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1. Introduction

The problem of estimating the conditional density of a response, given a set of
predictors, is classical and of primary importance in real data analysis since the
conditional density provides a more comprehensive description of the association
between the response and the predictors than, for instance, does the conditional
expectation or regression function which can only capture partial aspects of it.
The conditional density contains information on how the different features of the
response distribution, like skewness, shape and so on change with the covariates.
Conditional density estimation for predictive purposes have applications across
different fields like economy, actuarial sciences and medicine.

Nonparametric estimation of a collection of conditional densities over a co-
variate space presents two main features: (a) the multivariate curve may have
different regularity levels along different directions, (b) the function may depend
only on a subset of the covariates. The goal is to estimate a multivariate func-
tion of the relevant predictors, while discarding the remaining ones, and obtain
procedures that simultaneously adopt to the unknown dimension of the predictor
and to the possibly anisotropic regularity of the function. Classical references on
nonparametric conditional density estimation taking a frequentist approach are
Efromovich (2007, 2010) and Hall et al. (2004); see also the recent contribution by
Bertin et al. (2015). The problem of conditional density estimation has been stud-
ied taking a Bayesian nonparametric approach only recently and popular methods
are based on generalized stick-breaking process mixture models for which support-
ing results, in terms of frequentist asymptotic properties of posterior distributions,
have been given by Pati et al. (2013) and Norets and Pati (2014). The former ar-
ticle provides sufficient conditions for posterior consistency in conditional density
estimation for a broad class of predictor-dependent mixtures of Gaussian kernels.
The latter presents results on posterior contraction rates for conditional density
estimation over classes of locally (isotropic) Hölder smooth densities using finite
mixtures of Gaussian kernels, with covariate-dependent mixing weights having a
special structure. The entailed density estimation procedure converges at a rate
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that automatically adapts to the unknown dimension of the set of relevant covari-
ates, thus ultimately performing a dimension reduction, and to the regularity level
of the sampling conditional density.

In this note, the focus is on defining procedures for conditional density esti-
mation that attain minimax rates (up to log-factors) of posterior concentration
adopting to both the dimension of the set of relevant covariates and to the regu-
larity level of the function. We consider a procedure based on infinite mixtures of
Gaussian kernels, with the same predictor-dependent mixing weights as in Norets
and Pati (2014), and show that it can have a performance on par with that of
the procedure proposed by the above cited authors in terms of rate adaptation to
the predictor dimension and to the (isotropic) regularity level. Under the same
set of assumptions on the data generating process and the prior law, the perfor-
mance of the conditional density estimation procedure of an empirical Bayesian,
who considers an automatic data-driven selection of the prior hyper-parameters,
matches with that of an “honest” Bayesian. We deal in detail with the isotropic
case; extension of the result to the anisotropic case follows along the same lines.

The organization of the article is as follows. Section 1.1 sets up the notation.
Section 2 presents the main results on adaptive empirical Bayes posterior concen-
tration at minimax-optimal L1-rates (up to log-factors) for locally Hölder smooth
conditional densities, with contextual adaptive dimension reduction in the pres-
ence of irrelevant covariates. Final remarks and comments are gathered in Section
3. The statement of a theorem invoked in the proof of the main result is reported
in the Appendix for easy reference.

1.1. Notation

Let N0 = {0, 1, . . . } be the set of non-negative integers and R+ that of positive
real numbers. For any a, b ∈ R, we denote by a ∧ b their minimum and by a ∨ b
their maximum. We write “.” and “&” for inequalities valid up to a constant
multiple which is universal or inessential for our purposes. For a generic sequence
{an}, we use the notation an = o(1) (n → ∞) to mean that an → 0 as n → ∞.
For sequences {an} and {bn}, by writing an = O(bn) (n → ∞) we mean that
bn ̸= 0 and there exists a constant K > 0 so that |an/bn| < K for every n ∈ N.

For dx ∈ N, let X ⊆ Rdx be the covariate space. For dy ∈ N, let Y ⊆ Rdy be
the response space and, for d := dx+dy, let Z = X ×Y ⊆ Rd be the sample space.

For any k ∈ N, if E ⊂ Rk and x ∈ Rk, the translate of E is the set E + x :=
{z + x : z ∈ E}. If ξ, ϑ ∈ Rk, the Euclidean distance between ξ and ϑ is

∥ξ − ϑ∥ := {
∑k
j=1(ξj − ϑj)

2}1/2.
Let

F :=

{
f : Z → [0, ∞)

∣∣∣∣Borel-measurable and, ∀x ∈ X ,
∫
Y
f(y|x)dy = 1

}
be the space of conditional probability densities with respect to Lebesgue measure
m on Y. The same symbol m will also be used to denote Lebesgue measure on
Z. A centered multivariate normal density with covariance matrix σ2I, for I the
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identity matrix whose dimension is clear from the context, is denoted by ϕσ. The
symbol δz stands for point mass at z.

Let Q be a fixed probability measure on the measurable space (X , B(X )), with
B(X ) the Borel σ-field on X , that possesses Lebesgue density q.

