
STATISTICA, anno LXXVI, n. 2, 2016

ON HYBRID CENSORED INVERSE LOMAX DISTRIBUTION:
APPLICATION TO THE SURVIVAL DATA

Abhimanyu Singh Yadav 1

Assistant Professor, Department of Statistics, PUC, Mizoram University, Aizawl-796001

Sanjay Kumar Singh

Professor, Department of Statistics and DST-CIMS, Banaras Hindu University, Varanasi-

221005

Umesh Singh

Professor, Department of Statistics and DST-CIMS, Banaras Hindu University, Varanasi-

221005

1. Introduction

In survival analysis, the study of the lifetime of any random phenomenon is an
extensive work to explain the characteristics of existing phenomenon. Several life
time models namely exponential, gamma, Weibull, etc. are introduced in market
to illustrate the real pattern of failure data in medical as well as in engineering
sciences. The generalized version of these models are also advocated and well jus-
tified for the different situations of the failure rate behavior, see Ebrahimi (1990).
The Lomax distribution is one of these and frequently used in economics, geogra-
phy, econometrics and medical fields, see; Chandrasekar et al. (2002), Kleiber and
Kotz (2003), Kleiber (2004).

The considered distribution belongs to inverted family of distributions and
found to be very flexible to analyze the situation where the non-monotonicity of
the failure rate has been realized, see Singh et al. (2012). If a random variable Y

has Lomax distribution, then X =
1

Y
has an Inverse Lomax distribution (ILD).

It has been used to obtain the Lorenz ordering relationship among ordered statis-
tics; Kleiber (2004). Besides this, it has also lots of applications in stochastic
modeling, economics and actuarial sciences, see Kleiber and Kotz (2003). Kleiber
(2004) have implemented this model on geophysical data, particularly on the sizes
of land fires in California state of US. Rahman et al. (2013) have discussed the es-
timation and prediction problems for the inverse Lomax distribution via Bayesian
approach. Yadav et al. (2016) have used this distribution for reliability estimation
based on Type-II censored observations. But no one has paid attention about
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the consideration of hybrid censored observation from ILD in both classical and
Bayesian approach. Therefore, the authors have considered this problem under in-
vestigation. The probability density function and cumulative distribution function
of ILD are given by the following equations.

f(x, α, β) =
αβ

x2

(
1 +

β

x

)−(1+α)

; x ≥ 0, α, β > 0 (1)

where, α is the shape parameter and β is the scale parameter of the distribution.

F (x) =

(
1 +

β

x

)−α

;x ≥ 0, α, β > 0 (2)

respectively.
The reliability and hazard functions, denoted as R(t) and H(t) of the ILD for

specified values of t are given in following equations,

R(t) = 1−
(
1 +

β

t

)−α

; t > 0 (3)

and

H(t) =
αβ(1 + β

t )
−(1+α)

t2
(
1− (1 + β

t )
−α
) ; t > 0 (4)

In industrial Statistics, censored observations are preferred due to cost, time or
some other constraints. Hence, the variety of censoring schemes are used to ob-
tain the censored observations. In practice most commonly used censoring schemes
are Type-I and Type-II censoring schemes. In any life time experiments, exper-
imenters are unable to investigate each experimental units. Therefore, generally
experiments are terminated at prefixed time T or after getting predetermined
number of failure R. In Type-I censoring scheme the termination time T is fixed
and number of failure R is random and vice versa for Type-II censoring scheme
respectively.

