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1. Introduction

In recent years, small area estimation has emerged as an important area of statis-
tics as private companies and public agencies need to extract the maximum in-
formation from sample survey data. Sample surveys are generally designed to
produce reliable estimates of totals and means of variables of interest for given
domains. However, governments and general users are more and more interested
in obtaining statistical summaries for smaller domains, called small areas, created
by cross classifying demographic and geographical variables. Due to budget con-
straints, the samples in these subdomains are often too small and direct survey
estimates may be unreliable, with exceedingly high standard errors. In order to
obtain improved estimates, model-based approaches, usually based on mixed ef-
fects regression models, are introduced to link the small areas and borrow strength
from similar domains (see Rao, 2003; Datta, 2009; Pfefferman, 2013 for a review).
The model proposed by Fay and Herriot (1979) is the most popular small area
model when data are available at area-level. It borrows strength from data avail-
able from all areas by assuming a hierarchical structure and incorporates auxiliary
information from other data sources such as administrative records or censuses.
The frequentist predictor of small area mean based on the Fay-Herriot model,
which is also known as empirical best linear unbiased predictor (EBLUP), results
in a convex combination of the direct estimator and the synthetic estimator from
the model. Properties of the predictors of small area means, such as bias and mean
squared error, are derived conditionally on the auxiliary information and under
the assumption that auxiliary data are measured without error. When auxiliary
information is measured with error, an estimator, accounting for the measure-
ment error in the covariates, has been proposed in Ybarra and Lohr (2008). They
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suggested a suitable modification to the Fay-Herriot estimator that accounts for
sampling variability in the auxiliary information, and derive its properties, in par-
ticular showing that it is approximately unbiased. In a subsequent paper Arima
et al. (2012a) rewrite the measurement error model as a hierarchical Bayesian
model. Their predictors exhibit smaller empirical mean squared errors than the
frequentist predictors of Ybarra and Lohr (2008) and are more stable in terms of
variability and bias.

To grant the request for useful statistical data without disclosing confidential
information about respondents, Statistical Offices routinely apply statistical dis-
closure control (SDC) methods (for a comprehensive presentation of the topic, see
Willenborg and de Waal, 2001). The risk of disclosure can be lowered by aggregat-
ing or suppressing data, referred to as non perturbative methods, or by applying
perturbative methods, that mask the data purposely. Quoting Little (1993), the
paradigm is that “masking is primarily concerned with identification of individ-
ual records, whereas statistical analysis is concerned with making inference about
aggregates”, so that the information loss can in principle be confined to the in-
dividual level. Examples of perturbative methods are noise addition (Kim, 1986;
Fuller, 1993; Brand, 2002), designed for continuous data, and Post Randomiza-
tion Method (PRAM, Gouweleeuw et al., 1998) and data swapping (Dalenius and
Reiss, 1982), designed for categorical data. The implementation of disclosure lim-
itation protocols prevents users from using the observed survey data to estimate
the small area aggregates of interest. Area-level models partially overcome the
problem by relying on external sources; however the perturbed sample may still
provide valuable information for the small area model. The focus of this paper
will be the prediction of small area quantities when the available covariates arise
from data treated for disclosure limitation. We consider random data perturbation
techniques, focusing in particular on PRAM and noise addition. The protection
methods just mentioned perturb the data through ad-hoc probabilistic models
that in fact introduce measurement error. We can therefore exploit the analogy
between random data perturbation schemes and measurement/misclassification
errors to cast the small area estimation problem within the framework of Ybarra
and Lohr (2008) and Arima et al. (2012a). Their models however only considered
the particular and somehow unrealistic situation in which the auxiliary covariates
measured with error are all continuous variables. We propose a Bayesian area-
level model analogous to the one in Arima et al. (2012a) and explicitly introduce
the error distributions induced by protection of both categorical and continuous
variables for confidentiality purposes. In this case the information available on
the perturbation scheme allows us to model the misclassification process without
having to rely on strong assumptions about the measurement error, whose validity
is crucial when dealing with categorical data.

The paper is organized as follows: in Section 2 we give a brief overview of the
masking techniques with focus on the Post Randomization Method. In Section 3
we introduce the measurement error models as the starting point of the proposed
models described in Section 4. In Section 5 the performance of the proposed ap-
proach is investigated through simulated data. We conclude with a brief discussion
in Section 6.
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2. Masking techniques: Post Randomization and Noise Addition

The Post Randomization Method was proposed in Gouweleeuw et al. (1998) to
protect a microdata file of categorical variables by allowing the original scores of
certain variables on all records to change to possibly different scores according to a
prescribed probability mechanism. PRAM is defined through a transition matrix
that specifies the probability that each record’s categories are transformed into
each of the other categories.