Given any real number p ≥ 1 and Borel-measurable function g : Z → R,
for every x ∈ X , we introduce the notation ∥g∥p,x := (

∫
Y |g(x, y)|pdy)1/p that is

useful to define global distances between conditional densities. For any pair of
(conditional) densities f1, f2 ∈ F , let the q-integrated L1-distance be defined as
∥f2 − f1∥1 :=

∫
X ∥f2 − f1∥1,xq(x)dx and, analogously, the squared q-integrated

Hellinger distance as h2(f2, f1) :=
∫
X ∥f1/22 − f

1/2
1 ∥22,xq(x)dx. For (conditional)

densities f, f0 ∈ F , the q-integrated Kullback-Leibler divergence of f from f0
is defined as KL(f0; f) :=

∫
X×Y f0q log(f0q/fq)dm, m being here the Lebesgue

measure on Z, which coincides with the Kullback-Leibler divergence of fq from
f0q. Analogously, the q-integrated second moment of log(f0q/fq) is defined as
V2(f0; f) :=

∫
X×Y f0q| log(f0q/fq)|

2dm and coincides with the second moment of
log(f0q/fq) with respect to f0q.

The ϵ-covering number of a semi-metric space (M, d), denoted by N(ϵ, M, d),
is the minimal number of d-balls of radius ϵ needed to cover the set M .

2. Main Results

Let Z(n) = (Z1, . . . , Zn) be a random sample of independent and identically dis-
tributed (i.i.d.) observations Zi = (Xi, Yi) ∈ Z, i = 1, . . . , n, from a probability
measure P0 on the measurable space (Z, B(Z)), where B(Z) is the Borel σ-field
on Z, that possesses Lebesgue density f0q that is referred to as the true joint
data generating density, with f0 ∈ F the conditional density of the response Y ,
given the predictor X, and q the marginal density of X, called the design density,
which is fixed and, for theoretical investigation, does not need to be known or
estimated. The problem is to estimate the conditional density f0 when no para-
metric assumption is formulated on it, taking an empirical Bayes approach that
employs an automatic data-driven selection of the prior hyper-parameters. For a
recent overview of empirical Bayes methods, the reader may refer to Petrone et al.
(2014a). Even if the proposed empirical Bayes procedure simultaneously leads to
adaptation with respect to both aspects (a) and (b) illustrated in the Introduc-
tion, the two issues are treated separately for ease of exposition: we first deal with
adaptive estimation over classes of locally Hölder smooth conditional densities
when the dimension of the predictor is correctly specified and then show adaptive
dimension reduction in the case where fewer covariates are relevant. Adaptive
dimension reduction clearly plays a key role in view of the curse of dimensionality.
In Section 2.2, it is shown that, when the response is independent of (some of) the
covariates introduced in the model, the empirical Bayes posterior asymptotically
performs a dimension reduction, thus contracting at a rate that results from the
combination of the dimension of the subset of relevant explanatory variables and
the possibly anisotropic regularity level of the curve as a function of the selected
covariates.
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2.1. Empirical Bayes posterior concentration for conditional density estimation

In this section, we consider empirical Bayes posterior contraction rates for estimat-
ing conditional densities when the dimension of the predictor is correctly specified.

Prior law specification. A prior distribution can be induced on the space F of
conditional densities by a law ΠX on a collection of mixing probability measures
MX = {Px ∈ M(Θ), x ∈ X}, where M(Θ) denotes the space of all probability
measures on some subset Θ ⊆ Y, using a mixture of dy-dimensional Gaussian
kernels to model the conditional density

f(·|x) = (Fx ∗ ϕσ)(·) =
∫
Θ

ϕσ(· − θ)dFx(θ), x ∈ X ,

where, for every x ∈ X , Fx is the cumulative distribution function corresponding
to a probability measure Px which is assumed to be (almost surely) discrete

Px =

∞∑
j=1

pj(x)δθj(x),

with random weights pj(x) ≥ 0, j ∈ N, such that
∑∞
j=1 pj(x) = 1 almost surely,

and random support points {θj(x)} that are i.i.d. replicates drawn from a prob-
ability measure Gx on Θ. Following Pati et al. (2013), we single out two relevant
special cases.

• Predictor-dependent mixtures of Gaussian linear regressions (MGLRx): the
conditional density is modeled as a mixture of Gaussian linear regressions

f(·|x) =
∫
Rdx

ϕσ(· − β′x)dFx(β), x ∈ X ,

where β′x denotes the usual inner product in Rdx and the mixing measure Px
corresponding to Fx is such that Px =

∑∞
j=1 pj(x)δβj

almost surely, with the

vectors of regression coefficients βj
iid∼ G. For a particular structure of the

random weights pj(x)’s, probit stick-breaking mixtures of Gaussian kernels
are obtained. Probit transformation of Gaussian processes for constructing
the stick-breaking weights has been considered in Rodŕıguez and Dunson
(2011), who exhibit applications to real data of the probit stick-breaking
process model.

• Gaussian mixtures of fixed-p dependent processes: if pj(x) ≡ pj for all x ∈ X ,
we obtain mixtures of Gaussian kernels with fixed weights. Versions of fixed-
p dependent Dirichlet process mixtures of Gaussian densities (fixed p-DDP)
have been applied to ANOVA, survival analysis and spatial modeling.

