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ON THE COVARIANCE OF RESIDUAL LIVES 

N. Unnikrishnan Nair, G. Asha, P.G. Sankaran 

1. INTRODUCTION 

The concept of residual life is centuries old and has been used extensively in 
various disciplines. Characteristics of residual life such as mean (Watson and 
Wells, 1961) median (Schittlein and Morrison, 1981) percentiles (Arnold and Bro-
chett, 1983) second moment and variance (Gupta and Gupta, 1983) and partial 
means (Nair, 1987) coefficient of variation (Gupta and Kirmani, 2000) find a pre-
dominant role in modeling and analysis of life time data and in describing various 
notions of aging of equipments and devices. Mean residual life occurs naturally in 
other areas like optimal disposal of assets, renewal theory, branching process, dy-
namic programming, social sciences and in setting rates and benefits of life insur-
ance. For details we refer to Guess and Proschan (1988). 

The definition of mean residual life extends to higher dimensions in a natural 
way. In the bivariate case it can be conceived in vector form 

1 1 2 2 1 2( ( , ), ( , ))r x x r x x

where 

1 2 1 1 2 2( , ) E( , )i i ir x x X x X x X x  (1) 

and 1 2( , )X X  is a non-negative random vector representing the life times of 

components in a two-component system. It is well known that (1) determines the 

distribution of 1 2( , )X X uniquely. Many characterizations of life distributions 

based on the functional form of (1) are available in literature that helps to identify 
the distributions of life lengths. Some of the papers in this direction are Kotz and 
Shanbhag (1980), Zahedi (1985), Galambos and Kotz (1978), Nair and Nair 
(1988), Sankaran and Nair (1993). 

An important aspect to be considered while modeling bivariate data on life 
times is the dependency structure between them, which can be measured in terms 
of the covariance. Since covariance between life times can also be studied in 
terms of their residual lives, a discussion of covariance of residual lives becomes 
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relevant. It appears that much attention has not been devoted to study the prop-
erties and to investigate the role of covariance structure of the residual lives in de-
termining the model. In this paper we define the product moment and covariance 
residual life of a two component system and obtain some of their properties and 
applications in characterization of life distributions. 

In Section 2 we define product moment and covariance of residual lives in the 
bivariate case and establish some properties. The relationship between Basu’s 
(1971) bivariate failure rate and the product moment of residual lives is analysed 
in Section 3. Finally in Section 4 we prove that the proportionality between prod-
uct moment to the product of components of vector valued mean residual life 
defined in (1) is a characteristic property of the bivariate Lomax and beta laws. 

2. DEFINITION AND PROPERTIES

Let 1 2( , )X X  be a random vector that takes values in the positive octant 

2 1 2 1 2{( , ) 0, 0}R x x x x  of the two dimensional space with absolutely con-

tinuous survival function 

1 2 1 1 2 2( , ) [ , ]R x x P X x X x

and density function 1 2( , )f x x  with 1 2E( )X X . Then the product moment 

residual life function (PMRL) of 1 2( , )X X  is defined as 

1 2 1 1 2 2 1 1 2 2M( , ) E[( )( ) , ]x x X x X x X x X x  (2) 

The covariance residual life function (CVRL) is 

1 2 1 2 1 1 2 2 1 2C( , ) M( , ) ( , ) ( , )x x x x r x x r x x  (3) 

where 1 1 2( , )r x x and 2 1 2( , )r x x  are as defined in (1). The function 1 2M( , )x x  and 

1 2C( , )x x satisfy the following properties. 

Proposition 2.1 

For a random vector 1 2( , )X X  that takes value in the positive octant 

2 1 2 1 2{( , ) 0, 0}R x x x x  of the two dimensional space with 1 2E( )X X

1 2C(0,0) Cov( , )X X  (4) 

Proposition 2.2 

For a random vector 1 2( , )X X  that takes value in the positive octant 

2 1 2 1 2{( , ) 0, 0}R x x x x  of the two dimensional space with 1 2E( )X X
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the following partial differential equation of second order connects the survival 
function and PMRL 

2
1 2 1 2 1 2

1 2

1 2 1 2

( , ) M( , ) ( , )
M( , )

R x x x x R x x
x x

x x x x

2
1 2 1 2 1 2

1 2

2 1 1 2

M( , ) ( , ) M( , )
1 ( , ) 0

x x R x x x x
R x x

x x x x

Proof
From equation (2), it follows that 

1 2

1
1 2 1 2 1 2 1 2M( , ) [ ( , )] ( , )

x x
x x R x x R t t dt dt  (5) 

Differentiating with respect to 2x

1

1 2 1 2
1 2 1 2 1 2 1

2 2

( , ) M( , )
M( , ) ( , ) ( , )

x

R x x x x
x x R x x R t x dt

x x
 (6) 

and further differentiation of (6) with respect to 1x  yields 

1 2M( , )x x
2

1 2 1 2 1 2

1 2 1 2

( , ) M( , ) ( , )R x x x x R x x

x x x x

2
1 2 1 2 1 2

1 2

2 1 1 2

M( , ) ( , ) M( , )
1 ( , ) 0

x x R x x x x
R x x

x x x x
.