Consider for simplicity applying PRAM to a single categorical variable Z,
with categories {1, . . . ,K}. Let Z∗ denote the corresponding perturbed variable.
Let plh = Pr(Z∗ = h|Z = l), be the probability of transition from category l
of Z to category h of Z∗. PRAM consists of the following: given Zj = l for
subject j in the original microdata file, the score on Z∗ for this record, namely
Z∗
j , is determined by sampling from a discrete probability distribution with masses

pl1, ..., plK at scores 1, . . . ,K. All records in the original data set are protected,
with the procedure being applied independently to each unit. The K ×K matrix
of transition probabilities P = {plh}l,h=1,...,K is referred to as the PRAM matrix.
PRAM can also be applied to p > 1 categorical variables Z1, . . . , Zp, independently
or simultaneously. In the latter case, PRAM can be defined by specifying the
transition matrix for the compounded variable whose K1 ×K2 · · · ×Kp categories
are formed by combination of allK1,K2, . . . ,Kp scores for all variables considered;
in the former case, the PRAM transition matrix P is the Kronecker product
of the transition matrices P1, . . . Pp for the p variables considered: P = Pp ⊗
Pp−1⊗· · ·⊗P1. Clearly the application of independent PRAM is likely to destroy
observed information about the structure of association among variables. Under
the second instance of PRAM, certain dependencies between the variables used
to form the compounded variable can be taken into account. Also, if there are
variables that must be kept as in the original data file, the compounded variable
may include those variables that must remain unchanged. Choice of the entries
of the transition matrix P depends on the extent of protection that is deemed
adequate and on particular data features that are to be maintained in the released
data. Indeed PRAM may be designed to preserve approximately the distribution
of the protected variables (see Gouweleeuw et al., 1998) as it will be discussed
next. Moreover, including variables that must be kept unchanged and specifying
block-diagonal PRAM matrices make it possible to preserve the distribution in
pre-specified subpopulations.

Denote by T (T ∗, respectively) the vector of frequencies of the original (per-
turbed) variable Z (Z∗); let Tl and T

∗
l represent the l-th element of the vectors

T , T ∗ respectively, that is, the frequency on the l-th category of the original and
perturbed variables Z, Z∗. Also, denote by z the vector of scores on Z observed
on all n units of the original microdata file. Since plh = Pr(Z∗ = h|Z = l) =
E(I(Z∗ = h)|Z = l), where I(·) is the indicator function, V (I(Z∗ = h)|Z = l) =
plh(1− plh) = {Vl}h,h, and Cov(I(Z∗ = h), I(Z∗ = j)|Z = l) = −plhplj = {Vl}h,j ,
it is easy to verify that

E(T ∗|z) = P ′T.
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Therefore, if the transition matrix P is invertible,

T̂P = (P−1)′T ∗ (1)

is an unbiased estimator for T (Gouweleeuw et al., 1998).

The conditional variance of the estimator is V (T̂P |z) = (P−1)′V (T ∗|z)P−1,
where V (T ∗|z) =

∑
l TlVl; here Vl is the covariance matrix of the transition process

from original score l (l = 1, . . . ,K), with elements

{Vl}h,j =
{
plh(1− plh) if h = j
−plhplj if h ̸= j

h, j = 1, . . . ,K (2)

as already discussed. Gouweleeuw et al. (1998) propose the following plug-in
estimator:

V̂ (T ∗|z) =
∑
l

T̂Pl Vl (3)

to quantify the uncertainty introduced by the noise process.

The so-called invariant PRAM amounts to choosing the transition matrix P
such that P ′T = T . One simple choice of invariant P is a matrix with entries

phh = 1− ϑ ∗ Tmin/Tk; plh =
1− phh
K − 1

, l, h = 1, . . . ,K, l ̸= h, (4)

where Tmin is the minimum observed frequency among categories of Z and the
initial probability ϑ ∈ (0, 1) of changing each of the original categories is adjusted
to satisfy the invariance requirement

P ′T = T. (5)

A different, two-stage, solution is reported e.g. in Willenborg and de Waal (2001).
The property (5) defines a frequency-invariant transformation of the original vari-
able Z; in this case the perturbed frequency table is itself an unbiased estimator
for the original table. As long as point estimation is concerned, knowledge of the
transition matrix is not needed. Full knowledge of the PRAM matrix is needed in
(3) for variance estimation even under invariant post randomization.