Hybrid censoring scheme is the mixture of Type-I and Type-II censoring schemes
and it can be described as follows; Suppose n identical units are put on test and
test is terminated when a pre-chosen number R out of n items are failed, or when
a prefixed time T on the test has been obtained. Such censoring scheme is called
as hybrid censoring scheme and it was introduced by Epstein (1954). This cen-
soring scheme is quite useful in reliability acceptance plan, see MIL-STD-781-C
(1977). Many authors have used this censoring scheme for their different purpose;
see Draper and Guttman (1987), Chen and Bhattacharya (1988), Ebrahimi (1990)
and the references cited therein. Hybrid censoring scheme is also comprises in two
parts due to specification of censoring parameters R and T . In Type-I hybrid
censoring scheme; suppose n units put on test, then experiment is terminated
at the random time T ∗ = Min(XR:n, T ), where R and T are prefixed numbers
and xR:n is the time of Rth failure in a sample of size n. Type-I hybrid censor-
ing scheme has its own limitations as conventional Type-I censoring. The main
demerits of Type-I hybrid censoring scheme, the number of observed failures is
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at least one and there may be very few failures at the termination time of the
experiment. Thus, it has the adverse effect over the efficiency of the estimators.
Therefore, Childs et al. (2003) introduced a new type of censoring scheme which
is an alternative to the Type-I hybrid censoring scheme, called as Type-II hybrid
censoring scheme. In this censoring scheme, we terminate the experiments at the
random time T ∗ = Max(XR:n, T ). The advantage of this scheme is that at least
R failures are observed at the end of the experiment. Fairbanks et al. (1982) have
obtained the exact distribution of the maximum likelihood estimator (MLE) of
the mean and interval estimates in one-parameter exponential distribution based
on a hybrid type II censored data. Banerjee and Kundu (2008) considered the
statistical inference of the two-parameter Weibull distribution based on Type-II
hybrid censored samples. Several works are available in the literature, see for ref-
erences Gupta and Kundu (1998), Kundu and Pradhan (2009), Dube et al. (2011)
etc.

The organization of the paper is as follows; In Section 1, we described the
problem and hybrid censoring scheme. The maximum likelihood estimation is
discussed in Section 2. Bayesian estimation procedure is carried out in Section 3.
The numerical illustration of the considered methodology for the ILD are provided
by considering two data set in Section 4. Finally, the conclusion of the paper is
given in Section 5.

2. Maximum Likelihood Estimation

Case 1: Under type-I hybrid censored data (HCD-I)

In this section, we assume that the data are Type-I hybrid censored, then we
have the one of the following types observations;

Data(X) =

{
x1:n < x2:n < · · · < xr:n when xr:n ≤ T

x1:n < x2:n < · · · < xd:n when xr:n > T
(5)

where, d denotes the number of failure observed before time T . Thus, the likeli-
hood function for given p.d.f (1) under Type-I HCD is written as;

L(α, β|x) =



n!

(n− r)!
αrβr

[
1−

(
1 +

β

xr:n

)α](n−r) r∏
i=1

x−2
i

(
1 +

β

xi

)−(1+α)

when xr:n ≤ T

n!

(n− d)!
αdβd

[
1−

(
1 +

β

xd:n

)α](n−d) d∏
i=1

x−2
i

(
1 +

β

xi

)−(1+α)

when xr:n > T

(6)
therefore, the combined likelihood function is given as;

L(α, β|x) = n!

(n−m)!
αmβm

[
1−

(
1 +

β

R

)α](n−m) m∏
i=1

x−2
i

(
1 +

β

xi

)−(1+α)

(7)
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where;

m =

{
r when xr:n ≤ T

d when xr:n > T
(8)

and

R =

{
xr:n when xr:n ≤ T

xd:n when xr:n > T
(9)

Hence, the log-likelihood function is written as;

L = lnL(α, β|x) = Const.+m lnα+m lnβ−

2
m∑
i=1

lnxi − (1 + α)
m∑
i=1

ln

(
1 +

β

xi

)
+ (n−m) ln

[
1−

(
1 +

β

R

)α] (10)

now for MLE’s of the parameters, we differentiate the log-likelihood function w.r.t
to the parameter and equate to zero. Then, we have two likelihood equations
which are obtained in implicit form. Therefore, N-R method is used to secure
MLE’s. Hence,

∂L

∂α
=

m

α
−

m∑
i=1

ln

(
1 +

β

xi

)
−

(n−m)

(
1 +

β

R

)α

1−
(
1 +

β

R

)α ln

(
1 +

β

R

)
= 0 (11)

and

∂L

∂β
=

m

β
−

m∑
i=1

1 + α

xi + β
−

(n−m)α

(
1 +

β

R

)α−1

R

[
1−

(
1 +

β

R

)α] = 0 (12)

Let α̂ and β̂ are the MLE’s of the parameters, then the MLE’s of the reliability
and hazard functions are given by using the invariance properties of MLE, which
are obtained as;

