If the probability of having a male or a female is constant during the entire
fertile period, the probability of having had, in the first 4 births, 3 males and 1
female is easily found by (7), to be 2/3 for those who, in 6 births, had 5 males
and 1 female, 8/15 for those who, in 6 births, had 4 males and 2 females, 1/5 for
those who, in 6 births, had 3 males and 3 females.

The couple that has so far given birth to 3 males and 1 female then has the
theoretical probability

23× 8/15

10× 2/3 + 23× 8/15 + 30× 1/5
=

92

187
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of giving birth in the next two deliveries to one male and one female. The couple
has the theoretical probability 50/187 of giving birth to 2 males, and the theoretical
probability 45/187 of giving birth to 2 females.

Example 4. Let us consider a similar case. Until now a couple had 2 males
and 4 females. They lost the 2 males and would like to have another one: what is
the probability of their having another child of male sex?

There are two possible direct results: 3 males and 4 females, 2 males and 5
females.

Let us assume that statistics tells us only that the frequency of the first direct
result is to that of the second as 191 is to 107 (Saxony: 1876-85).

If the probability of having a male is constant during the entire fertile period,
the probability of having 2 males and 4 females in the first 6 births is 3/7 when,
in 7 births, we have 3 males and 4 females and 5/7 when in 7 births, we have 2
males and 5 females.

The theoretical probability that the said couple will have a male child in the
7th birth is then

191× 3/7

191× 3/7 + 107× 5/7× 1/5
= 0.517.

7. In the previous examples we have always talked about theoretical probabil-
ities. One would expect that these probabilities would not differ systematically
from the actual frequencies, if the hypothesis from which we started was correct:
the probability of the considered phenomenon occurring remains constant dur-
ing the n + s observations. Sometimes the statistical data enable us to directly
calculate the actual frequencies and the comparison between the latter and the
theoretical probabilities allows to verify if the probability of A occurring keeps
truly constant during the n+ s observations or if it instead varies, and how.

For example, statistics enable us to establish that in Saxony (1876-85), 15,700
couples, who had 2 males and 4 females, had a 7th male in 53% of the cases. The
theoretical probability was instead less than 52%. (§ 6, example 4). This differ-
ence introduces the doubt that the probability of having a male does not remain
constant during the entire fertile period. The subject is far too interesting not to
bother to go deeper into it. The second part of the study deals with it.

8. Let us consider the particular case in which all the “direct results” have the
same probability. In such a case it will be

m,nPx,s =
m+x,n+sPx,s
s∑

i=0

m+i,n+sPi,s

(10)

Substituting in the numerator the value given by (7) and, in the denominator,
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the value given by the following formula6:

s∑
i=0

m+i,n+sPi,s =
n+ s+ 1

n+ 1

we obtain

m,nPx,s =
s!(m+ x)!(n−m+ s− x)!(n+ 1)!

x!(s− x)!(s+ n+ 1)!m!(n−m)!
(11)

This formula is identical to (4).
The probability that the phenomenon takes place x times in s observations,

when it has occurred m times in n previous observations is therefore the same: a)
when the s+1 direct results are equally probable; b) when the phenomenon allows
with the same probability an infinite number of systems of causes, according to
which the phenomenon has a probability of occurrence which ranges from 0 to 1.

If s = 1, x = 1, (11) becomes7

m,nP =
m+ 1

n+ 2
(12)

that gives the a posteriori probability of phenomenon A, when it has occurred m
times in n previous observations. (12) is identical to (5).

The a posteriori probability of phenomenon A, that has occurred m times in
n previous observations, is therefore the same: α) when, in n+ 1 observations, A
has the same probability of occurring m or m+1 times; β) when the phenomenon
allows, with the same probability, an infinite number of systems of causes, accord-
ing to which the phenomenon has a probability of occurring which ranges from 0
to 1.

It is obvious that, having satisfied condition α), condition β) may not be
satisfied. It may in fact be that phenomenon A has the same probability of
occurring m or m+ 1 times n+ 1 observations and that it does not allow certain
systems of causes. For example, a phenomenon may have the same probability of
occurring 24 and 26 times in 50 observations and allow only 2 systems of causes,
according to which it has a probability of occurring of 24/50 and 26/50 respectively.

It can instead be demonstrated that, if condition β) is fulfilled, condition α) is
as well.