We consider a variant of the prior proposed in Norets and Pati (2014). Let ν be a
probability measure on X and G a probability measure on Y. For (λ, τ) ∈ Y×R+,
with abuse of notation, let Gτ (· − λ) denote the probability measure on Y with
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Lebesgue density τ−1(dG/dm)((·−λ)/τ). Given (µxj , µ
y
j ) ∈ Z, j ∈ N, and σ ∈ R+,

for every x ∈ X , let

pj,σ(x) :=
pjϕσ(x− µxj )∑∞
q=1 pqϕσ(x− µxq )

, j ∈ N. (1)

We propose the following prior specification:

Yi|(Xi = xi), (Fx)x∈X , σ ∼ (Fxi ∗ ϕσ)(·) =
∞∑
j=1

pj,σ(xi)ϕσ(· − µyj ),

∞∑
j=1

pjδ(µx
j , µ

y
j )

∼ DP(c0ν ×Gτ (· − λ)) independent of σ ∼ IG(α, β),

where c0 ∈ R+ is a finite constant and α, β ∈ R+ are the shape and scale pa-
rameters of an inverse-gamma prior distribution, respectively. In this case, Fx
corresponds to the probability measure Px =

∑∞
j=1 pj,σ(x)δµy

j
. For later use, note

that, defined the mapping g : x 7→
∑∞
q=1 pqϕσ(x − µxq ) and modeled the condi-

tional density f as
∑∞
j=1 pj,σ(x)ϕσ(· −µyj ), the density product fg is a mixture of

d-dimensional Gaussian densities

f(y|x)g(x) =
∞∑
j=1

pjϕσ(x− µxj )ϕσ(y − µyj ). (2)

By the stick-breaking representation of a Dirichlet process (DP), the random

weights pj = Vj
∏j−1
h=1(1 − Vh), j ∈ N, with Vj

iid∼ Beta(1, c0), and the loca-

tions µyj
iid∼ Gτ (· − λ). The last assertion is equivalent to µyj = λ + ζj , with

ζj
iid∼ τ−1(dG/dm)(·/τ), j ∈ N. The overall prior can be rewritten as

Yi|(Xi = xi), (Fx)x∈X , σ ∼
∞∑
j=1

pj,σ(xi)ϕσ(· − λ− ζj)

∞∑
j=1

pjδ(µx
j , ζj)

∼ DP(c0ν ×Gτ ) independent of σ ∼ IG(α, β).

(3)

For the vector γ = (β, λ, τ2) of prior hyper-parameters, let Πγ stand for the
product prior law DP(c0ν × Gτ (· − λ)) × IG(α, β). Let Πγ(B|Z(n)) denote the
posterior probability of any Borel set B of (F , d), where d can be either the

q-integrated Hellinger or L1-distance. For any estimator γ̂n = (β̂n, λ̂n, τ̂
2
n) of

γ based on Z(n), the empirical Bayes posterior law Πγ̂n(·|Z(n)) is obtained by
plugging γ̂n into the posterior distribution

Πγ̂n(·|Z(n)) = Πγ(·|Z(n))|γ=γ̂n .

We study empirical Bayes posterior concentration rates relative to d at an ordinary
smooth conditional density f0, namely, we assess the order of magnitude of the
radius Mϵn of a shrinking ball centered at f0 so that

Pn0 Πγ̂n(f ∈ F : d(f, f0) > Mϵn|Z(n)) → 0, (4)
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where Pn0 φ is used to abbreviate expectation
∫
Zn φdP

n
0 under the n-fold product

measure Pn0 . We consider the case where the true conditional density f0, regarded
as a mapping from Z to R+ ∪ {0}, satisfies a Hölder condition in the sense of
the following definition, for which we introduce some more notation. For any
β ∈ R+, let ⟨β⟩ := max{i ∈ N0 : i < β} be the largest non-negative integer
strictly smaller than β. For a d-dimensional multi-index k = (k1, . . . , kd) ∈ Nd0,
define k. = k1 + . . . + kd and let Dk denote the mixed partial derivative operator
∂k./∂zk11 . . . ∂zkdd .

Definition 1. For any β ∈ R+, τ ≥ 0 and function L : Z → R+ ∪ {0}, let
the class Cβ,L,τ (Z) consist of functions f : Z → R that have finite mixed partial
derivatives Dkf of all orders k. ≤ ⟨β⟩ and, for every k ∈ Nd0 such that k. = ⟨β⟩,
the mixed partial derivatives of order k are locally (uniformly) Hölder continuous
with exponent β − ⟨β⟩ in Z with envelope L,

|(Dkf)(z +∆)− (Dkf)(z)| ≤ L(z)eτ∥∆∥2

∥∆∥β−⟨β⟩, ∀ z, ∆ ∈ Z. (5)

This function class has been previously considered by Shen et al. (2013), who
constructively showed that Lebesgue probability density functions in Cβ,L,τ (Rd)
satisfying additional regularity conditions can be approximated by convolutions
with the Gaussian kernel ϕσ with an L1-error of the order σβ . The construction of
the mixing density in the approximation can be viewed as a multivariate extension
of the results in Kruijer et al. (2010, § 3), the main difference being that condition
(5) is weaker than the one employed in Kruijer et al. (2010), where it is assumed
that log f0 ∈ Cβ,L,0(R).

If ϵn is (an upper bound on) the posterior contraction rate and the convergence
in (4) is at least as fast as ϵ2n, then ϵn is (an upper bound on) the rate of con-

vergence relative to d of the estimator f̂n(·|x) =
∫
F f(·|x)Πγ̂n(df |Z

(n)). Since the
convergence rate of an estimator cannot be faster than the minimax rate over the
density function class considered, the posterior contraction rate cannot be faster
than the minimax rate. So, if the posterior distribution achieves the minimax rate,
then also {f̂n(·|x)}x∈X has minimax-optimal convergence rate and is adaptive.

In order to state the main result on empirical Bayes posterior contraction rates
at locally Hölder smooth densities, we report below the assumptions on the “true”
joint data generating density f0q and the prior law Πγ .