R̂(t) = 1−

(
1 +

β̂

t

)−α̂

and Ĥ(t) =
α̂β̂(1 + β̂

t )
−(1+α̂)

t2
[
1− (1 + β̂

t )
−α̂
]

The exact distribution of the maximum likelihood estimators are not available,
thus, we derived the 95% asymptotic confidence interval based on fisher informa-
tion matrix. The Fisher information matrix can be obtained by using equation
(10). Thus we have

I(α̂, λ̂) =


−∂2L

∂α2
− ∂2L

∂α∂β

− ∂2L

∂β∂α
−∂2L

∂β2


(α̂,β̂)
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where, the derivatives are given as,

∂2L

∂α2
= −m

α2
+

(n−m)

(
1 +

β

R

)α [
ln

(
1 +

β

R

)]2
[
1−

(
1 +

β

R

)α]
1 +

(
1 +

β

R

)α

[
1−

(
1 +

β

R

)α]


∂2L

∂α∂β
=

∂2L

∂β∂α
= −

m∑
i=1

1

(xi + β)
+

(n − m)α

(
1 +

β

R

)α−1

R

[
1 −

(
1 +

β

R

)α]
1 + ln

(
1 +

β

R

)α

+

(
1 +

β

R

)α

ln

(
1 +

β

R

)α

[
1 −

(
1 +

β

R

)α]2


(13)

∂2L

∂β2
= −m

β2
+

m∑
i=1

1 + α

(xi + β)2
+

(n−m)α

(
1 +

β

R

)α−2

R2

[
1−

(
1 +

β

R

)α]
(α− 1)−

α

(
1 +

β

R

)α

[
1− α

(
1 +

β

R

)α]


All the derivatives are evaluated at the point (α̂, β̂). The above matrix can be
inverted to obtain the estimate of the asymptotic variance-covariance matrix of
the MLEs and diagonal elements of I−1(α̂, β̂) provides asymptotic variance of α
and β respectively. Then by using large sample theory a two sided 100(1 − δ)%
approximate confidence interval for α and β are constructed as;

[α̂L, α̂U ] = α̂∓ Zδ/2

√
var(α̂), [β̂L, β̂U ] = β̂ ∓ Zδ/2

√
var(β̂)

respectively.

Case 2: Under Type-II hybrid censored data (HCD-II)

If the data is Type-II hybrid censored, then we have one of the following types
observations;

Data(X) =


x1:n < x2:n < · · · < xr:n when xr:n ≥ T

x1:n < x2:n < · · · < xd:n when xr:n < T

x1:n < x2:n < · · · < xn:n complete data

(14)

where, r ≤ d ≤ n denotes the number of failure observed before time T. Thus, the
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likelihood function under Type-II HCD is given as;

L(α, β|x) =



n!

(n− r)!
αrβr

[
1−

(
1 +

β

xr:n

)α](n−r) r∏
i=1

x−2
i

(
1 +

β

xi

)−(1+α)

when xr:n ≥ T

n!

(n− d)!
αdβd

[
1−

(
1 +

β

xd:n

)α](n−d) d∏
i=1

x−2
i

(
1 +

β

xi

)−(1+α)

when xr:n < T

αnβn
n∏

i=1

x−2
i

(
1 +

β

xi

)−(1+α)

whenCompletedataobserved

(15)
therefore, the combined likelihood function is given as;

L(α, β|x) = n!

(n−m∗)!
αm∗

βm∗
[
1−

(
1 +

β

R

)α](n−m∗) m∗∏
i=1

x−2
i

(
1 +

β

xi

)−(1+α)

(16)
where;

m∗ =


r when xr:n ≥ T

d when xr:n < T

n when xr:n < · · · < xd:n < T

(17)

All the other mathematical expressions can be obtained by replacing m by m∗ in
the expression of HCD-I.