The simplest form of noise addition (Kim, 1986; Fuller, 1993; Brand, 2002)
amounts to adding independent random noise η to the observed variables. Let Σ
denote the variance-covariance matrix of the continuous variables of interest. The
random noise η is given a known distribution (usually, the Normal) with mean
zero and covariance matrix Ση = αΣ, α > 0. The level of noise introduced clearly
depends on the parameter α. Denoting by µ and Σ the mean and covariance of
X, choice of Ση = αΣ implies that the perturbed variable X∗ = X + η has the
same mean as the original variables and covariance matrix V (X∗) = (1 + α)Σ.
Correlations are exactly preserved, and Kim (1986) shows that the covariance
matrix of the original data can be consistently estimated from the masked data
as long as α is known.
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3. Measurement error models

Measurement error is still an open issue in statistical practice. The use of co-
variates which are affected by measurement error has three main effects. First, it
causes bias in parameter estimation for statistical models; second, it leads to a loss
of power for detecting relationship among variables and third it masks the features
of the data, making graphical model analysis difficult (Carroll et al., 2006). Al-
though measurement error models have been mainly developed for the analysis of
experimental data, their role in official statistics is crucial. For example, most of
the unit-level small area models make use of covariates which are often measured
imprecisely either because they arise from poor quality administrative data, or
due to lack of memory, rounding, and other obvious mechanisms related to re-
spondents. Also, measurement error may be artificially induced for confidentiality
reasons, which is the focus of this paper. To prevent identification of respondents
and protect their privacy, prior to data release National Statistical Offices may
perturb survey data according to an appropriate random mechanism (so called
data masking). Work by Fuller (1993) and Little (1993) shows how to account
for some SDC treatments using standard statistical methods for the analysis of
incomplete data when the values of the masking parameters are disclosed.

Several different small area estimators have been proposed to correct for biases
of estimation caused by measurement error. Ybarra and Lohr (2008) have con-
sidered a Fay-Herriot area-level model with the auxiliary information used in the
covariates measured with error. Let Yi be an area-level summary of the response
variable for area i. Along with Yi, auxiliary data wi are available as supplementary
information for the ith area, where wi is a q× 1 vector. The Fay-Herriot model is
defined as

Yi = θi + ϵi, θi = w′
iδ + ui, i = 1, · · · ,m, (6)

where the sampling errors ϵi’s and the model errors ui’s are all independently
distributed. It is assumed that ϵi ∼ N(0, ψi) and ui ∼ N(0, σ2

u), i = 1, · · · ,m.
The sampling variances ψi’s are assumed known. When the model parameters and
the auxiliary variables are known, the best unbiased predictor of θi, that minimizes
the MSE of prediction is given by

θ̃i = γiYi + (1− γi){w′
iδ}, (7)

where γi = σ2
u/(ψi + σ2

u), and the MSE of θ̃i is given by ψiγi. Ybarra and Lohr
(2008) considered the situation in which some of the covariates are measured with
error: let wi be the auxiliary variables measured without error and let Xi be the
p×1 vector of covariates measured with error. The true values Xi of the covariates
are not perfectly observable and they are estimated by a set of estimators X∗

i = X̂i

such that MSE(X∗
i ) = Ci, where Ci are known quantities. They showed that if

the unknown Xi in the best predictor θ̃i is replaced by its estimator X∗
i , which is

subject to error, the resulting naive predictor

θ̃i,N = γiYi + (1− γi){w′
iδ +X∗

i ′β}, (8)

has MSE that is larger than the MSE of the direct estimator Yi.
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Hence Ybarra and Lohr (2008) proposed the following estimator

θ̃i,BP = γBPi Yi + (1− γBPi ){w′
iδ +X∗′

i β}, (9)

where γBPi =
σ2
u+β

′Ciβ
σ2
u+β

′Ciβ+ψi
. They proved that θ̃i,BP has minimum mean squared

error among all linear combinations of Yi and w
′
iδ +X∗′

i β (Theorem 1 in Ybarra
and Lohr, 2008). When the model parameters are unknown, they suggested to
plug in formula (9) the estimates of the parameters obtained with the modified
Prasad-Rao’s method of moments described in Ybarra and Lohr (2008).
In a subsequent paper, Arima et al. (2012a) provided a Bayesian solution for the
measurement error problem for the same small area setup. They reformulated the
frequentist model described above into a multi-stage hierarchical Bayesian model
as follows:

Stage 1. Yi|X∗
i , θi, β, δ, σ

2
u, wi

ind∼ N(θi, ψi), i = 1, . . . ,m;

Stage 2. X∗
i |θi, Xi

ind∼ N(Xi, Ci), i = 1, . . . ,m;

Stage 3. θi|Xi, β, δ, σ
2
u
ind∼ N(X ′

iβ + w′
iδ, σ

2
u), i = 1, . . . ,m;

Stage 4. Prior distribution: π(X1, ..., Xm, β, δ, σ
2
u) ∝ 1.

They showed that the above posterior density is proper under the very mild con-
dition that m > p+ q + 2. They also found that the Bayesian estimator of θ has
smaller empirical mean squared error than the frequentist predictors in Ybarra
and Lohr (2008) and is more stable in terms of variability and bias.