2.1.1. Assumptions on the joint data generating density and on the prior law

Assumptions on f0q

(i) X = [0, 1]dx ;

(ii) q is bounded;

(iii) f0 ∈ Cβ,L,τ (Z). For some η ∈ R+,
∫
Z(|L|/f0)

2+η/βf0dm <∞ and∫
Z
(|Dkf0|/f0)(2β+η)/kf0dm <∞ for all k. ≤ ⟨β⟩;

(iv) there exist constants B0, τ ∈ R+ such that, for every x ∈ X ,

f0(y|x) . exp (−B0∥y∥τ ) for large ∥y∥.
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Assumption on Πγ

(v) the base probability measure ν×G of the Dirichlet process possesses Lebesgue
density and there exist constants p, C0 ∈ R+ so that

dG

dm
(y) ∝ exp (−C0∥y∥p) for large ∥y∥.

Assumption (ii) is verified as soon as the design density is continuous on the
closed unit interval, see the comments following the statement of Theorem 2 con-
cerning its role in the proof. Assumption (iii) requires Hölder type regularity of
f0 in addition to integrability conditions, which jointly with assumption (iv), are
used to approximate f01X with a finite d-dimensional Gaussian mixture having a
sufficiently restricted number of support points, see Theorem 3, Proposition 1 and
Theorem 4 of Shen et al. (2013).

We now state the main result.

Theorem 2. Suppose there exists a set Kn ⊂ R+×R×R+ such that Pn0 (γ̂n ∈
Kc
n) = o(1). Under assumptions (i)-(v), the empirical Bayes posterior distribution

corresponding to the prior in (3) contracts at a rate ϵn = n−β/(2β+d)(log n)t for a
suitable constant t > 0.

We give a few comments on Theorem 2 before presenting its proof. The em-
pirical Bayes posterior distribution corresponding to the prior described in (3)
contracts at a rate n−β/(2β+d)(log n)t which differs from the minimax L1-rate at-
tached to the class of locally Hölder densities Cβ,L,τ (Z) for at most a logarithmic
factor. The quality of the estimation improves with increasing regularity level β
and deteriorates with increasing dimension d. Furthermore, the rate automati-
cally adapts to the unknown regularity level β of the “true” conditional density
f0, whatever β ∈ R+, see, e.g., Scricciolo (2015) for an overview of the main
schemes for Bayesian adaptation. This implies existence of empirical Bayes pro-
cedures for conditional density estimation that attain minimax-optimal rates, up
to logarithmic terms, over the full scale of locally Hölder densities and perform
as well as adaptive Bayesian procedures like the one entailed by the hierarchical
prior of finite Dirichlet mixtures of Gaussian densities proposed by Norets and
Pati (2014).

The problem presents two main difficulties:

(a) data-dependence of the prior law due to an automatic data-driven selection of
the prior hyper-parameters;

(b) dependence of f0 on the covariates, which gives account for dependence of the
convergence rate on the dimension d of the sample space Z.

Concerning (a), data-dependence of the prior can be dealt with resorting to the
same key idea as in Petrone et al. (2014b) and Donnet et al. (2014), which is based
on a prior measure change aimed at transferring data-dependence from the prior
law to the likelihood, as long as a parameter transformation can be identified.
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Concerning (b), dependence of f0 on the covariates can be dealt with regarding f0
as a d-multivariate joint density with respect to Lebesgue measure on [0, 1]dx ×Y.
Indeed, f0 is a joint density, but with respect to the measure Q×m on Z, which
prevents immediate use of Gaussian mixtures for its approximation. A device due
to Norets and Pati (2014) based on the inequality

h(f, f0) . ∥(fg)1/2 − (f01[0, 1]dx )
1/2∥2,

which relates the q-integrated Hellinger distance between the conditional densities
f and f0 to the Hellinger distance between the joint densities fg and f01[0, 1]dx ,
where f(y|x)g(x) =

∑∞
j=1 pjϕσ(x− µxj )ϕσ(y− µyj ) by virtue of equality (2), takes

advantage of the special structure of the mixing weights pj,σ(x) in model (1) for
the conditional density f to approximate the joint Lebesgue density f01[0, 1]dx by
mixtures of d-dimensional Gaussian densities. Thus, the problem of approximating
the “true” joint data generating density f0q with fq is translated into the problem
of approximating f01[0, 1]dx with mixtures of d-dimensional Gaussian densities.

Proof. We appeal to Theorem 5 reported in the Appendix which is an adapted
version of Theorem 1 in Donnet et al. (2014).

We first define the parameter transformation for the change of prior law. For
sequences bn ↓ 0, b̄n ↑ ∞, ln ↓ −∞, l̄n ↑ ∞, tn ↓ 0 and t̄n ↑ ∞, consider a set
Kn = [bn, b̄n)× [ln, l̄n)× [t2n, t̄

2
n) ⊆ R+ ×R×R+ such that Pn0 (γ̂n ∈ Kc

n) = o(1).
For a sequence un ↓ 0 to be suitably defined later on, consider a un-covering of
Kn by Euclidean open balls of radius un. To the aim, let vn, wn, zn be positive
infinitesimal sequences to be chosen as later on prescribed. Consider

- a covering of [bn, b̄n) with intervals Br = [br, br+1), where br := bn(1 + zn)
r−1

for r = 1, . . . , ⌈log(b̄n/bn)/ log(1 + zn)⌉,

- a vn-covering of [ln, l̄n) with intervals Lk = [lk, lk+1), where lk := ln+(k−1)vn
for k = 1, . . . , ⌈(l̄n − ln)/vn + 1⌉,

- a covering of [t2n, t̄
2
n] with intervals Ts = [t2s, t

2
s+1), where t

2
s := t2n(1 + wn)

s−1

for s = 1, . . . , ⌈2 log(t̄n/tn)/ log(1 + wn)⌉.