If yP is the probability of phenomenon A occurring when the system of causes
yth is in action, the probability that A takes place in m + 1 times on n + 1
observations, will be

yPm+1,n+1 =
(n+ 1)!

(m+ 1)!(n−m)!
yPm+1(1−y P )n−m

6 The proof of this equation is attributed to Prof. Luigi Galvani, Assistant Professor
of Differential calculus in the R. University of Cagliari. It is shown in the Appendix to
[the original] paper.

7 This formula can be directly deduced from (9), noting that in such a case it is f1 = f0,
R = 1.
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If there are infinite systems of causes, all equally probable, according to which
yP assumes the infinite values from 0 to 1, the probability py that system yth
becomes active will be constant and it will be possible to set it equal to the
difference d yP between 2 successive values of yP .

Hence, the probability that A occurs m+1 times in n+1 observations will be

Pm+1,n+1 =
(n+ 1)!

(m+ 1)!(n−m)!

∫ 1

0

yPm+1(1− yP )n−m d yP (13)

By partial integrations, it is found that∫ 1

0

xh(1− x)kdx =
h!k!

(h+ k + 1)!

hence

Pm+1,n+1 =
1

n+ 2

Likewise it is demonstrated that

Pm,n+1 =
(n+ 1)!

m!(n−m+ 1)!

∫ 1

0

yPm(1− yP )n−m+1d yP =
1

n+ 2
(14)

hence
Pm,n+1 = Pm+1,n+1

Condition α) is then weaker than β).
Thus, by means of formula (5), we have found a validity condition which is

more general than the one which is commonly proposed, that the phenomenon
allows, with equal probability, infinite systems of causes, according to which its
probability of occurring may take any of the infinite values from 0 to 1.

It is true that some authors maintain that, as stated earlier, when n is very
large, the formula (5) remains valid even when the various systems of causes do
not have the same probability of acting; but how this is not generally true will be
demonstrated in the following paragraph.

9. Let us consider a more general situation than that examined in the previous
paragraph.

Let us again assume that there are infinite systems of causes, according to
which yP assumes the infinite values from 0 to 1; the probability that the system
of causes yth occurs, is

Py =
(k + h+ 1)!

k!h!
yP k(1− yP )h d yP (15)

where the constant k and h are integer positive numbers8.

8 In the particular case when k = 0, h = 0 it is py = d yP and one goes back to the
case considered in the previous paragraph. (When k or h are not integers, the function
Γ is substituted for the factorial. The distribution (15) is known as the “β distribution”;
it constitutes a particular case of K Pearson type I curves).
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It is

ν∑
y=1

Py = 1.

Instead of (13), it is then

Pm+1,n+1 =
(n+ 1)!

(m+ 1)!(n−m)!

(k + h+ 1)!

k!h!

∫ 1

0

yPm+k+1(1− yP )n−m+hd yP

and instead of (14),

Pm,n+1 =
(n+ 1)!

m!(n−m+ 1)!

(k + h+ 1)!

k!h!

∫ 1

0

yPm+k(1− yP )n−m+h+1d yP

From which

R =
Pm+1,n+1

Pm,n+1
=

m+ k + 1

m+ 1

n−m+ 1

n−m+ h+ 1

and, on the basis of (9),

m,nP =
m+ k + 1

n+ k + h+ 2
(16)

Because k and h may assume any integer positive value, it is obvious that the
value of formula (16), for any n, may differ essentially from the value of formula
(5).

10. To determine the probability that a phenomenon A, which has occurred
m times in n observations, will occur i times in the following s observations, we
cannot always make use of the frequency with which phenomenon A occurs m+ i
times in n + s observations. One often knows only the frequency with which
phenomenon A occurs m+ y times in n+ t observations, where t > s.

When A takes place m + i times in n + s observations, we said that the yth

direct result occurs; when A takes place m+y times in n+1 observations, we will
say that the yth indirect result occurs.

Let us try to define an a posteriori scheme for the a posteriori determination of
the probability, a scheme more general than the one we considered in § 5, which is
based on the frequency of the results, irrespective of these being direct or indirect.
In general, we will call it: scheme to a posteriori determine the probability of a
phenomenon, on the basis of the probability of the results9.