Proposition 2.3

If 1 1 2 2 1 2( ( , ), ( , ))h x x h x x  is the bivariate failure rate (Johnson and Kotz, 1975) 

with

1 2( , )ih x x = 1 2log ( , )

i

R x x

x
, i=1,2,

then 

1 2

1

M( , )x x

x
 = 1 1 2 1 2 2 1 2( , )M( , ) ( , )h x x x x r x x  (7) 

1 2

2

M( , )x x

x
 = 2 1 2 1 2 1 1 2( , )M( , ) ( , )h x x x x r x x  (8) 
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Proof
From (1) it follows that 

1 2 1 1 2 2( , ) E( , )i i ir x x X x X x X x

so that 

1 1 2 1 1 1 1 2 2( , ) E( , )r x x X x X x X x

        = 
1 2

1
1 2 1 1 1 2 1 2[ ( , )] ( ) ( , )

x x
R x x X t f t t dt dt

or

1 2 1 1 2[ ( , )] ( , )R x x r x x =
1

1 2 1( , )
x

R t x dt  (9) 

Similarly proceeding for 2 1 2( , )r x x  we can see that 

1 2 2 1 2( , ) ( , )R x x r x x =
2

1 2 2( , )
x

R x t dt  (10) 

Further from (5) we have 

1

1 11 2 1 2
1 2 1 2 1 2 1 2 1

2 2

( , ) M( , )
M( , )[ ( , )] [ ( , )] ( , )

x

R x x x x
x x R x x R x x R t x dt

x x

and

2

1 11 2 1 2
1 2 1 2 1 2 1 2 1

1 1

( , ) M( , )
M( , )[ ( , )] [ ( , )] ( , )

x

R x x x x
x x R x x R x x R x t dt

x x
.

Using (9) and (10) in the above expressions (7) and (8) follow. 

Corollary 2.1 

If 1 1 2 2 1 2( ( , ), ( , ))h x x h x x  is the bivariate failure rate (Johnson and Kotz, 1975) 

with

1 2( , )ih x x = 1 2log ( , )
, 1, 2

i

R x x
i

x

then 

1 2 1 1 2
1 1 2 1 2 1 1 2 2 1 2

1 1

M( , ) ( , )
( , ) 1 M( , ) ( , ) ( , )

x x r x x
r x x x x r x x r x x

x x
 (11) 

1 2 2 1 2
2 1 2 1 2 1 1 2 2 1 2

2 2

M( , ) ( , )
( , ) 1 M( , ) ( , ) ( , )

x x r x x
r x x x x r x x r x x

x x
 (12) 
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Proof
The proof follows from Proposition (4) and observing that differentiation of 

(8) and (9) with respect to 1x  and 2x  respectively yields 

1 2( , )ih x x = 1 1 2
2 1 2

( , )
[ ( , )] 1 , 1, 2i

i

lr x x
r x x i

x
.

Note

Equations (11) and (12) enable the calculation of 1 2M( , )x x  and hence 

1 2( , )C x x  in terms of the mean residual life (MRL). Thus unlike the usual covari-

ance which cannot be determined from the mean values alone, CVRL can be 
evaluated from the knowledge of the MRL. This fact leaves scope for characteriz-

ing life distributions by the functional relationship between 1 2M( , )x x  and 

1 1 2 2 1 2( ( , ), ( , ))r x x r x x  Further MRL can give indication of the covariance struc-

ture of residual lives. 

Proposition 2.4

A necessary condition for a function 1 2M( , )x x to be a PMRL is 

2
1 1 2( , )r x x 1 2

1 1 1 2

M(x ,x )

x r (x ,x )
 = 2

2 1 2( , )r x x 1 2

2 2 1 2

M(x ,x )

x r (x ,x )

Proof

Equating expressions for 1 1 2 2 1 2( , ) ( , )r x x r x x  from (11) and (12) we get 

1 2 1 1 2 1 2
1 1 2 1 2 2 1 2

1 1 2

2 1 2
1 2

2

M( , ) ( , ) M( , )
( , ) M( , ) ( , )

( , )
M( , )

x x r x x x x
r x x x x r x x

x x x

r x x
x x

x

from which the necessary condition follow.