4. The proposed model

Exploiting the analogy between random data perturbation schemes and measure-
ment/misclassification error, we consider measurement error models with covari-
ates perturbed for disclosure limitation. We consider two random data pertur-
bation methods, namely PRAM for categorical variables, and noise addition for
continuous variables. In particular, in order to obtain area-level covariates from
record-level data, we propose to aggregate unit-level categorical variables to the
area level as the number of sampled records in all categories of each variable.
As discussed below, we propose to rephrase the problem of perturbed categorical
variables in terms of perturbed continuous variables, so that the results in Ybarra
and Lohr (2008) and Arima et al. (2012a) can be easily adapted.

Suppose there are m areas labelled 1, . . . ,m, each with n1, . . . , nm individual
observations. We denote by yi the response of the i−th area (i = 1, ...,m). Let
wi be a continuous or discrete area-specific covariate measured without error. Let
X∗
i be the observed continuous area-specific covariate measured with error from

an external source or resulting from perturbation of the unit level data Xij . Let
Z∗
ij , j = 1, . . . , ni be the score of the discrete auxiliary variable observed for record

j within area i, and obtained by post randomization of the original variable Zij .
We assume that the categorical variables Z, Z∗ have K possible categories and
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that PRAM is performed uniformly over all sampled units. Let Ti be vector of
frequencies of the unperturbed categorical variable Z within area i, and let T ∗

i

be the corresponding vector after PRAM of variable Z. If the area sizes are
not too small, the conditional distribution of the vector of frequencies T ∗

i in the
perturbed sample given the original score vector z can be approximated by a
K-variate degenerate normal distribution with mean P ′Ti and covariance matrix
depending on both the PRAM matrix P and the unperturbed sample frequencies
Ti, according to formula (3). As a consequence, having denoted by Ti,l and T ∗

i,l

the l-th element of Ti and T
∗
i , respectively, the covariates (T ∗

i,1, . . . T
∗
i,K−1), given

the original score vector z can be modelled by a multivariate normal distribution
with mean µZi equal to the first K − 1 elements of P ′Ti and covariance matrix

ΣZi =
K−1∑
l=1

Ti,lV
−
i,l ,

where V −
i,l , l = 1, . . . ,K is the K − 1×K − 1 submatrix obtained by dropping the

K-th row and column of Vi,l in (2).
Since we work at the area level, the quality of the approximation will depend

on both the area size and the number of categories. In our problem, when the in-
variant PRAM is selected, the multinomial variate (T ∗

i,1, . . . T
∗
i,K) has mean vector

equal to the observed frequencies Ti; therefore the approximation is good provided
the categories of the post randomized variable have large enough within area fre-
quencies. This is indeed a stringent requirement. In Section 5 we investigate the
robustness to departures from this assumption, finding a certain stability in the
model performances under investigation (see Table 2). If the above assumption is
not met, however, the model can be adapted to include, rather than the normal
approximation, the exact multinomial distribution, whose parameters we estimate
using the information on PRAM.

In light of the previous considerations, we refer to the following model:

Stage 1 Yi|X∗
i , Z

∗
i , θi, β, δ

ind∼ N(θi, ψi);

Stage 2.1 X∗
i |θi, Xi

ind∼ N(Xi, Ci);

Stage 2.2 (T ∗
i,1, . . . , T

∗
i,K−1)|θi, Z

ind∼ N(K−1)(µ
Z
i ,Σ

Z
i );

Stage 3 θi|Xi, Ti,β, δ
ind∼ N(β1Ti,1 + ... + βK−1Ti,K−1 + βKXi + δwi, σ

2
u), i =

1, . . . ,m;

Stage 4 Prior distribution π(X1, ..., Xm, T1, . . . , Tm,β, δ, σ
2
u) ∝ 1.

Stage 1 defines the model’s likelihood. Stage 2.1 and Stage 2.2 define the mea-
surement error model for the continuous and the discrete covariates, respectively.
Since µZi and ΣZi in Stage 2.2 depend on the unknown frequency distribution Ti of
Z in the i−th area, we use the plug-in estimators of formula (1) and (3). Notice
that estimation of µZi is required only under the non invariant PRAM. In Stage 3
the parameter of interest θi is modelled as a function of the covariates. Following
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Arima et al. (2012a), we specify in Stage 4 a uniform improper prior that yields
to a proper posterior density under the mild condition that m > p+ q + 2.

5. Simulation study

In this section, we use simulated data to illustrate the performance of the proposed
approach in estimating model parameters in different PRAM scenarios. We take
m = 60 and generate Zij ∼ Multinomial(1, p = (0.25, 0.40, 0.35)), i = 1, ...,m
and j = 1, ..., ni where ni ranges from 50 to 200. For each area i, we denote
Ti,1, Ti,2, Ti,3 the absolute frequencies of the categories of Z over the ni units. We
also generate wi ∼ N(0, 1). We set

θi ∼ N(10 + 2wi + 2Ti,1 + 3Ti,2, 1)

yi ∼ N(θi, 3)

We consider both invariant and non invariant PRAM, and three different levels
of perturbation (note that the diagonal elements of the PRAM matrices represent
the probability of not changing the score for a single record). For the invariant
PRAM, at each iteration, we generate the perturbed Z∗

ij covariates according to
the following perturbation scenarios:

P1 =

0.900 0.050 0.050
0.031 0.938 0.031
0.034 0.034 0.932

 P2 =

0.800 0.100 0.100
0.062 0.876 0062
0.068 0.068 0.864

 P3 =

0.700 0.150 0.150
0.093 0.814 0.093
0.102 0.102 0.796


The P matrices above are generated by selecting the values (0.1, 0.2, 0.3), respec-
tively, for the initial probability ϑ of changing each of the observed scores prior to
the adjustment (see formula (4)) needed to achieve the invariance property.