3. Bayesian Estimation

In this section, we considered Bayes procedure to obtain the point and interval
estimates of the parameters α, β in presence of hybrid censored data. The Bayes
estimators are derived under Jeffrey’s non-informative priors with squared error
loss function. The considered priors are improper but they leads the proper pos-
terior. Thus, the joint prior is given as;

π1(α, β) ∝
1

αβ
;α, β > 0 (18)

Then by using (7), (16) and (18) the joint posterior under considered cases
(HCD-I, HCD-II) are given by;

p(α, β|x) ∝


αmβm

[
1−

(
1 +

β

R

)α](n−m) m∏
i=1

xi

(
1 +

β

xi

)−(1+α)

αm∗
βm∗

[
1−

(
1 +

β

R

)α](n−m∗) m∗∏
i=1

xi

(
1 +

β

xi

)−(1+α) (19)
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Now, after simplification the Bayes estimators of α, β, reliability function R(t)
and Hazard function H(t) under SELF are simply obtained by taking the mean of
the posterior distribution. From above, we noticed that the posterior distributions
are not in explicit form. Therefore, it seems to be tedious to calculate the pos-
terior expectations analytically. Therefore, Markov Chain Monte Carlo (MCMC)
method has implemented for obtaining the approximate solution of the posterior
expectations.

3.1. Markov Chain Monte Carlo Method

Here, we used Metropolis Hastings algorithm to extract the sample from poste-
rior distribution to obtain the approximate Bayes estimates of the parameters and
reliability characteristics. Further, we have also constructed 95% highest poste-
rior density (HPD) credible intervals of the parameters on the basis of generated
posterior sample. For more detail about MCMC, see Geman and Geman (1984),
Upadhyay et al. (2001), Smith and Roberts (1993). Thus for implementation of the
metropolis Hastings algorithm see Hastings (1970), the full conditional posterior
densities for α and β under HCD-I and HCD-II are written as;

p1(α|x, β) ∝


αn

[
1−

(
1 +

β

R

)α](n−m) m∏
i=1

xi

(
1 +

β

xi

)−(1+α)

βm

[
1−

(
1 +

β

R

)α](n−m) m∏
i=1

xi

(
1 +

β

xi

)−(1+α) (20)

and

p2(α|x, β) ∝


αn

[
1−

(
1 +

β

R

)α](n−m∗) m∗∏
i=1

xi

(
1 +

β

xi

)−(1+α)

βm∗
[
1−

(
1 +

β

R

)α](n−m∗) m∗∏
i=1

xi

(
1 +

β

xi

)−(1+α) (21)

respectively.
The following steps are used to draw the posterior samples from their respective

full conditional density;

• Set the initial values of α and β say (α0, β0)

• Set l=1

• Generate posterior sample for α and β from (20) and (21) respectively.

• Repeat step 2, for all l = 1, 2, 3, · · · , N and obtained (α1, β1), (α2, β2), · · · ,
(αN , βN )

After obtaining the posterior samples the Bayes estimate of the parameters,
reliability function and hazard function under SELF are the mean of the
corresponding posterior samples. Therefore, we have,

α̂B ≈ E(α|x) = 1

N

N∑
l=1

αl, β̂B ≈ E(β|x) = 1

N

N∑
l=1

βl
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and

R̂(t) =
1

N

N∑
l=1

[
1−

(
1 +

βl

t

)−αl
]
, Ĥ(t) =

1

N

N∑
l=1

αlβl(1 +
βl

t )
−(1+αl)

t2
(
1− (1 + βl

t )
−αl

)
• To construct 95% HPD credible intervals for α and β based on MCMC
samples, order α1, α2, ..., αN as α1 < α2 < ... < αN and β1, β2, · · · , βN as
β1 < β2 < ... < βN . Then 100(1− δ)% credible intervals of α and β are

(α1, α[N(1−δ)+1]), · · · , (α[Nδ], αN )

and
(β1, β[N(1−δ)+1]), · · · , (β[Nδ], βN )

Here [x] denotes the greatest integer less than or equal to x. Then, the HPD
credible interval is that interval which has the shortest length, for more
details see Chen and Shao (1999) .

4. Numerical Illustration

In this section, we illustrate the proposed estimation procedure based on one
survival data and one simulated data.