Proposition 2.5 

PMRL is increasing in x1, x2 whenever 1 2M( , )x x <

min 1 1 2 2 1 2

1 2

( , ) ( , )
,

r x x r x x

x x
 and decreasing whenever 1 2M( , )x x  > 

max 1 1 2 2 1 2

1 2

( , ) ( , )
,

r x x r x x

x x
.
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Proof

1 2M( , )x x  is increasing in both 1x  and 2x  whenever 1 2

1

M( , )
0

x x

x
 and 

1 2

2

M( , )
0

x x

x
. From (11) and (12) this is true if simultaneously the inequalities 

1 1 2 2 1 2
1 2

1 1 2

1

( , ) ( , )
M( , )

( , )
1

r x x r x x
x x

r x x

x

 and 1 1 2 2 1 2
1 2

2 1 2

2

( , ) ( , )
M( , )

( , )
1

r x x r x x
x x

r x x

x

 hold. This 

leads to 1 1 2 2 1 2
1 2

1 2

( , ) ( , )
M( , ) min( , )

r x x r x x
x x

x x
. The proof of the second part 

is similar. 

Proposition 2.6 

The CMRL 1 2C( , ) 0x x  for all (x1, x2) in 2R  if and only if X1 and X2 are in-

dependently distributed. 

Proof
When X1 and X2 are independent, 

1 1 2 1 1( , ) ( ,0)r x x r x  and 2 1 2 2 2( , ) (0, )r x x r x .

Also 1 2 1 1 2M( , ) ( , )x x r x x 2 1 2( , )r x x  so that 1 2C( , ) 0x x . Conversely 

1 2C( , ) 0x x  implies 

1 2 1 1 2M( , ) ( , )x x r x x 2 1 2( , )r x x

or

1 2

1 2 1 2 1 2 1 1 2 2 1 2( , ) ( , ) ( , ) ( , )
x x

R t t dt dt R x x r x x r x x

or

2

1 2
2 2 1 1 2 2 1 2

1

( , )
( , ) ( , ) ( , )

x

R x x
R x t dt r x x r x x

x

                    1 1 2 2 1 2
2 1 2 1 2 1 1 2 1 2

1 2

r ( , ) ( , )
( , ) ( , ) ( , ) ( , )

x x r x x
r x x R x x r x x R x x

x x

Dividing by 1 2( , )R x x  and using the relation between 1 2( , )h x x  and 

1 1 2( , )r x x
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2 1 2 1 1 2
2 1 2 2 1 2 2 1 2

1 1

2 1 2
2 1 2

2

( , ) ( , )
( , ) ( , ) 1 ( , )

( , )
( , )

r x x r x x
r x x r x x r x x

x x

r x x
r x x

x

and hence 2 1 2
2 1 2

2

( , )
( , ) 0

r x x
r x x

x
 implying 2 1 2( , )r x x  is a function of x2 alone 

and hence 2 1 2 2 2( , ) (0, ).r x x r x  Similarly 1 1 2 1 1( , ) ( , 0)r x x r x  and hence X1 and 

X2 are independent ( Nair and Nair, 1989). 

Corollary 2.2 

1 2 1 1 2 2M( , ) ( ,0) (0, )x x r x r x  for all 1 2, 0x x  if and only if 1X  and 2X  are 

independent. 
The proof follows from Proposition 2.6. 

Remark 1 
Normally, zero covariance does not imply independence. But in the case of re-

sidual lives the property holds. This is useful in tests of independence. 

Remark 2 
CVRL need not determine a distribution uniquely. This statement will follow 

from our discussions in the next section and Theorem 3.2. 

3. RELATIONSHIP WITH BASU’S FAILURE RATE

Basu (1971) defined the failure rate of a continuous random vector in 2R  as 

1 2 1 2 1 2( , ) ( , )/ ( , )h x x f x x R x x  (13)

Of particular interest is the case when 1 2( , )X X  has constant Basu failure rate. 

The following theorem identifies the consequences of the constancy of the failure 
on the PMRL. 

Theorem 3.1

 For a continuous bivariate random vector in 2R  with exponential marginals, 

1 2( , )h x x k  if and only if 1
1 2M( , )x x k

Proof
The first part of the Theorem is evident from the equivalence of the relation-

ship
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2
1 2

1 2

1 2

( , )
( , )

R x x
kR x x

x x
 and 1 2( , )kR x x

1 2

1 2 1 2( , )
x x

R t t dt dt .