For each scenario, we estimate the proposed model, labelled M1, and compare
it to two alternative models, M2 and M3. For sake of completeness, we also
introduce the benchmark model M0 in which we use the area-level frequencies of
the first K − 1 categories of the unperturbed Z as auxiliary variables.
Model M2 is defined as

Stage 1 Yi|X∗
i , θi, β, δ

ind∼ N(θi, ψi);

Stage 2 θi|Xi,β, δ, σ
2
u
ind∼ N(β1T̂

P
i,1 + ... + βK−1T̂

P
i,K−1 + βKXi + δwi, σ

2
u), i =

1, . . . ,m;

Stage 3 Prior distribution π(X1, ..., Xm,β, δ, σ
2
u) ∝ 1,

where T̂Pi = (T̂Pi,1, T̂
P
i,2, . . . T̂

P
i,K) is obtained as T̂Pi = (P

′
)−1T ∗

i .
Model M2 accounts for measurement error in the categorical covariates by consid-
ering the first K − 1 elements of the PRAM estimator T̂Pi instead of the observed
covariates T ∗

i,1, . . . , T
∗
i,K−1. Indeed, the latter are not treated as random variables

as in the proposed model; rather, the PRAM estimates of the unperturbed covari-
ates Ti,1, . . . , Ti,K−1 are plugged into the model equation and used as covariates
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measured without error. Making a parallel with the estimators proposed for the
measurement error in continuous auxiliary variables, the idea behind the formu-
lation of model M2 is akin to the plug-in estimator defined in (8).
ModelM3 ignores the measurement error in the categorical covariates and uses the
frequencies of the perturbed variable Z∗ as auxiliary variables measured without
error, that is

Stage 1 Yi|X∗
i , θi, σ

2
u, β, δ

ind∼ N(θi, ψi);

Stage 2 θi|Xi,β, δ, σ
2
u
ind∼ N(β1T

∗
i,1 + ... + βK−1T

∗
i,K−1 + βKXi + δwi, σ

2
u), i =

1, . . . ,m;

Stage 3 Prior distribution π(X1, ..., Xm,β, δ, σ
2
u) ∝ 1.

We performed a total of 100 iterations. Given the characteristics of the problem
under study, that amounts to a random perturbation model, the results exhibit a
great stability, that enables us to limit the number of simulations. Table 1 shows
the results of the simulation study for the invariant PRAM formulation. For each
model, each row shows the posterior means of the unknown parameters under the
different scenarios. In parentheses, we show the actual coverage percentage (ACP)
of 95% credibility intervals for the model parameters and the root mean squared
errors (RMSE).
All models yield very similar and trustworthy estimates under the PRAM matrix
P1, although with quite different RMSE. When the probability of misclassification
increases, modelM2 performs very poorly. This is in line with the results in Ybarra
and Lohr (2008) who show that using the estimator of the covariate affected by
error as in Equation (8) may induce bias and increase MSEs of model estimates.
On the other hand, M1 and M3 show similar results when P = P2 but when
P = P3, the proposed model outperforms M3 in terms of both ACP and RMSE.

The validity of the normal approximation has been questioned by a referee.
Indeed the within-area frequencies of the categories of Z might be small thus
invalidating the normal approximation. To investigate the effect of the violation
of such an assumption we conducted a simulation study, letting ni range from 5
to 20. The results are reported in Table 2. It seems that the sample size does not
dramatically affect the estimates whose actual coverage probabilities of the 95%
credible intervals are very similar to those obtained previously.

Let us now consider the non invariant PRAM scenario: at each iteration,
we generate the perturbed Z∗

ij covariates according to the following perturbation
matrices:

P̃1 =

0.900 0.070 0.030
0.010 0.900 0.090
0.050 0.050 0.900

 P̃2 =

0.800 0.150 0.050
0.010 0.800 0.190
0.100 0.100 0.800

 P̃3 =

0.700 0.250 0.050
0.100 0.700 0.200
0.150 0.150 0.700


Notice that we chose the same initial probabilities ϑ of staying with the original

score as in the invariant setup. Due to the adjustment required to achieve the
invariance property (5), the effective protection level may differ among the two
types of post-randomization. For ease of comparison, we computed the posterior
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TABLE 1
Invariant PRAM: posterior mean by misclassification probability P for different models.
In parentheses ACP and RMSE, respectively. In the last line, we show the average ACP

and RMSE of the small area means.

