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1. Introduction

Linking data collected at different scales, locations and dimensions constitutes a
challenging topic of spatial analysis. The great interest on this area is mainly due
to practical reasons, drawing on works from geographic, ecological, environmental,
agricultural and geological fields. Indeed, the increasing availability of geographi-
cally referenced data calls for an exploitation of this information that avoids the
implementation of new and expensive data collection. In particular, we refer to
the case of European projects that often require ad hoc data collection for socio-
economic or environmental analysis. Real studies usually consider areas defined
more on the basis of problem features than on administrative boundaries. Signifi-
cant time and money is required to collect original data, in many case limited by
both the areas of interest and by very specific topics. This implies that the use of
secondary data (for example administrative or census data) as covariates would
be desirable and sometimes necessary.

Statistical literature generally refers to this topic as the overall problem of spa-
tial misalignment or “incompatible” spatial data, meaning the analysis of data at
a different level of spatial resolution with respect to the one originally collected.
This concept includes an array of different problems with varying characteristics
and numerous analytical solutions have been proposed to address them in the lit-
erature. For instance, the Modifiable Areal Unit Problem (MAUP) concerns the
investigation of a variable’s distribution at a new level of spatial aggregation; for
data modeled through a spatial process, if the aim is to envision block averaging at
different spatial scales, then we refer to the Change Of Support Problem (COSP).
The ecological fallacy investigates the fact that relationships observed between
variables measured at the aggregate level may not accurately reflect the relation-
ship between these same variables measured at the individual level (Lawson, 2009;
Banerjee et al., 2004).

1 Corresponding Author. E-mail: g.roli@unibo.it



74 G. Roli and M. Raggi

This problem can occur in several combinations and consequently different so-
lutions have been proposed in literature. In particular, spatial misalignment arises
because we observe data referred to areas (or points) but the nature of the pro-
cess is not coherent to them (for an exhaustive presentation of cases considering
multidisciplinary studies, see Gotway and Young (2002)). Verdin et al. (2015)
has followed a Bayesian kriging approach to address a point-to-area misalignment
problem dealing with blending precipitation gauge data and satellite-derived pre-
cipitation estimates. Similar empirical problems have been dealt with by Sinclair
and Pegram (2005) using conditional merging methods.

A different solution has been proposed by Lopiano et al. (2014) who consid-
ered a pseudo-penalized quasi-likelihood algorithm for kriging to align datasets in
both point-to-point and point-to-area misalignment problems when the response
variable is non-normally distributed. Other works focused on errors caused by
spatial misalignment and corresponding measurements to properly estimate the
relationship among variables that are misaligned in space ((Lopiano et al., 2014;
Szpiro et al., 2011)). Similarly, Gryparis et al. (2008) faced this problem in epi-
demiologic research when the misaligned information refers to an environmental
exposure with respect to an outcome, which is usually a human health response,
measured at different spatial levels. Peng and Bell (2010) considered the problem
of error measurement in time series analysis.

We focus our attention on a particular aspect of the more general topic of
spatial misalignment, namely the area-to-area misalignment problem. This is the
case of available data (typically counts or rates from administrative sources) which
refer to spatial areas that are different from the ones of interest. The main aim is
to convert the source information into target zones in order to avoid ad hoc data
collections and then employ the imputed data in the subsequent analysis. The two
misaligned spatial grids define regions that are too large to be considered as marked
points and, thus, the methods previously described for point-to-area or point-to-
point misalignments do not completely address the problem. The association
of measurements observed in misaligned regions requires predicting the values of
variables in regions in which they were not measured. This process, which is similar
to kriging, is known as areal interpolation and has been particularly explored in
the geographical literature (see, e.g., Goodchild et al. (1993)).