For any b ∈ Br, let πr := b/br. We have 1 ≤ πr < 1 + zn. For any t2 ∈ Ts, let
ρs := (t2/t2s)

1/2. We have 1 ≤ ρs < (1 + wn)
1/2. Fix γ′ = (br, lk, t

2
s). For any

γ = (b, l, t2) ∈ Br × Lk × Ts, the Euclidean distance ∥γ − γ′∥ = [(b− br)
2 + (l −

lk)
2 + (t2 − t2s)

2]1/2 ≤ [(1 + zn)
2z2nb̄

2
n + v2n + (1 + wn)

2w2
nt̄

4
n]

1/2 =: un. In order to
have un = o(1), it suffices that wn = o(t̄−2

n ) and zn = o(b̄−1
n ). The un-covering

number Nn of Kn relative to the Euclidean distance is

Nn = O

(
log(b̄n/bn)

log(1 + zn)
× l̄n − ln

vn
× log(t̄n/tn)

log(1 + wn)

)
,

with vn, wn, zn that need to be chosen so that Nn = o(enϵ
2
n) as postulated by

requirement [A1].
Fix γ′ = (br, lk, t

2
s) ∈ Br × Lk × Ts and consider any γ = (b, l, t2) ∈

Br × Lk × Ts. If σ′ ∼ IG(α, br) then πrσ
′ ∼ IG(α, b). For z′j = (µxj , ζ

′
j), if F

′ =
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∑∞
j=1 pjδz′j ∼ DP(c0ν×Gts) then F =

∑∞
j=1 pjδ(µx

j , l+ρsζ
′
j)

∼ DP(c0ν×Gt(· − l)),
where l denotes a dy-dimensional vector with components all equal to l. Through-
out, we use the same symbol l to denote either the scalar or the vector, the correct
interpretation being clear from the context.

Let θ = (F, σ). For every x ∈ X , let fθ(·|x) =
∑∞
j=1 pj,σ(x)ϕσ(· − µyj ). The

transformation ψγ′,γ(θ) gives rise to the following density

fψγ′,γ(θ)
(·|x) =

∞∑
j=1

pj,πrσ′(x)ϕπrσ′(· − l − ρsζ
′
j).

We now identify a set Bn such that

inf
γ∈Kn

Πγ(Bn) & e−Cnϵ
2
n (6)

for some constant C > 0. Preliminarily, note that, by Lemma 7.1 of Norets
and Pati (2014), in virtue of assumption (ii), the squared q-integrated Hellinger
distance between fθ and f0 can be thus bounded above:

h2(fθ, f0) ≤ 4∥q∥∞ ∥(fθg)1/2 − (f01X )1/2∥22,

where ∥q∥∞ := supx∈X q(x) and the Lebesgue density g is such that fθ(y|x)g(x) =∑∞
j=1 pjϕµj ,σ(x, y), that is, g(x) =

∑∞
q=1 pqϕµx

q ,σ
(x). This allows us to use d-

dimensional Gaussian mixtures
∑∞
j=1 pjϕµj ,σ(x, y) to approximate the density

f0(y|x)1X (x) defined on Z. The set Bn is the same as the one described in
Theorem 3.1 of Norets and Pati (2014). Let σn = (ϵn| log ϵn|−1)1/β and aσn =
a0| log σn|1/τ , with a0 = [(8β + 4η + 16)/(B0δ)]

1/τ for a sufficiently small δ > 0.
Find b1 > max{1, 1/(2β)} so that ϵb1n | log ϵn|5/4 < ϵn. As in the proof of Theorem
3.1 in Norets and Pati (2014), which is an adaptation of that of Theorem 4 in Shen
et al. (2013), the following facts hold. First, there exists a partition U1, . . . , UK
of {z ∈ Z : ∥z∥ ≤ aσn} such that, for j = 1, . . . , N , with 1 ≤ N < K, the
ball Uj is centered at zj = (xj , yj) and has diameter σnϵ

2b1
n , while, for j =

N+1, . . . , K, each set Uj has diameter bounded above by σn. This can be realized
with 1 ≤ N < K = O(σ−d

n | log ϵn|d(1+1/τ)). Further extend this to a partition

U1, . . . , UM of Rd, for M = O(ϵ
−d/β
n | log ϵn|ds), with s = 1+1/β+1/τ , such that

1 ≥ inf(l, t)∈Kn
(c0ν × Gt(· − l))(Uj) & (σnϵ

2b1
n )d for all j = 1, . . . , M , provided

that l̄n = O(aσn), t̄n = O(apσn
) and aσn = O(tn| log ϵn|1/p). Second, by virtue of

assumptions (iii) and (iv), there exists θ∗ = (F ∗, σn), where F
∗ =

∑N
j=1 p

∗
jδµ∗

j
,

with µ∗
j = zj for j = 1, . . . , N , so that fθ∗(y|x)g(x) =

∑N
j=1 p

∗
jϕµ∗

j ,σn(x, y) and

∥(fθ∗g)1/2 − (f01X )1/2∥2 = O(σβn). Third, P0(∥Z∥ > aσn) = O(σ4β+2η+8
n ).