The second part follows from Basu (1971). 

Theorem 3.2 

The only absolutely continuous distributions in 2R  for which 1 2( , )M x x  is 

constant are mixture of exponential distributions. 

1 2 1 1 2 2 1 2

0 0

( , ) exp{ } ( , ),f x x x x 1 2, 0x x  (14) 

where  is a measure on the set 1 2 1 2{ 0, 0}A .

The proof of the theorem follows directly from the definition of PMRL and 
Puri and Rubin (1974). 

In Theorem 3.2, 1
1 2 1 2( , )M( , ) 1h x x x x  and thus PMRL is the reciprocal of 

failure rate. 
Let us consider a more general relationship 

1 2 1 2( , )M( , )h x x x x c  (15) 

for some constant c>0.
Equation (15) is equivalent to the fourth order partial differential equation 

24 2

2 2
1 21 2

u u
u k

x xx x
 (16) 

where 

1 2

1 2 1 2 1 2( , ) ( , ) .
x x

u x x R t t dt t  (17) 

Being a fourth order equation (16) has four independent solutions. We are in-
terested in only those solutions that can generate a probability distribution. One 

solution is 1 2 0 1 1 2 2( , ) ,u x x a a x a x  which cannot produce a probability dis-

tribution. The second solution is (14), that corresponds to c=1.When c is of the 
form ( 1)/( 1)( 2) 1

2
1 2 1 1 2 2 1 2

0 0

( , ) (1 ) ( , ),f x x d x d x x1, x2 >0 
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where  is a measure on 1 2 1 2{ 0, 0}A d d d d provides 1 2( , )u x x  that 

satisfies (16) for 0 . A fourth solution is 

1 2
2

1 2
1 2 1 2

1 20 0

( , ) 1 ( , )

da a
x x

f x x
a a

 , 1 2, 0x x

where  is a measure on 1 2 1 2{ , 0},A a a a a  which corresponds to 

( 1)/( 1)( 2) 1, 2c d d d d d and the support of 1 2( , )X X  is 

1
1 2

1

(0, ) 0, 1
x

a a
a

. It can be verified that linear combinations of the above 

four solutions with constant or variable coefficients do not satisfy the conditions 

for a probability distribution in 2R  for which (15) is true. 

If X is a continuous non-negative random variable with survival function 
( ) ( ),R x P X x  the distribution with density function. 

( ) ( )/E( ),g x R x X  x>0 (18) 

is called the equilibrium distribution corresponding to X. For a discussion on the 
properties and applications of equilibrium distribution we refer to Gupta (1979). 
In analogy with (18), if we define the bivariate equilibrium distribution as 

1 2 1 2 1 2( , ) ( , )/E( , ),g x x R x x X X

then the Basu’s failure rate 1 2( , )k x x  of 1 2( , )g x x  is seen to be related to 

1 2M( , )X X  as 

1 2( , )k x x 1
1 2[M( , )]X X   (19) 

For a similar result in the univariate case and the applications of equilibrium 
distributions in reliability modeling we refer to Gupta (1979) and Nair and Hitha 
(1989). As pointed out in those papers the result in (19) is useful in mutual char-
acterization of the original and equilibrium distributions via the PMRL. Also 
from the above discussions. 

1 2 1 2( , ) ( , )k x x h x x

if and only if the distribution of 1 2( , )X X  is as in (14). Thus we have 

Theorem 3.3 

The only bivariate continuous distribution in 2R  in which the equilibrium dis-

tribution is identical with the original distribution has density (14). 
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The equilibrium distribution belongs to the class of bivariate weighted distribu-
tion by virtue of the representation. 

1 1
1 2 1 2 1 2 1 2( , ) [ ( , )] ( , )/E[ ( , )]g x x h x x f x x h x x

provided the expectation exists finitely. In general PMRL can be expressed as a trun-

cated mean of the reciprocal failure rate, 1
1 2 1 2 1 1 2 2M( , ) E[ ( , ) , ].x x h x x X x X x

4. SOME CHARACTERIZATIONS

The relationship between PMRL and the mean residual life was derived in Sec-
tion 2. This relationship involves first order partial differential equations in 

1 2M( , )x x  and the components 1 1 2( , )r x x  and 2 1 2( , )r x x  of mean residual life 

that provide characterization of some useful life distributions. For other charac-
terization of these distributions by reliability concepts we refer to Sankaran and 
Nair (1993). 