Bladder Cancer Data-I: It represents the remission times (in months) of a
128 bladder cancer patients. This data set was initially used by Lee and Wang
(2003). The data is as follows:

0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97,
9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64,
5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31,
0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34,
14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23,
5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26,
2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36,
1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13,
1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28,
2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

The fitting of the above data set has checked for Inverse Lomax model over
inverted exponential distribution (IED), generalized Inverted exponential distri-
bution (GIED) and Inverse Weibull distribution (IWD); see Table 1. Table 1 lists
the MLEs of the model parameters and the following statistics; Akaike information
criterion (AIC), Bayesian information criterion (BIC) and log-likelihood (-Log L)
values. These results show that the all the fitted life time models are provide good
fitting but among these Inverse Lomax distribution has the lowest AIC, BIC and
LogL values, and so it can be chosen as the best model. The empirical cumulative
distribution function plot and Q-Q plot are also given to show the appropriate-
ness of the considered data set for the Inverse Lomax distribution; see Figure 1
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Figure 1 – Empirical cumulative distribution function plot for the data set-I.

and Figure 5. Q-Q plot shows that the considered data has non-monotone hazard
rate pattern which suits for the ILD. For the above data set, the maximum likeli-
hood estimates and Bayes estimates of the parameters are obtained using different
choices of censoring parameters R and T , see Table 2. The reliability and haz-
ard estimates are also evaluated for t = 9. The 95% asymptotic confidence and
highest posterior density intervals are also constructed for the same combination
of censoring parameters R and T .

Simulated Data-II: For the above considered model, a simulated data of size
100 is also taken for illustrative purpose of the study. The data is generated from
ILD(2.5, 3) using inverse cdf transformation method.

0.68, 1.08, 1.17, 1.18, 1.2, 1.38, 1.5, 1.66, 1.75, 1.9, 1.94, 2.03, 2.12, 2.16,

TABLE 1
Values of different adaptive measures of model discrimination

Models ML Estimates AIC BIC -LogL
IED(β) [2.4847] 922.7646 925.6166 460.3823

GIED(α, β) [0.7463, 1.9945] 918.4050 924.1090 457.2024
IWD(α, β) [2.4311, 0.7521] 892.0015 897.7056 444.0008
ILD(α, β) [2.4621, 2.0023] 853.3514 859.0560 424.6757
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Figure 2 – Estimated density function plot for the data set-I.

Figure 3 – Estimated survival function plot for the data set-I.
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Figure 4 – Estimated hazard function plot for the data set-I.

Figure 5 – QQ plot for the data set-I.
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2.44, 2.58, 2.62, 2.64, 2.94, 3.03, 3.17, 3.21, 3.26, 3.39, 3.52, 3.53, 3.7, 3.76,
3.8, 3.86, 3.91, 3.96, 4.25, 4.33, 5.06, 5.07, 5.2, 5.49, 5.94, 6.77, 6.78, 6.82,
7.94, 8.05, 8.32, 8.69, 8.82, 8.85, 8.97, 9.14, 9.2, 9.7, 9.97, 10.1, 10.25, 10.27,
10.44, 10.59, 10.65, 10.75, 10.84, 11.36, 11.53, 11.55, 12.36, 13.27, 13.98,
14.01, 14.53, 16.42, 16.44, 17.07, 18.07, 18.11, 19.98, 22.21, 22.66, 23.24,
23.31, 23.8, 26.66, 29.7, 33.62, 35, 36.15, 41.75, 45.93, 50.88, 52.53, 61.31,
67.02, 67.8, 90.39, 97.82, 105.69, 114.02, 144.98, 150.84, 160.65, 239.36

Also for the simulated data, the maximum likelihood and Bayes estimates of the
parameters are evaluated. The reliability and hazard estimates in both setup are
also presented for t = 20 in Table 3. In table 4, the 95% asymptotic and HPD
interval estimates for the parameters are provided.

5. Conclusion

In this paper, we proposed the estimation procedure for Inverse Lomax distribution
under Type-I and Type-II hybrid censoring schemes. The mathematical expression
for the maximum likelihood estimators and Bayes estimators are derived. The
applicability of the considered model in real life has been illustrated based on
bladder cancer data and simulated data and it was observed that the considered
model is a good competitor of IED, GIED and ILD. Thus it can be used as a good
alternative to these models whenever the situation of non-monotonicity of hazard
rate is realized.
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TABLE 2
Estimates of the parameters, reliability and hazard functions for different choices of

censoring parameters R and T under Type-I hybrid and Type-II hybrid.