Let M(Rd) denote the class of all probability measures on Rd. Define p∗j = 0
for j = N + 1, . . . , M . Let Bn = Pn × Sn be the set with

Pn =

{
F ∈ M(Rd) :

M∑
j=1

|F (Uj)− p∗j | ≤ 2ϵ2db1n , min
j=1, ...,M

F (Uj) ≥ ϵ4db1n /2

}
and Sn = [σn(1 + σ2β

n )−1/2, σn]. Note that Mϵ2db1n ≤ ϵ
2d(b1−1/2β)
n | log ϵn|ds ≤ 1

and inf(l, t)∈R×R+
min1≤j≤M (c0ν ×Gt(· − l))(Uj)

1/2 & ϵ2db1n (ϵ
b1−1/2β
n | log ϵn|)−d &
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ϵ2db1n . For every θ = (F, σ) ∈ Bn, the q-integrated Hellinger distance h(fθ, f0) =
O(σβn). Proceeding as in Theorem 3.1 of Norets and Pati (2014), we obtain that
max{KL(f0; fθ), V2(f0; fθ)} = O(nϵ2n). We now evaluate the probability of the
set Bn = Pn × Sn. By applying Lemma 10 of Ghosal and van der Vaart (2007),

inf
(l, t)∈Kn

DPc0ν×Gt(·−l)(Pn) & exp (−M | log ϵn|) & exp (−c1ϵ−d/βn | log ϵn|ds+1).

Also, for the probability of the set Sn under the IG(α, b), which is denoted by
Pb(Sn), we have

inf
b∈Kn

Pb(Sn) = inf
b∈Kn

∫ σ−1
n (1+σ2β

n )1/2

σ−1
n

bα

Γ(α)
e−bσσα−1 dσ

& bαn exp (−
√
2b̄n/σn)σ

−α
n [(1 + σ2β

n )α/2 − 1] & exp (−c2b̄n/σn)

for a suitable constant c2 > 0, provided that b̄n = O(loga n), with a > 0, and
b−1
n = O(σ−1

n ). Consequently,

inf
γ∈Kn

DPc0ν×Gt(·−l)(Pn)× Pb(Sn) & exp (−c3ϵ−d/βn | log ϵn|(ds+1)∨a) & exp (−c3nϵ2n),

provided that, for ϵn = n−β/(2β+d)(log n)t, the exponent t ≥ [(ds+1)∨a]/(2+1/β).
To complete verification of condition [A1], we show that, for some constant c4 > 0,

sup
γ′∈Kn

sup
θ∈Bn

Pn0

(
inf

γ: ∥γ−γ′∥≤un

ℓn(ψγ′,γ(θ)) < −c4nϵ2n
)
= o(N−1

n ).

Fix γ′ = (br, lk, t
2
s) ∈ Br×Lk×Ts and consider any γ = (b, l, t2) ∈ Br×Lk×Ts.

For every θ ∈ Bn,

inf
γ: ∥γ−γ′∥≤un

fψγ′,γ(θ)
(y|x) ≥ inf

γ: ∥γ−γ′∥≤un

M∑
j=1

1∥ζ′j∥≤aσn
pj,πrσ′(x)ϕπrσ′(y − l − ρsζ

′
j)

≥ Tn(y)(1 + zn)
−2e−12dxzn/σ

2
n

×
M∑
j=1

1∥ζ′j∥≤aσn
pj,σ′(x)ϕσ′(y − lk − ζ ′j),

where

Tn(y) := exp
(
− 1

(πrσ′)2
[w2
na

2
σn

+ dyv
2
n + (wnaσn + vn)dy

1/2(aσn + ∥y − lk∥)]
)
.

Over the set Yn0 = {(y1, . . . , yn) ∈ (Rdy )n :
∑n
i=1

∑dy
j=1(yij − E0[Yj ])

2 ≤ dynτ
2
n},

where τn = O(logκ n) for κ > 0,

Tn(y) ≥ exp
(
− 4

σ2
n

(1 + d1/2y )mn[aσn + 4max{d1/2y l̄n/2, τn}]
)
,

with mn := max{wnaσn , d
1/2
y vn}. Set cn(x; σ

′) :=
∑M
j=1 1∥ζ′j∥≤aσn

pj,σ′(x), we

have cn(x; σ
′) ≥ e−8d1/2x ϵ2n

∑M
j=1 1∥ζ′j∥≤aσn

pj ≥ e−8d1/2x ϵ2n(1−2ϵ2db1n ) > e−8d1/2x ϵ2nϵ2n.
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Let F ′ be the distribution obtained by re-normalizing
∑M
j=1 1∥ζ′j∥≤aσn

pjδ(µx
j , lk+ζ

′
j)
.

For θ′ = (F ′, σ′), on the event Yn0 , for a suitable constant C ′ > 0,

inf
γ: ∥γ−γ′∥≤un

ℓn(fψγ′,γ(θ)
)

≥
n∑
i=1

log
fθ′(yi|xi)
f0(yi|xi)

− 2n log(1 + zn) +

n∑
i=1

log cn(xi; σ
′)

− 4n

σ2
n

[(1 + d1/2y )mn(aσn + 4max{d1/2y l̄n/2, τn}) + 3dxzn]

≥
n∑
i=1

log
fθ′(yi|xi)
f0(yi|xi)

− C ′nϵ2n,

provided that zn = O(σ2
nϵ

2
n) and mn = O(σ2

nϵ
2
n(max{aσn , l̄n, τn})−1). Also, we

have 1− Pn0 (Yn0 ) = O((nτ4n)
−1) and need that (nτ4n)

−1 = o(N−1
n ).