9 In a paper on Os fundamentos e o alcance do metodo estatistico, in “Revista Brasileira
de Estatistica”, IX, N. 33, 1948, a formula is given for such a scheme, on the basis of
probability of results, which is formally different, but which substantially coincides with
(17), In this paper a case is also considered in which we do not know either the direct
results or the indirect ones (which are called “superior indirect results”) related to a
number of cases greater than that of direct results, but only the indirect results (which
are called “inferior indirect results”) related to a number of cases smaller than that of
direct results are known, it is shown how the scheme of inferior indirect results is applied
and which hypotheses such a scheme assumes.
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Let us denote with fy the probability that the yth result occurs. Given all the
values of fy it is easy to calculate the single values of fi on the basis of the formula

fi =

i∑
y=0

fy m+y,n+1Pm+1,n+s

Instead of (6), we must therefore put

m,nPx,s =

t∑
y=0

fy m+y,n+tPm+x,n+s m+x,n+sPx,s

s∑
i=0

t∑
y=0

fy m+y,n+tPm+i,n+s m+1,n+sPi,s

(17)

To calculate the second member of this equality it can be noted that, when
the probability of the occurrence A is constant in the n+ t observations, it is

m+y,n+tPm+i,n+s =
(t− s)!

(y − i)!(t− s− y + 1)!

(m+ y)!(n+ t−m− y)!

(n+ t)!

(n+ s)!

(m+ i)!(n+ s−m− i)!

(18)

From (18) and from (7), one can easily deduces that the numerator of (17): it is

=

t∑
y=0

fy
s!

x!(s− x)!

n!

m!(n−m)!

(t− s)!

(y − x)!(t− s− y + x)!

(m+ y)!(n+ t−m− y)!

(n+ t)!

(19)

and the denominator

=
t∑

y=0

(
fy

n!

m!(n−m)!

(m+ y)!(n+ t−m− y)!

(n+ t)!

s∑
i=0

s!

i!(s− i)!

(t− s)!

(y − i)!(t− s− y + i)!

) (20)

Note now that it is

s∑
i=0

s!

i!(s− i)!

(t− s)!

(y − i)!(t− s− y + i)!

y!(t− y)!

t!
= 1

and hence
s∑

i=0

s!

i!(s− i)!

(t− s)!

(y − i)!(t− s− y + i)!
=

t!

y!(t− y)!
(21)
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Substituting this value in (20), dividing (19) by (20) and by simplification, one
obtains

m,nPx,s =
s!(t− s)!

t!

t∑
y=0

fy
(m+ y)!(n+ t−m− y)!

x!(s− x)!(y − x)!(t− s− y + x)!

t∑
y=0

fy
(m+ y)!(n+ t−m− y)!

y!(t− y)!

(22)

In the particular case t = s, y = i, (22) is easily simplified to (8), remember-
ing10 that it is 1! = 1, 0! = 1; (−K)! = ∞.

11. Let us see which value (22) assumes, when fy is constant, that is when the
t+ 1 results are equally probable. Because of this, let us observe that it is

t∑
y=0

m+y,n+tPy,t =
n+ t+ 1

n+ 1

from which it is immediately obtained

t∑
y=0

(m+ y)!(n+ t−m− y)!

y!(t− y)!
=

(n+ t+ 1)!m!(n−m)!

(n+ 1)t!
(23)

Likewise
t∑

y=0

m+y,n+tPy−x,t−s =
n+ t+ 1

n+ s+ 1

from which it is easily obtained

t∑
y=0

(m+ y)!(n+ t−m− y)!

x!(s− x)!(y − x)!(t− s− y + x)!
=

(n+ t+ 1)!(m+ x)!(n+ s−m− x)!

x!(s− x)!(n+ s+ 1)!(t− s)!

(24)

If fy is constant, and the values obtained from (23) and (24) are substituted
in (22), this becomes the same as (11).

Then, when the t+1 results (direct or indirect) are equally probable, the value
of m,nPx,s is independent of t; in other words, it is the same, whatever the number
of future observations to which the results are referred.

12. Let us apply (22) to an example.

10 From the combination concept it is immediately derived (h−K)!
h!(−K)!

= 0 from which
1

(−K)!
= 0, hence (−K)! = ∞
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The first born in a trigeminous birth was a male: we want to find out the
probability that the second born will also be a male.