In the statistical literature, interesting approaches to areal interpolation have
been proposed by Mugglin and Carlin (1998) and Mugglin et al. (1999). They
present a hierarchical Bayesian method for interpolation, estimation and spatial
smoothing of Poisson responses by exploiting information on a set of covariates
on both grids. In this paper, we consider a similar, fully model-based, method
proposed by Mugglin et al. (2000) over area-to-area misaligned grids which can
be either nested or non-nested. The main advantage of this kind of approach is
full inference (e.g. enabling interval estimates) for the distributions of target zone
data. Here, we are interested in assessing model performance in the case of nested
data grids and robustness towards model misspecifications. With this purpose,
we generate artificial data inspired by a real study, on which we will apply the
method for future development. We also provide a comparison of the results under
different simulated scenarios.
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The remainder of the paper is organized as follows. In Section 2, we intro-
duce the practical reasons which motivate the need for incompatible spatial data
integration through a case study description. Section 3 resumes the modeling
framework proposed by Mugglin et al. (2000) and describes our assumptions. The
simulation exercise based on the motivating example is presented in Section 4 and
the corresponding results are provided in Section 5. Section 6 concludes with a
discussion of the main results and future developments.

2. Motivating example

The concept of this paper arises from an analysis carried out in a study at the
European level in the CLAIM project, funded by 7FP, (www.claimproject.eu). It
sought to provide the knowledge base to support an effective Common Agricultural
Policy (CAP) design to improve landscape management and, in particular, to offer
insights into the ability of landscapes to contribute to the production of added
value for society in rural areas. This objective is realized by investigating the
connection between landscape features, rural economies and social characteristics
of rural areas by means of nine case studies in different European countries.

In Italy, the case study refers to an area of ten municipalities in the province of
Ferrara where part of the area is within the Po Delta Park. The need for statistical
methods aimed at integrating misaligned data arises from the fact that the area of
interest (Po Delta Park) does not coincide with the entire area of the municipalities
in question, but is included within it. Hence we have two separate areas: the one
of interest (the park) and one that includes ten municipalities and that is larger
than the target one. Specific data were collected through an ad hoc survey and
the sample unit was randomly selected in the larger area since only a population
list at the municipality level was available. Figure 1 graphically summarizes the
case study, where green, red and blue areas identify different zones of the Po Delta
Park and where continuous lines represent the municipality boundaries.

In practice, the problem at hand relates to the use of data from both an ad
hoc study and/or from an administrative source rather than the more accurate
use of data related to the real target area. On one hand, data in the first category
are readily available and geographically referenced. Furthermore, the secondary
administrative data could be very useful as explanatory variables, but refer to
different and larger areas than the selected case study sites. On another hand,
secondary socio-economic data are not collected at the target area level and lists
for selecting random sample units are not available. Possible examples of available
administrative data are the number of organic farms and/or the number of finan-
cial subsidies received, whilst examples of covariates at the Po Delta grid level
could be the number of farms and the number of young farmers.

3. Modeling framework

Let us consider two misaligned spatial grids, SB and SC , where the first one defines
the so-called source zones, i.e. areas from which data of interest are available,
and the second grid partitions regions for which data are to be imputed, namely
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Figure 1 – Po Delta Park areas included in CLAIM project (green, red and blue zones
identify different park subareas).
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target zones. Thus, the first grid is often referred to as the response grid and the
second one as the explanatory grid. We consider a special case with respect to the
more general framework proposed by Mugglin et al. (2000), where one data grid
contains the other, that is, following the motivating example, the administrative
data coverage is higher than the whole area of interest, say SC ⊂ SB . In this case,
C cells with portions lying outside of SB will not exist.

In the first grid, regions are indexed by i (with i = 1, . . . , I) and denoted by
Bi; similarly, for the second grid we have regions Cj , with j = 1, . . . , J . The
intersection of the two grids creates atoms, i.e., cells identifying partitions of both
the Bi and Cj regions. Atoms can be referenced relative to an appropriate B cell
and denoted by Bik (with k = 1, . . . ,Ki) or, equally, to an appropriate C cell by
Cjl (with l = 1, . . . , Lj). Thus, we can formally define the function f such that
f(Bik) = Cjl and the inverse function g such that g(Cjl) = Bik. Atoms with no
intersection across the grids are edge atoms. In our case, only B-edge atoms can
exist, say BiE .