P1 P2 P3

M0 δ0 10.008 (1.00; 0.067) 10.007 (1.00; 0.072) 10.001 (1.00; 0.067)
δ1 2.322 (1.00; 0.322) 2.223 (1.00; 0.322) 2.322 (1.00; 0.322)
β1 1.943 (1.00; 0.057) 1.933 (1.00; 0.057) 1.943 (1.00; 0.057)
β2 3.044 (1.00; 1.044) 3.041 (1.00; 1.041) 3.044 (1.00; 1.044)
θ (0.927; 3.492) (0.930; 3.540) (0.932; 3.553)

M1 δ0 10.563 (0.995; 2.014) 11.671 (0.980; 3.269) 11.625 (0.960; 3.704)
δ1 1.964 (0.990; 0.752) 1.766 (0.990; 1.145) 1.515 (0.990; 1.338)
β1 2.103 (1.00; 0.156) 2.147 (0.980; 0.219) 2.210 (0.950; 0.273)
β2 2.935 (0.998; 0.939) 2.885 (0.970; 0.891) 2.845 (0.925; 0.853)
θ (0.930; 3.4922) (0.933; 3.536) (0.932; 3.546)

M2 δ0 11.307 (0.960; 2.571) 14.460 (0.860; 5.786) 17.295 (0.800; 8.691)
δ1 2.228 (0.980; 0.867) 2.116 (0.990; 1.392) 1.877 (0.970; 1.870)
β1 2.053 (0.970; 0.146) 2.037 (0.910; 0.193) 1.985 (0.920; 0.189)
β2 2.954 (0.920; 0.958) 2.902 (0.924; 3.547) 2.869 (0926; 0.880)
θ (0.926; 3.495) (0.931; 3.551) (0.932; 3.566)

M3 δ0 10.208 (0.980; 2.011) 11.386 (0.980; 3.833) 11.425 (0.960; 3.671)
δ1 2.091 (0.990; 0.761) 1.851 (0.990; 1.249) 1.537 (0.960; 1.405)
β1 2.068 (0.960; 0.155) 2.107 (0.930; 0.955) 2.164 (0.900; 0.268)
β2 2.954 (0.930; 0.971) 2.920 (0.890; 0.930) 2.884 (0.880; 0.896)
θ (0.927; 3.492) (0.930; 3.540) (0.932; 3.553)
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probability that a given score in the perturbed file corresponds to the same score
in the original variable Z (see e.g. Shlomo and Skinner, 2010), namely

R(h) = Pr(Z = h|Z∗ = h) =
phhPr(Z = h)∑
l plhPr(Z = l)

and the posterior odds ratios (Gouweleeuw et al., 1998)

PO(h) =
Pr(Z = h|Z∗ = h)

Pr(Z ̸= h|Z∗ = h)
=

phhPr(Z = h)∑
l ̸=h plhPr(Z = l)

of the observed score h, h = 1, . . . ,K under all scenarios. R(h) has been proposed
as a measure of risk, which is reasonable when the diagonal is the leading term in
the misclassification matrix; we consider it here as an indicator of the proximity
between the original and perturbed samples. OR(h) is the ratio between the
expected number of units whose score h is not changed and the expected number of
units whose score is modified into h. For each given score h this quantity measures
the degree of confusion (and protection) induced by PRAM on each category of
the perturbed variable Z∗, with small values indicating higher protection. Both
measures are reported in Table 3 for all the scenarios selected for our simulation
experiment; we see in particular that the non invariant PRAM with matrix P̃3 is
more perturbative than the corresponding invariant matrix P3.

Table 4 shows the ACP and the RMSE of the competing models for each
PRAM scenario under the non invariant setup. For the estimation of model pa-
rameters, the proposed model outperforms the other models in all scenarios in
terms of both ACP and RMSE. The higher the misclassification probability, the
better the relative performance of model M1. We note on passing the particularly
poor performance of model M2 under non invariant matrices P̃2 and P̃3. Overall,
the advantage of introducing the measurement error mechanism in the proposed
model is here more evident, compared to the invariant PRAM scenarios; as ex-
pected, the estimates obtained under the non invariant PRAM are, in general,
more variable than those obtained under the invariant PRAM. With the excep-
tion of the non invariant PRAM with misclassification matrix P̃3, under which the
extent of perturbation is large, estimates obtained under model M1 are close to
those that would have been produced were the original data available, with a good
coverage and generally larger RMSE than under the benchmark M0, as expected.

Considering the prediction of small area means, all models perform similarly
under the non invariant setup.

Considering inference on small area means, all models yield very accurate pre-
dictions: the ACPs are very similar to each other and the perturbation seems
not to largely affect the estimation of the small area means. Compared to the
alternative models, M1 exhibits larger ACPs with smaller RMSEs, especially in
the invariant setup.