Type-I hybrid

R T α̂ β̂ R̂(t) Ĥ(t) α̂B β̂B R̂(t)B Ĥ(t)B
50 2 1.2180 9.0766 0.5724 4.1128 1.3694 6.9674 0.5362 4.5663

4 1.7253 3.8813 0.4613 5.4636 1.7870 3.6601 0.4535 5.5543
10 1.7759 3.6597 0.4544 5.5470 1.8281 3.4811 0.4474 5.6253

80 3 1.5837 4.6601 0.4836 5.1930 1.6556 4.2976 0.4722 5.3260
6 1.9934 2.9189 0.4288 5.8536 2.0352 2.8265 0.4241 5.9018
10 2.1522 2.5358 0.4139 6.0297 2.1887 2.4649 0.4092 6.0743

100 5 1.7836 3.6282 0.4534 5.5591 1.8310 3.4693 0.4470 5.6300
7 1.9830 2.9504 0.4301 5.8389 2.0282 2.8440 0.4248 5.8942
12 2.2635 2.3167 0.4046 6.1378 2.3003 2.2583 0.4006 6.1754
15 2.3114 2.2328 0.4009 6.1807 2.3469 2.1748 0.3963 6.2215

120 14 2.3304 2.2011 0.3994 6.1971 2.3592 2.1535 0.3952 6.2332
17 2.3702 2.1372 0.3965 6.2306 2.4048 2.0862 0.3924 6.2673
25 2.4271 2.0516 0.3925 6.2763 2.4614 2.0043 0.3885 6.3115

Type-II hybrid
50 2 1.7759 3.6597 0.4544 5.5470 1.8275 3.4960 0.4484 5.6163

5 1.7836 3.6282 0.4534 5.5591 1.8302 3.4693 0.4469 5.6304
7 1.9830 2.9504 0.4301 5.8389 2.0217 2.8533 0.4249 5.8910

80 5 2.1522 2.5358 0.4139 6.0297 2.1924 2.4567 0.4089 6.0778
10 2.2164 2.4047 0.4084 6.0938 2.2534 2.3398 0.4040 6.1353
12 2.2635 2.3167 0.4046 6.1378 2.3020 2.2511 0.3999 6.1810

100 10 2.3114 2.2328 0.4009 6.1807 2.3489 2.1699 0.3960 6.2244
15 2.3683 2.1402 0.3966 6.2291 2.4060 2.0831 0.3922 6.2692
20 2.4090 2.0781 0.3937 6.2621 2.4453 2.0283 0.3898 6.2977

120 20 2.4297 2.0478 0.3923 6.2783 2.4695 1.9935 0.3882 6.3164
30 2.4457 2.0250 0.3912 6.2906 2.4811 1.9745 0.3869 6.3289
45 2.4567 2.0097 0.3905 6.2989 2.4948 1.9587 0.3865 6.3355
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TABLE 3
Classical and Bayes interval estimates of the parameters

Type-I
Classical Interval Bayes Interval

R T α̂L α̂U λ̂L λ̂U α̂L α̂U λ̂L λ̂U

50 2 0.4301 2.0060 0.0000 22.8656 1.1280 1.6330 4.3054 9.7186
4 0.8520 2.5985 0.7695 6.9932 1.4989 2.0598 2.8040 4.5846
10 0.9047 2.6471 0.9207 6.3986 1.5764 2.1207 2.6924 4.2232

80 3 0.7304 2.4370 0.2989 9.0213 1.3926 1.9374 3.1429 5.5161
6 1.0290 2.9577 0.8952 4.9427 1.7151 2.3334 2.2605 3.4608
10 1.1263 3.1781 0.8720 4.1997 1.8500 2.5049 1.9427 2.9574

100 5 0.9109 2.6563 0.9306 6.3258 1.5530 2.1038 2.6906 4.2327
7 1.1918 3.3353 0.8412 3.7923 1.9812 2.6458 1.8096 2.6862
12 1.2162 3.4066 0.8192 3.6465 2.0102 2.7051 1.7290 2.5852
15 1.1918 3.3353 0.8412 3.7923 1.9760 2.6357 1.8153 2.6724