For each Bi source zone, we can observe the response Yi. Referring to the
notation introduced above, the main aim is then to convert Yi to Y ′

j , i.e. imputing
values of Y to the target zones, by exploiting covariates that can be observed on
the explanatory grid, Xj , and/or to the response grid, Wi. Let us consider only the
availability of an X covariate, which is assumed to be an aggregated measurement
similar to the response Y . Under this hypothesis the observed values of Yi can
be regarded as

∑
k Yik, where Yik are latent values for the atoms associated with

Bi. Similarly, Xj =
∑

j Xjl, where Xjl are unobserved according to the atoms
associated with Cj .

In order to specify the model, we assume Poisson distributions for the observed
measurements

Xj ∼ Poi(eωj |Cj |) (1)

Yi ∼ Poi

(
eµi

∑
k

|Bik|h(X ′
ik/|Bik|; θik)

)
(2)

where |A| denotes the area of a generic region A, ωj and µi are random effects
capturing spatial associations among the Xj ’s and the Yi’s, respectively, h(•)
is a selected parametric function depending on θik and adjusting an expected
proportional-to-area allocation according to X ′

ik, which are the values of Xjl asso-
ciated to the response grid. As a result, the conditional distribution of the latent
variables Xjl and Yik given the observed is a product multinomial(

Xj1, Xj2, . . . , XjLj

)
∼ mult(Xj ; qj1, qj2, . . . , qjLj ) (3)

(Yi1, Xi2, . . . , XiKi) ∼ mult(Yi; pi1, pi2, . . . , piKi) (4)

where qjl =
|Cjl|
|Cj | and pik =

|Bik|h(X′
ik/|Bik|;θik)∑

k
|Bik|h(X′

ik
/|Bik|;θik)

.

For B-edge atoms, BiE , there is no corresponding Cjl, thus a latent X ′
iE is

introduced the distribution of which is defined by the adjacent non-edge atoms

X ′
iE ∼ Poi(eω

∗
i |BiE |) (5)
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where ω∗
i are additional spatial random effects to be associated to the others ωj .

In a fully Bayesian setting, prior distributions for each parameter need to be
specified. To capture the spatial nature of Bi, a Markov random field prior for
the µi’s can be adopted (Bernardinelli and Montomoli, 1992). In particular, if the
adjacency form is considered, we obtain a conditional autoregressive (CAR) prior
(Besag, 1974)

f (µi|µi′,i′ ̸=i) ∼ N

(∑
i′

uii′µi′/ui·, 1/(λµui·)

)
(6)

where uii = 0, uii′ = ui′i, ui· =
∑

i′ uii′ and uii′ equals 1 if Bi′ is a neighbor of Bi

and 0 otherwise.
In the simplest form, we refer to an exchangeable prior that captures hetero-

geneity but not local clustering across areas, i.e. all uii′ = 1 in equation 6. Similar
considerations can be referred to in the set of spatial random effects for Cj regions,
namely {ωjω

∗
i }

f (ωj |ωj′,j′ ̸=j) ∼ N

∑
j′

vjj′ωj′/vj·, 1/(λωvj·)

 (7)

where vjj = 0, vjj′ = vj′j , vj· =
∑

j′ vjj′ and vjj′ equals 1 if Cj′ is a neighbour of
Cj and 0 otherwise or all vjj′ = 1 for exchangeable prior cases.

For other (hyper-) parameters, proper and vague priors are generally adopted
(see Mugglin et al., 2000, for more details). In particular, for λµ and λω param-
eters proper gamma priors are usually adopted.

4. Simulation study

In order to test the method described above, we generate an artificial data set
based on the practical purposes of the motivating example. As a first attempt, we
consider a restricted number of areas for both grids, with the potential of being
extended by using data from Global Positioning Systems (GPSs) and Geographical
Information Systems (GISs). We select 3 source zones Bi and 4 target zones Cj ,
with SC ⊂ SB. The intersection of the two grids generates 3 B-edge atoms, B1E ,
B2E and B3E and a total of 9 non-edge atoms, Bik (with k = 1, . . . ,Ki and
Ki = 3, 5, 4) or Cjl (with l = 1, . . . , Lj and Lj = 3, 2, 2, 2). Figure 2 graphically
resumes the grids.

Areas of regions and atoms and related variables X and Y are randomly gen-
erated, under two scenarios:

Scenario 1: both the spatial random effects follow exchangeable priors, i.e.