The similar performances of all methods in predicting small area means may be
due to the limited amount of perturbation implied by the scenarios considered (see
Table 3). Also, this can be partially ascribed to the fact that the small area means
do not depend on the units but they only depend on the perturbed covariates
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TABLE 2
Invariant PRAM: posterior mean by misclassification probability P for different models
and ni ranging from 5 to 20. In parentheses ACP and RMSE, respectively. In the last

line, we show the average ACP and RMSE of the small area means.

P1 P2 P3

M0 δ0 10.457 (1.00; 0.461) 10.457 (1.00; 0.462) 10.457 (1.00; 0.461)
δ1 2.188 (1.00; 0.189) 2.188 (1.00; 0.189) 2.188 (1.00; 0.189)
β1 2.020 (1.00; 0.021) 2.020 (1.00; 0.022) 2.020 (1.00; 0.022)
β2 2.921 (1.00; 0.921) 2.921 (1.00; 0.921) 2.921 (1.00; 0.921)
θ (0.922; 2.366) (0.934; 2.551) (0.939; 2.641)

M1 δ0 11.255 (0.98; 1.373) 11.766 (0.920; 1.893) 12.310 (0.800; 2.451)
δ1 2.224 (1.00; 0.360) 2.181 (1.00; 0.424) 2.122 (1.00; 0.462)
β1 2.053 (1.00; 0.141) 2.093 (0.977; 0.195) 2.084 (1.00; 0.172)
β2 2.773 (0.86; 0.777) 2.674 (0.679; 0.684) 2.589 (0.560; 0.600)
θ (0.946; 2.332) (0.948; 2.500) (0.951; 2.590)

M2 δ0 11.365 (0.760; 1.527) 12.599 (0.540; 2.768) 14.3711 (0.130; 4.540)
δ1 2.134 (0.970, 0.369) 2.023 (0.970; 0.522) 1.842 (0.960; 0.685)
β1 1.993 (0.920; 0.161) 1.943 (0.910; 0.226) 1.784 (0.880; 0.282)
β2 2.800 (0.640; 0.807) 2.664 (0.370; 0.682) 2.450 (0.140; 0.521)
θ (0.925; 2.407) (0.940; 2.606) (0.947; 2.701)

M3 δ0 10.845 (0.920; 1.049) 11.203 (0.890; 1.457) 11.686 (0.830; 1.942)
δ1 2.187 (0.970; 0.366) 2.168 (0.980; 0.466) 2.128 (0.990; 0.520)
β1 2.048 (0.930; 0.177) 2.108 (0.910; 0.267) 2.115 (0.950; 0.250)
β2 2.842 (0.780; 0.849) 2.765 (0.640; 0.781) 2.687 (0.580; 0.704)
θ (0.946; 2.532) (0.935; 2.551) (0.939; 2.641)

TABLE 3
Posterior probabilities R(h) = Pr(Z = h|Z∗ = h) and posterior odds ratios OR(h) for

each category of the perturbed variable Z∗ under all scenarios.
P : invariant PRAM; P̃ : non invariant PRAM.

R(1) R(2) R(3) OR(1) OR(2) OR(3)

P1 0.90 0.94 0.93 9.27 15.36 13.13

P̃1 0.91 0.91 0.88 10.47 10.29 7.24

P2 0.80 0.88 0.86 4.12 7.18 6.07

P̃2 0.84 0.82 0.76 5.13 4.41 3.16

P3 0.71 0.82 0.79 2.40 4.45 3.73

P̃3 0.65 0.71 0.73 1.89 2.43 2.65
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TABLE 4
Non Invariant PRAM: posterior mean by misclassification probability P for different
models. In parentheses ACP and RMSE, respectively. In the last line, we show the

average ACP and RMSE of the small area means.

P1 P2 P3

M0 δ0 10.008 (1.00; 0.067) 10.008 (1.00; 0.067) 10.008 (1.00; 0.067)
δ1 2.322 (1.00; 0.322) 2.322 (1.00; 0.322) 2.322 (1.00; 0.322)
β1 1.943 (1.00; 0.057) 1.943 (1.00; 0.057) 1.943 (1.00; 0.057)
β2 3.044 (1.00; 1.044) 3.044 (1.00; 1.044) 3.044 (1.00; 1.044)
θ (0.927; 3.492) (0.930; 3.540) (0.932; 3.553)

M1 δ0 11.408 (1.00; 2.978) 12.272 (0.970; 4.129) 11.079 (0.980; 4.031)
δ1 1.641 (0.99; 1.043) 1.142 (0.980; 1.614) 0.742 (0.950; 2.064)
β1 2.170 (0.96; 0.230) 2.314 (0.930; 0.361) 2.348 (0.780; 0.407)
β2 2.924 (1.00; 0.929) 2.871 (0.990; 0.877) 2.678 (0.766; 0.710)
θ (0.927; 3.492) (0.933; 3.536) (0.932; 3.546)