Theorem 4.1

A random vector in 1 2( , )X X  with 1 2E( )X X  in the support of 2R  satis-

fies the condition. 

1 2 1 1 2 2 1 2M( , ) ( , ) ( , )x x kr x x r x x  (20) 

if and only if the survival function of 1 2( , )X X  is bivariate Lomax with survival 

function. 

1 2 1 1 2 2 1 2 1 2( , ) (1 ) , , , 0, , 0dR x x a x a x a a d x x  (21) 

for k>1 and bivariate beta survival function 

1 1 1
1 2 1 1 2 2 1 1 2 1 2

2

1
( , ) (1 ) ,0 ,0 , , , 0c p x

R x x p x p x x p x p p c
p

 (22) 

for k<1
For k =1, the variables are independently distributed. 

Proof
Assuming the relationship (20), equations (10) and (9) reduce to 

2 1 2
1 1 2 2 1 2

1

( , )
( , ) ( 1) ( , )

r x x
kr x x k r x x

x
 (23) 

and
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1 1 2
2 1 2 1 1 2

2

( , )
( , ) ( 1) ( , )

r x x
kr x x k r x x

x
 (24) 

Hence

1

k

k

2 1 2

1

( , )r x x

x

1

1 1 2

2

( , )1 r x xk

k x
 (25) 

holds for all x1, x2 > 0 and k  1. This happens if and only if both sides of (25) is 
a constant, say c. Solving the resulting differential equations 

2 1 2 1 1 2

( 1)
( , ) ( )

k c
r x x x A x

k

and

1 1 2 2 2 1

( 1)
( , ) ( )

k
r x x x A x

kc

We substitute these values of 1 1 2( , )r x x  and 2 1 2( , )r x x  in (23) and (24). Since 

one side of the resulting equations is linear in x1 (x2) the other must also be linear 
in x1 (x2). Thus the final solution of (23) and (24) are 

1 1 2 1 2 2

1 1
( , ) (0)

k k
r x x x x A

k kc

2 1 2 1 2 2

( 1) 1
( , ) (0)

k c k
r x x x x cA

k kc

Substituting these expressions in the inversion formula (Nair and Nair,(1989)) 

1 2

1 1 1 1 2
1 2

2 1 2 1 2 1 1 2 1 20 0

(0,0) ( ,0)
( , ) exp

( ,0) ( , ) ( , 0) ( , )

x x
r r x dt dt

R x x
r x r x x r t r x t

we get 

1
1

1 2 1 2

2 2

1 1
( , ) 1

k

kk k
R x x x x

kA kcA

which is of the form stated in the Theorem. Conversely for the distribution speci-
fied by (21) 

1 1
1 1 2 1 1 1 2 2( , ) ( 1) (1 )r x x d a a x a x

1 1
2 1 2 2 1 1 2 2( , ) ( 1) (1 )r x x d a a x a x
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and 1 1 1 1 2
1 2 1 2 1 1 2 2( , ) ( 1) ( 2) (1 )M x x d d a a a x a x

so that 1 2 1 1 2 2 1 2( , ) ( , ) ( , )M x x kr x x r x x  with 
1

1
2

d
k

d
.

The proof for k<1 is exactly similar and is therefore omitted. Proposition 2.6 
of Section 2 is the case when k=1 and this establishes Theorem 4.1 

Corollary 4.1  

The covariance of residual life 1 2 1 1 2 2 1 2( , ) ( , ) ( , )C x x Ar x x r x x  if and only if 

of the distribution of 1 2( , )X X  is either bivariate Lomax for A>0 or bivariate 

beta for A<0 with survival functions stated in (21) and (22). 
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RIASSUNTO

La covarianza delle vite residue 

Varie proprietà della vita residua quali la media, la mediana, i percentili, la varianza so-
no state discusse nella letteratura sull’analisi della sopravvivenza. Tuttavia uno studio det-
tagliato sulla covarianza tra le vite residue in un sistema a due componenti non sembra 
essere stato affrontato. Nel presente lavoro vengono discusse diverse proprietà del mo-
mento dei prodotti e della covarianza delle vite residue. Si studiano poi le relazioni che il 
momento dei prodotti ha con la vita residua media e il tasso di insuccesso. 

SUMMARY

On the covariance of residual lives 

Various properties of residual life such as mean, median, percentiles, variance etc have 
been discussed in literature on reliability and survival analysis. However a detailed study 
on covariance between residual lives in a two component system does not seem to have 
been undertaken. The present paper discusses various properties of product moment and 
covariance of residual lives. Relationships the product moment has with mean residual life 
and failure rate are studied and some characterizations are established. 