120 14 1.2272 3.4336 0.8134 3.5887 2.0127 2.7088 1.7288 2.5692
17 1.2486 3.4917 0.7983 3.4762 2.0705 2.7898 1.6911 2.4969
25 1.2788 3.5753 0.7763 3.3269 2.1120 2.8482 1.6135 2.3927

Under Type-II Hybrid
50 2 0.9047 2.6471 0.9207 6.3986 1.5551 2.1058 2.6563 4.2442

5 0.9109 2.6563 0.9306 6.3258 1.5663 2.1208 2.7391 4.2382
7 1.0352 2.9307 0.9421 4.9588 1.7259 2.3129 2.3133 3.4500

80 5 1.1263 3.1781 0.8720 4.1997 1.8900 2.5372 1.9638 2.9411
10 1.1918 3.3353 0.8412 3.7923 1.9678 2.6414 1.8326 2.7161
12 1.2162 3.4066 0.8192 3.6465 2.0060 2.7040 1.7552 2.5730

100 10 1.2471 3.4895 0.7979 3.4825 2.0377 2.7439 1.6784 2.4799
15 1.2690 3.5489 0.7828 3.3734 2.0875 2.8121 1.6685 2.4463
20 1.2803 3.5792 0.7754 3.3201 2.1099 2.8298 1.6295 2.3655

120 20 1.2887 3.6028 0.7691 3.2809 2.1241 2.8594 1.6181 2.3907
30 1.2846 3.6173 0.7656 3.2741 2.1336 2.8465 1.6016 2.3229
45 1.2946 3.6187 0.7653 3.2541 2.1191 2.8482 1.5809 2.3204
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TABLE 4
Estimates of the parameters, reliability and hazard functions for the simulated data set

under different variations of the censoring parameters.

Under Type-I hybrid

R T α̂ β̂ R̂(t) Ĥ(t) α̂B β̂B R̂(t)B Ĥ(t)B
25 3 7.4044 0.7222 0.2310 17.1819 7.3807 0.7347 0.2301 17.1858

5 7.9984 0.6573 0.2279 17.2448 7.9436 0.6741 0.2282 17.2325
40 7 4.3176 1.4320 0.2581 16.5827 4.3592 1.4221 0.2572 16.5949

6 5.6319 1.0125 0.2428 16.9261 5.6273 1.0211 0.2416 16.9353
55 9 4.0476 1.5626 0.2625 16.4815 4.0754 1.5547 0.2618 16.4910

11 4.3525 1.4183 0.2578 16.5912 4.3863 1.4113 0.2570 16.6022
70 12 5.4655 1.0565 0.2452 16.8800 5.4919 1.0547 0.2433 16.9023

17 4.9036 1.2132 0.2508 16.7528 4.9575 1.2060 0.2496 16.7683
85 23 4.9061 1.2124 0.2508 16.7535 4.9452 1.2098 0.2499 16.7631

35 4.8896 1.2176 0.2510 16.7495 4.9226 1.2126 0.2493 16.7690
95 68 4.8681 1.2245 0.2512 16.7441 4.9025 1.2201 0.2498 16.7602

105 4.8373 1.2344 0.2515 16.7363 4.8837 1.2267 0.2501 16.7546
Under Type-II hybrid

25 3 7.9984 0.6573 0.2279 17.2448 7.9688 0.6660 0.2283 17.2349
5 10.8873 0.4562 0.2177 17.4476 10.8557 0.4590 0.2177 17.4446

40 6 4.3176 1.4320 0.2581 16.5827 4.3094 1.4303 0.2569 16.5951
7 4.8500 1.2280 0.2510 16.7452 4.8623 1.2259 0.2505 16.7495

55 9 4.3525 1.4183 0.2578 16.5912 4.3527 1.4164 0.2570 16.5992
11 5.2219 1.1194 0.2475 16.8283 5.2263 1.1178 0.2466 16.8383

70 12 4.9036 1.2132 0.2508 16.7528 4.9148 1.2098 0.2500 16.7617
17 5.0409 1.1711 0.2494 16.7864 5.0479 1.1679 0.2484 16.7974

85 23 4.9250 1.2064 0.2506 16.7583 4.9339 1.2031 0.2497 16.7684
50 4.8444 1.2321 0.2514 16.7381 4.8519 1.2307 0.2508 16.7441

95 110 4.8500 1.2303 0.2514 16.7395 4.8369 1.2285 0.2498 16.7569
150 4.8626 1.2263 0.2513 16.7427 4.8734 1.2236 0.2506 16.7495
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TABLE 5
Interval estimates of the parameters for the simulated data set for different variation of

R and T .