µi ∼iid N(ηµ, τµ)

{ωj , ω∗i} ∼iid N(ηω, τω) (8)

Scenario 2: exchangeable prior for µi and a CAR distribution for {ωj , ω
∗
i }, with

a correlation between adjacent areas ρ = 0.9, are fixed.
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Figure 2 – Areal Data Misalignment: graphical representation of the problem considered
in the simulation exercise (source zones in black contour, target areas in red).

TABLE 1
Values of the parameters for the generation of artificial data

Parameters Values
ηµ 1.1
τµ 0.5
ηω (Scenario 1) 4
τω (Scenario 1) 1.2
ηω (Scenario 2) 0
τω (Scenario 2) 1
ρ (Scenario 2) 0.9
θ 1
|Cjl| random from 100 to 500
|BiE | random from 100 to 500

The values of parameters assigned to generate data under the two scenarios,
and according to the probability distributions described above, are summarised
in Table 1. In particular, they are used to simulate data for the covariate X and
the response Y for each atom through the multinomial distribution, given the
parameters fixed for the distribution of {µi} and {ωjω

∗
i }.

Parameter estimation is then implemented by considering the model specifica-
tion introduced in Section 3, adopting a MCMC approach and using the software
WinBUGS (Spiegelhalter et al., 2003). Referring to the seminal work of Mugglin
et al. (2000), we choose a function h for the computation of the pik values ensur-
ing non-null estimates of the response Y on the atoms, i.e. h(X ′

ik/|Bik|; θik) =
X ′

ik/|Bik|+θik with θik = θ
Ki|Bik| and θ = 1. In order to assess model performance

and robustness towards misspecifications, parameter estimations are carried out
following this scheme, separately by the two following scenarios:
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TABLE 2
Results - Scenario 1.

Parameters True Estimates 95% CI % relative bias coverages of 95% CI

Y ′
1 27650 27590 27320 - 27820 -0.22 yes

Y ′
2 2451 2426 2367 - 2492 -1.02 yes

Y ′
3 8246 8263 8192 - 8352 0.21 yes

Y ′
4 53793 53690 53190 - 54280 -0.19 yes

Y ′
1,1 2447 2375 2309 - 2441 -2.94 no

Y ′
1,2 13303 13160 12800 - 13470 -1.07 yes

Y ′
1,3 11900 12050 11850 - 12280 1.26 yes

Y ′
2,1 75 73 69 - 77 -2.67 yes

Y ′
2,2 2377 2353 2295 - 2418 -1.01 yes

Y ′
3,1 5014 4969 4836 - 5102 -0.90 yes

Y ′
3,2 3233 3294 3227 - 3365 1.89 yes

Y ′
4,1 34415 33960 33200 - 34750 -1.32 yes

Y ′
4,2 19378 19730 19380 - 20050 1.82 no

Scenario 1:

- estimation with assumptions of data generation.

Scenario 2:

- estimation with assumptions of data generation;

- estimation wrongly assuming both of the spatial random effects follow
exchangeable priors.

5. Results

The results of the simulation exercise are reported with respect to the parameters
of interest in response Y imputed for both target zones, Y ′

j , and non-edge atoms
associated to the explanatory grid, Y ′

jl.
As far as Scenario 1 is concerned, in Table 2 we show and compare true (ϕ) and

estimated (ϕ̂) parameters, together with 95% credibility intervals (CI), percentage

relative bias (ϕ−ϕ̂
ϕ ∗ 100) and coverages of 95% CI (yes or no).

The estimates seem to be quite precise, with acceptable relative biases (varying
from a minimum of −2.94% to a maximum of 1.89%). Only two cases of non-
coverage of 95% Credibility Intervals are yielded.

For Scenario 2, we mainly compare the results obtained through the two as-
sumptions concerning the spatial random effects µi and {ωj , ω

∗
i }. Estimates are

reported in Table 2 together with 95% Credibility Intervals (CI), minimum and
maximum values of percentage relative bias and the Deviance values in order to
test and compare the goodness-of-fit, separately by the two models.