We show that the requirements of condition [A2] are satisfied. We start by
describing a set Fn of conditional densities such that, for some constant ζ > 0,

logN(ζϵn, Fn, h) = O(nϵ2n). (7)

We consider the same sieve {Fn} as in Theorem 4.1 of Norets and Pati (2014).

For Hn = ⌊nϵ2n/(log n)⌋, pn = e−nHn , σn = ϵ
1/β
n , σ̄n = eTnϵ

2
n for some constant

T > 0, and µ̄n = (log n)τ1 for some τ1 > 0, let

Fn :=

{( ω∑
j=1

pj,σ(x)ϕσ(· − µyj )

)
x∈X

: pj ≥ p
n
, µyj ∈ [−µ̄n, µ̄n]dy , j = 1, . . . , ω,

ω ≤ Hn, σ ∈ [σn, σ̄n]

}
.

For every fixed γ′ ∈ Kn, let Fn(γ′) :=
∪
γ: ∥γ−γ′∥≤un

ψ−1
γ′,γ(Fn), where ψ

−1
γ′,γ(Fn)

denotes the preimage of the set Fn under the transformation ψγ′,γ . We show
that condition (a) is satisfied. Fix any γ′ = (br, lk, t

2
s) ∈ Kn. Proceeding as in

Theorem 4.1 of Norets and Pati (2014),

sup
γ: ∥γ−γ′∥≤un

sup
θ∈Fn(γ′)

sup
x∈X

∥fθ(·|x)− fψγ′,γ(θ)
(·|x)∥1

. 1

σ′(1 ∧ πr)

dy∑
j=1

[|l − lk|+ σ′|1− πr|] +
1

σ2
n

|1− πr|

. vn
σn

+
(1 + zn)znb̄n

σ2
nbn

. ϵn

as long as vn = O(σnϵn) and zn = O(σ2
nbnϵn/b̄n).

Regarding condition (b1), it follows from (6) that supγ∈Kn
Πγ(Fn(γ))/Πγ(Bn) .

eKnϵ
2
n/2 for a suitable constant K > 0 arising from condition (b3).

To check condition (b2), for every γ
′ = (br, lk, t

2
s) ∈ Kn and any θ ∈ Fn(γ′), we

find an upper bound on supγ: ∥γ−γ′∥≤un
fψγ′,γ(θ)

(·|x) by a function (not necessarily
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a density) f̄(·|x). For some constant c0 > 0, let an = c0(log n)
1/τ . For ∥y∥ ≤

an/2, if ∥ζ ′j∥ > an and d
1/2
y l̄n ≤ an/4 then ∥y − lk − ζ ′j∥ > ∥ζ ′j∥/4. Setting

r2n := [1− 16d
1/2
y (vn ∨ wn)]−1, for every ω ≤ Hn,

fψγ′,γ(θ)
(y|x)1∥y∥≤an/2(y)

≤
ω∑
j=1

pj,σ(x)ϕσ(y − lk − ζ ′j)

× exp

(
1

σ2
max{vn, wn}(d1/2y + ∥ζ ′j∥)∥y − lk − ζ ′j∥

)
1∥y∥≤an/2(y)

≤ max{e(3/2+d
1/2
y )2(vn∨wn)(an∨l̄n)an/σ2

, rn}

×
ω∑
j=1

pj,σ(x)[1∥ζ′j∥≤anϕlk+ζ′j ,σ(y) + 1∥ζ′j∥>anϕlk+ζ′j ,rnσ(y)]1∥y∥≤an/2(y)

≤ max{e(3/2+d
1/2
y )2(vn∨wn)(an∨l̄n)an/(πrσ

′)2 , rn}

× e6dxzn/(σ
′)21∥y∥≤an/2(y)

×
ω∑
j=1

pj,σ′(x)[1∥ζ′j∥≤anϕlk+ζ′j ,πrσ′(y) + 1∥ζ′j∥>anϕlk+ζ′j ,rnπrσ′(y)]

=: f̄(y|x),

where in the third inequality we have used the fact that pj,σ(x) ≤ e6dxzn/(σ
′)2pj,σ′(x).

Note that πrσ
′ ∈ [σn, σ̄n] and lk+ζ

′
j ∈ [−µ̄n, µ̄n]dy for j = 1, . . . , ω, with ω ≤ Hn.

Set the positions

c′ := max{e(3/2+d
1/2
y )2(vn∨wn)(an∨l̄n)an/(πrσ

′)2 , rn} × e6dxzn/(σ
′)2

and

c(x) :=
ω∑
j=1

pj,σ′(x)

[
1∥ζ′j∥≤an

∫
∥y∥≤an/2

ϕlk+ζ′j ,πrσ′(y) dy

+ 1∥ζ′j∥>an

∫
∥y∥≤an/2

ϕlk+ζ′j ,rnπrσ′(y) dy

]
,

and observed that c(x) ≤ 1 for all x ∈ X , under the constraints zn = O((nϵn)
−2)

and vn ∨ wn = O(((an ∨ l̄n)annϵ2n)−1), the normalizing constant of
∏n
i=1 f̄(yi|xi)

can be thus bounded above

n∏
i=1

[c′ × c(xi)] <
(
max{e(3/2+d

1/2
y )2(vn∨wn)(an∨l̄n)an/σ2

n , rn} × e6dxzn(1+zn)
2/σ2

n

)n
. exp

(
C3n(vn ∨ wn)(an ∨ l̄n)an(nϵ2n)2 + 48dxnzn(nϵ

2
n)