There are three possible indirect results: 3 males, 2 males and 1 female; 2
females and 1 male; the respective frequencies of which are: f2 = 24%; f1 = 27%;
f0 = 26%. (Italy, 1884-85).

On the basis of (22), the probability we are looking for is equal to 89/152,
approximately 2/3.

This calculation presumes that the probability of having a male or a female is
the same for the first, second or third child born in a trigeminous birth.

13. The a posteriori determination of the probability of A, on the basis of the
probability of the “direct results”, assumes that the probability of A remains con-
stant in the n observations already taken and in the s observations yet to be taken.
The a posteriori determination of the probability of A on the basis of the proba-
bility of the indirect results assumes that the probability of the occurrence of A
remains constant in the n observation already taken and in a number t of future
observations, which is greater than the number s of observations yet to be taken.

The hypothesis that the probability of A remains constant for a given num-
ber of observations will evidently be more plausible, the smaller the number of
observations considered.

This does not necessarily mean that the a posteriori determination of the
probability of A occurring i times in s future observations is less precise when it
is obtained on the basis of the probability of “indirect results”, than when it is
obtained on the basis of the probability of the “direct results”. Nor that, when it
is obtained on the basis of “indirect results”, it is much less precise, the greater
is the number t of future observations, to which the results are related. This con-
clusion would be true when the probability of A does not vary in the first future
observations and does vary in the subsequent observations, and likewise when it
would vary continuously throughout all future observations, always increasing or
always decreasing. But if, during future observations, it changes first in one direc-
tion and then in the opposite one, it might be that the a posteriori determination
of the probability is more precise when obtained on the basis of “indirect results”,
than when it is based on “direct results”. It might also be that, when based on
“indirect results”, it is more precise when the number of observations, to which
the “indirect results” are related, is greater.

Let us verify this for the data on the sex of the newly born in Saxony (1876-85).

The frequency with which a male is born in the second birth, when in the first
A male was born, is 1,1P” = 0, 51931.

The theoretical probability 1,1P
′, calculated on the basis of the frequency of

the result related to t future observations, varies with t as follows [see Table 1].

As t increases, the difference between 1,1P
′ and 1,1P” at first increases, then

decreases. This makes us think that, in the families where a male was born first,
the tendency to have males in the following births increases at first and decreases
afterwards. This conclusion is consistent with the results obtained in the second
part of this study: in fact it turns out that in the families, which had all males
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Table 1 Table 2

t 1,1P
′ t 3,4P”

1 0.51908 1 0.50955
2 0.51747 2 0.51205
3 0.51533 3 0.51633
4 0.51452 4 0.51709
5 0.51552 5 0.51967
6 0.51659 6 0.52365

in the first birth or in the first two births, the actual frequency of having a male
in the following delivery is greater than the theoretical one; instead, the families
which had all males in more than two births, in the next one show a frequency of
having males which is less than the theoretical probability.

Instead, when in the past births the males are in excess, but there are some
females as well, the actual frequency of having males in the following births is
always less than the theoretical probability. Hence, it appears that the frequency
of a male birth, after having had m males and n − m < m females, differs from
the theoretical probability determined on the basis of the frequency of the results
in n+ t observations, and it differs more when t is greater. As an example, let us
consider a family which, until now, had 3 males and 1 female. The frequency of
having a male in the 5th birth is 3,4P” = 0.50350. The theoretical probability is
as follows [see Table 2].

The difference between 3,4P” and 3,4P
′ is very small for t = 1, increases with

t and becomes quite considerable for t = 6.

14. Formula (17) can be written in a different form. It must be noted that
when the probability of A remains constant in the n+ t observations, it is

m+y,n+tPm,n =
n!

m!(n−m−)!

(m+ y)!(n+ t−m+ y)!

(n+ t)!

t!

t!(t− y)!

y,tpi,s =
s!

i!(s− i)!

y!(t− y)!

t!

(t− s)!

(y − i)!(t− s− y + i)!