Under Type-I Hybrid
Classical Interval Bayes Interval

R T α̂L α̂U λ̂L λ̂U α̂L α̂U λ̂L λ̂U

25 3 0.0000 24.4781 0.0000 2.6653 5.7423 9.3947 0.5053 0.9865
5 0.0000 26.1804 0.0000 2.3660 6.1495 9.7578 0.4545 0.8837

40 7 0.0000 14.4885 0.0000 2.8936 3.4069 5.3571 1.1927 1.6575
6 0.0000 9.9483 0.0000 3.7350 4.3994 6.9624 0.7707 1.3220

55 9 0.0000 8.9152 0.0000 3.8921 3.2880 4.9862 1.3466 1.7867
11 0.0000 9.7375 0.0000 3.5588 3.4967 5.4001 1.1680 1.6333

70 12 0.0000 13.1952 0.0000 2.8107 4.2795 6.8271 0.8052 1.3352
17 0.0000 11.3073 0.0000 3.1009 3.8830 6.1839 0.9251 1.4641

85 23 0.0000 11.2828 0.0000 3.0883 3.9083 6.0879 0.9530 1.4795
35 0.0000 11.2166 0.0000 3.0933 3.8485 6.1167 0.9611 1.4919

95 68 0.0000 11.1428 0.0000 3.1045 3.8277 6.0605 0.9576 1.4885
105 0.0000 11.0495 0.0000 3.1247 3.7760 6.0282 0.9684 1.4960

Under Type-II Hybrid
25 3 0.0000 26.1804 0.0000 2.3660 6.9636 9.0631 0.5115 0.8006

5 0.0000 41.3595 0.0000 1.8591 9.9542 11.6752 0.3512 0.5564
40 6 0.0000 9.9483 0.0000 3.7350 3.4208 5.0818 1.3246 1.5276

7 0.0000 11.6176 0.0000 3.2955 3.9994 5.8275 1.1066 1.3495
55 9 0.0000 9.7375 0.0000 3.5588 3.5131 5.1404 1.3096 1.5215

11 0.0000 12.4162 0.0000 2.9434 4.3086 6.3320 0.9838 1.2554
70 12 0.0000 11.3073 0.0000 3.1009 3.9797 5.8753 1.0842 1.3385

17 0.0000 11.7357 0.0000 3.0161 4.1779 6.0565 1.0434 1.3003
85 23 0.0000 11.3240 0.0000 3.0704 4.0253 5.8928 1.0769 1.3321

50 0.0000 11.0747 0.0000 3.1212 3.9572 5.7761 1.1092 1.3643
95 110 0.0000 11.0873 0.0000 3.1162 3.9794 5.7546 1.1029 1.3469

150 0.0000 11.1249 0.0000 3.1077 3.9280 5.7750 1.1029 1.3475
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Summary

In this paper, we proposed the estimation procedures to estimate the unknown parame-
ters, reliability and hazard functions of Inverse Lomax distribution. The mathematical
expressions for maximum likelihood and Bayes estimators are derived in presence of hy-
brid censoring scheme. In most of the cases, it has been seen that maximum likelihood
and Bayes estimators of the parameters are not appear in explicit form. Hence, Newton-
Raphson (N-R) method has been used to draw the maximum likelihood estimates of the
parameters. The Bayes estimators are obtained under Jeffrey’s non-informative prior for
both shape α and scale λ using Markov Chain Monte Carlo (MCMC) technique. Further,
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we have also constructed the 95% asymptotic confidence interval based on maximum like-
lihood estimates (MLEs) and highest posterior density (HPD) credible intervals based
on MCMC samples. Finally, two data sets have been used to demonstrate the proposed
methodology.
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