By comparing the two model specifications, it is noteworthy that the true
model, i.e. considering a CAR distribution for {ωj , ω

∗
i } parameters, is properly

identified as the best one through the Deviance criterion. Moreover, corresponding
relative biases are narrower than those yielded by the other model specifications.
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TABLE 3
Results - Scenario 2.

CAR prior Exchangeable prior
Parameters True Estimates (95% CI) Estimates 95% CI

Y ′
1 32544 31058 27774 - 33386 29340 24170 - 33890

Y ′
2 24372 24138 21730 - 26760 28180 21990 - 33850

Y ′
3 30701 29480 26940 - 31232 29720 24140 - 34350

Y ′
4 51190 48200 44450 - 49790 49370 39810 - 57110

Y ′
1,1 2869 3088 2431 - 3891 2249 1591 - 2946

Y ′
1,2 15723 15420 13400 - 17470 18080 14070 - 21960

Y ′
1,3 13952 12550 10930 - 13900 9011 7236 - 10900

Y ′
2,1 748 808 625 - 1021 587 407 - 785

Y ′
2,2 23624 23330 20810 - 25940 27590 21490 - 33120

Y ′
3,1 18842 18520 16460 - 20900 21860 17020 - 26340

Y ′
3,2 11859 10960 9685 - 11970 7865 6341 - 9507

Y ′
4,1 33543 31770 28450 - 35390 37580 29220 - 45130

Y ′
4,2 17647 16430 14310 - 17740 11790 9568 - 14070

% relative bias - min -10.05 -35.41
% relative bias - max 7.95 16.79

deviance 79.74 80.04

The estimates obtained by misspecificating the distribution of spatial random
effects, i.e. by wrongly assuming that both the spatial random effects follow
exchangeable priors, do not seem to be particularly biased and the 95% Credibility
Intervals all cover the corresponding true parameter values. As a result, we can
conclude that the method is quite robust for this kind of model misspecification.

Finally, the comparison of the results under the two scenarios shows that the
accuracy of the estimates decreases when the complexity of the data (and, conse-
quently of the model) increases. Indeed, the average absolute relative bias amounts
to 1.27, in the simplest case where both the spatial random effects follow exchange-
able priors (Scenario 1); then, it grows into 5.05 and 18.27, when a spatial structure
of random effects is considered (Scenario 2).

6. Final remarks

In this work, we considered the problem of combining information from different
data sources focusing on spatially misaligned data. A hierarchical Bayesian model
is used to convert the source information to target zones by exploiting a set of
covariates on both grids. We applied this method to simplify simulated data
generated to resemble a real study. In particular, we referred to the case where
the administrative data grid contains the whole areal grid of interest.

The estimates we obtained appear to be quite precise, with acceptable relative
biases. Moreover, the method we used seems to be quite robust for misspecifi-
cations with regard to the distribution of the spatial random effects. Thus, it is
appropriate to apply this method of areal interpolation to the real data that is the
inspiration for our research question. Moreover, the fully model-based approach
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enables us to adopt an inferential, and not only descriptive, perspective of the
results (Mugglin and Carlin (1998); Mugglin et al. (1999, 2000)).

For future development of this research question, we would assess method
robustness by considering a larger number of areas in both grids and the effects
of model misspecifications. In particular, we would focus on the impact on model
performance when other assumptions are imposed (e.g. on both the priors and the
observed measurements). Finally, we would test the effect of different values of
correlation between adjacent areas, considering CAR distributions for both spatial
random effects and comparing different specifications of function h, i.e. differently
adjusting the expected proportional-to-area allocation.
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Summary

In this paper, the problem of combining information from different data sources is consid-
ered. We focus our attention on spatially misaligned data, where available information
(typically counts or rates from administrative sources) refers to spatial units that are
different from the ones of interest. A hierarchical Bayesian perspective is considered, as
proposed by Mugglin et al. in 2000, to provide a fully model-based approach in an infer-
ential, and not only descriptive, sense. In particular, explanatory covariates are arranged
to be modeled according to spatial correlations through a conditionally autoregressive
prior structure. In order to assess model performance and its robustness we generate
artificial data inspired by a real study and a simulation exercise is then carried out.
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