From these formulae and from (19), (20), (21) it is

t∑
y=0

fy m+y,n+tPm,n y,tPx,s =
t∑

y=0

fy m+y,n+tPm+x,n+s m+x,n+sPx,s

t∑
y=0

fy m+y,n+tPm,n y,tPx,s =
s∑

i=0

t∑
y=0

fy m+y,n+sPm+i,n+s m+i,n+sPi,s
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Hence, (17) can also be written as follows:

m,nPx,s =

t∑
y=0

fy m+y,n+tPm,n y,tPx,s

t∑
y=0

fy m+y,n+tPm,n

(25)

15. Formula (25) is useful to show the relationship existing between the scheme for
the a posteriori determination of the probability of a phenomenon A, on the basis
of the probability of causes, and the scheme for the a posteriori determination of
the probability A, on the basis of the probability of results.

Let us consider a specific case in which t is infinitely large, x and m are negli-
gible compared to y, and s and n are negligible compared to t.

As the probability is the limit to which the frequency of a phenomenon tends, as
the number of observations increases, we could say that, when t is infinitely large,
to different results correspond different probabilities of phenomenon A occurring,
i.e. different systems of causes. The first system of causes will correspond to result
0; the second system of causes to result 1; generally, the system of causes (y+1)th

will correspond to result yth. We could that put

py+1 = fy

and (see note (5))

m+y,n+tPm,n =
y+1Pm,n

y+1Py,t

y+1Pm+y,n+t

y,tPx,s =
y+1Px,s

x+1Py−x,t−s

y+1Py,t

But, as m and n are negligible compared to y and to t respectively, we could
put

y+1Py,t

y+1Pm+y,n+t
= 1

hence

m+y,n+tPm,n =y+1 Pm,n

Similarly, as x and s are negligible compared to y and t respectively, we could
put

y+1Py−x,t−s

y+1Py,t

hence

y,tPx,s =
y+1Px,s

If in (25) fy, m+y,n+tPm,n and y,tPx,s are substituted by, py+1,
y+1Pm,n and

y+1Px,s respectively, then (25) becomes the same as (3).
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The scheme for the a posteriori determination of the probability of A, on the
basis of the probability of causes may therefore be looked at as a particular case of
the scheme of the a posteriori determination of the probability of A, on the basis
of the probability of the results; a situation which occurs when the probability
determination is based on the probability of the “indirect results” from a very
large number of observations.

16. By introducing a slight modification in (3), one obtains a formula for the
a posteriori determination of probabilities which is valid either for the method of
the probability of results, or for the method of the probability of causes.

The occurrence of phenomenon A in the s future observations may depend on
several systems of causes, or it may correspond to different “direct” or “indirect”
results. Every system of causes, and similarly every result, may therefore be looked
upon as an eventuality11.

We will indicate by ν the number of the eventuality, by py the probability that
the yth eventuality will occur, by yP the probability of the occurring of A, accord-
ing to the yth eventuality, by yPx,s the probability that, in the yth eventuality,
A will occur x times in s future observations, with y

m,nPx,s the probability that,

in the yth eventuality, A will occur x times in s future observations, when it has
occurred m times in n past observations.

Let us first suppose that the eventualities of which we know the single proba-
bilities py consist in results. Adopting the new symbols, (25) becomes:

m,nPx,s =

ν∑
y=1

py
yPm,n

y
m,nPx,s

ν∑
y=1

py yPm,n

(26)

Let us now suppose that the evantualities, of which we know the single prob-
abilities py consist in system of causes. As the probability yP will be maintained
costant in n+ s observations, whatever the acting system of causes, it will be:

y
m,nPx,s =

y Px,s

and so (3) may be written as (26).
Formula (26) can therefore he seen as the general formula to determine proba-

bility a posterioni. Confronted with it, (3) and (25) represent particular formulae,
of very different usage, valid when the eventualities, on the basis of which probabil-
ity is a posteriori determined, consist in systems of causes or results respectively.

11 Instead of the word “eventuality” it would be helpful to use the word “hypothesis”.
I preferred to speak of “eventuality”, because the word “hypothesis” is generally used
in the theory of probability, in a more limited way, as synonymous of “cause”, that is,
according to our terminology, of “systems of causes”.
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Summary

In this first paper of 1911 relating to the sex ratio at birth, Gini repurposed a Laplaces
succession rule according to a Bayesian version. The Gini’s intuition consisted in as-
suming for prior probability a Beta type distribution and introducing the “method of
results (direct and indirect)” for the determination of prior probabilities according to the
statistical frequency obtained from statistical data.

Keywords: Prior and posterior probabilities; Bayes-Laplace solution; Beta distribution;
Sex ratio at birth.