M2 δ0 13.105 (0.940; 4.545) 18.700 (0.750; 10.041) 23.507 (0.590; 14.198)
δ1 1.929 (0.990; 1.138) 1.420 (0.960; 2.156) 0.745 (0.930; 3.185)
β1 2.170 (0.880; 0.253) 2.354 (0.750; 0.423) 2.562 (0.350; 0.617)
β2 2.847 (0.760; 0.855) 2.623 (0.440; 0.639) 2.396 (0.030; 0.430)
θ (0.926; 3.495) (0.931; 3.551) (0.932; 3.566)

M3 δ0 11.081 (0.980; 3.064) 12.148 (0.970; 4.285) 11.397 (0.980; 4.450)
δ1 1.767 (0.990; 1.008) 1.208 (0.940; 1.674) 0.754 (0.930; 2.121)
β1 2.101 (0.940; 0.209) 2.221 (0.40; 0.309) 2.290 (0.790; 0.386)
β2 2.978 (0.960; 0.985) 2.937 (0.990; 0.946) 2.718 (0.760; 0.741)
θ (0.927; 3.492) (0.931; 3.540) (0.932; 3.553)
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averaged over all units. Moreover, the mechanism of ”borrowing strength” from
the related areas improves the estimate of the small area means, thus mitigating
the effect of perturbation.

6. Discussion

In this paper, we have exploited the connections between measurement error and
data perturbation for disclosure limitation in the context of small area estima-
tion. We have primarily focused on the model proposed in Arima et al. (2012a),
where some of the covariates (all continuous) are measured with error. We have
extended the aforementioned model in order to account for categorical covariates
perturbed for disclosure limitation. We have considered random data perturbation
techniques, focusing in particular on PRAM perturbation mechanism. Under this
method the data are perturbed according to a specific probabilistic mechanism and
therefore are subjected to misclassification error; for this reason we can embed post
randomized data in the measurement error model. In order to obtain area-level
covariates from categorical record-level data, we propose to aggregate unit-level
variables to the area level as the number of sampled records in all categories of
each variable. These quantities can be considered as approximately normal vari-
ables. In this way, we rephrase the problem of perturbed categorical variables
in terms of perturbed continuous variables for which the results in Arima et al.
(2012a) can be easily adapted. In case of small area sizes and rare categories, the
normal approximation may fail. Although the simulations indicate a robustness
of the proposed procedure, the model can be easily modified to include the exact
Multinomial distribution in Stage 2.2. In both formulations, we can model the
misclassification process without having to rely on strong assumptions about the
measurement error, whose validity is crucial when dealing with categorical data.

The proposed model has been compared to a model that ignores the presence
of perturbation and a model in which PRAM estimates of the perturbed covariates
are used. We have conducted two simulation studies investigating the effect on
parameter estimates of invariant and non invariant PRAM perturbation mecha-
nism. Under both the invariant and non invariant scenarios, simulations showed
that using the PRAM estimates of the perturbed covariates is worse than ignoring
the perturbation, in terms of accuracy and variability of parameters estimates.
On the other hand, the proposed model provided more accurate and more stable
estimates with respect to both the competing models, while accounting for un-
certainty about the underlying covariates. With respect to non invariant PRAM,
the variability of the estimates are larger than those obtained with the invariant
PRAM.

In this paper, we have focused on area-level models to keep the parallel with
the previous literature mentioned in this paper; for this reason we have aggre-
gated unit-level covariates to the area level. However, unit-level models can also
be fruitfully employed for prediction of small area quantities. In a disclosure
limitation context, they arise more naturally since the perturbation is usually per-
formed at the unit-level; they also allow for interesting investigations of disclosure
risk assessment supported by the estimated regression model. Measurement error
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approach to unit-level small area estimation models has also been explored, for
example, in Ghosh et al. (2006) and Arima et al. (2012b). In these models also,
the measurement error affects only the continuous variables. An investigation of
the effect of PRAM-ed covariates in logistic regression is presented in Woo and
Slavković (2012). We are actually working on extending the unit-level model in
order to consider perturbed categorical variables and to predict the true value of
the perturbed variables for each unit.
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Summary

We exploit the connections between measurement error and data perturbation for dis-
closure limitation in the context of small area estimation. Our starting point is the
model in Ybarra and Lohr (2008), where some of the covariates (all continuous) are mea-
sured with error. Using a fully Bayesian approach, we extend the aforementioned model
including continuous and categorical auxiliary variables, both possibily perturbed by dis-
closure limitation methods, with masking distributions fixed according to the assumed
protection mechanism. In order to investigate the feasibility of the proposed method, we
conduct a simulation study exploring the effect of different post-randomization scenarios
on the small area model.
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