2
)
. eC

′
3nϵ

2
n

for suitable constants C3, C
′
3 > 0. Let Y1 = {y ∈ Y : ∥y∥ ≤ an/2}. We are allowed

to consider the restriction to (X×Y1)
n since, by virtue of assumption (iv), Pn0 ((X×
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Yc1)n) = (
∫ 1

0

∫
∥y∥>an/2 f0(y|x)q(x) dxdy)

n . e−B0n(an/2)
τ . e−B0nϵ

2
n . Recalling

that, in the present setting, dQθ,γ′/dm = supγ: ∥γ−γ′∥≤un
fψγ′,γ(θ)

(·|x)q(x), in

order to show that condition (b2) is satisfied, we need to prove that

sup
γ′∈Kn

∫
Fc

n(γ
′)

Qnθ,γ′(Zn)
Πγ′(dθ)

Πγ′(Bn)
= o(N−1

n e−C2nϵ
2
n).

By inequality (6), it suffices to show that

sup
γ′∈Kn

∫
Fc

n(γ
′)

Qnθ,γ′(Zn)Πγ′(dθ) = O(e−Enϵ
2
n) (8)

for some constant E > (C2 ∨ c3), where c3 plays the role of C in (6). The integral
in (8) can be thus split up:

sup
γ′∈Kn

∫
Fc

n(γ
′)

Qnθ,γ′(Zn)Πγ′(dθ)

= sup
γ′∈Kn

[ ∫
F∈M(Rd)

(∫
σ′<σn

+

∫
σ′>σ̄n/2

)
Qnθ,γ′((X × Y1)

n)Πγ′(dθ)

+

∫
F∈Fc

n(γ
′)

∫ σ̄n

σn/2

Qnθ,γ′((X × Y1)
n)Πγ′(dθ)

]
=: S1 + S2 + S3.

To deal with the term S1, we partition (0, σn) =
∪∞
j=0[σn2

−(j+1), σn2
−j).

For every j ∈ N0, let un,j = en(σn2
−j), with en = o(1) so that un,j < un. For

every γ′ = (br, lk, t
2
s) ∈ Kn, consider a un,j-covering of {γ : ∥γ − γ′∥ ≤ un}

with centering points γi, for i = 1, . . . , Nj , with Nj ≤ (un/un,j)
3. For a suitable

constant A > 0,

sup
γ′∈Kn

∫
F∈M(Rd)

∫
σ′<σn

Qnθ,γ′((X × Y1)
n)Πγ′(dθ)

= O

( ∞∑
j=0

exp
(
nun,j [(3/2 + d1/2y )2(an ∨ l̄n)an + 6dx]/(σn2

−(j+1))2 + nun,j

)
× max

1≤i≤Nj

Pbi([σn2
−(j+1), σn2

−j)

)
= O

( ∞∑
j=0

exp
(
2nen[(3/2 + d1/2y )2(an ∨ l̄n)an + 6dx]/(σn2

−(j+1)) + nenσn2
−j
)

× exp (−(bn/σn)2
j)2(α−1)j

Nj∑
i=1

(bi/σn)
α−1

)
= O

(
un(bn/σn)

α−1 exp (nenσn + un − log(enσn))

∞∑
j=0

e−(2j{[bn−2nen[(3/2+d
1/2
y )2(an∨l̄n)an+6dx]/σn−1}+j(1−α) log 2)

)
= O(e−Anϵ

2
n)
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provided that en = o((nσn)
−1), bn & (log n)−υ for some υ > 0 and en =

O(n−1(an ∨ l̄n)−1a−1
n ).

Concerning S2, for a suitable constant B > 0

S2 . (max{e4(3/2+d
1/2
y )2(vn∨wn)(an∨l̄n)ane−2Tnϵ2n

, rn})n

× e24dxnzne
−2Tnϵ2n

(1 + zn)
n sup
b∈Kn

Pb((σ̄n/2, ∞)) . e−Bnϵ
2
n

because

sup
b∈Kn

Pb((σ̄n/2, ∞)) = sup
b∈Kn

∫ 4σ̄−2
n

0

bαr
Γ(α)

e−brσσα−1 dσ

≤ (4b̄nσ̄
−2
n )α−1(1− e−4b̄nσ̄

−2
n )

= (4b̄nσ̄
−2
n )α−1

∞∑
k=1

(−1)k+1

k!
(4b̄nσ̄

−2
n )k

. b̄ne
−2Tnϵ2n exp (−2αTnϵ2n + α log b̄n)

provided that zn = O(ϵ2n) and (vn ∨ wn) = O(n−1(an ∨ l̄n)−1a−1
n ϵ2n).

Concerning S3, for any ϵ ∈ (0, 1) and a suitable constant D > 0,∫
F∈Fc

n(γ
′)

∫ σ̄n

σn/2

Qnθ,γ′((X × Y1)
n)Πγ′(dθ)

. (max{e4(3/2+d
1/2
y )2(vn∨wn)(an∨l̄n)an/σ2

n , rn})ne24dxnzn/σ
2
n+nzn

× (1 + zn)
−nσ−n

n exp (−ne−8d1/2y (vn∨wn)cµ̄2
n/[2(1 + zn)

2σ̄2
n]) . e−Dnϵ

2
n ,

provided that zn = O(n−1σ2
nϵ

2
n) and (vn∨wn) = O(n−1(an∨ l̄n)−1a−1

n σ2
nϵ

2
n), with

an < 2d
1/2
y µ̄n.

We now check that condition (b3) is satisfied. We show that there exists a
constant K > 0 such that, for any fixed γ′ = (br, lk, t

2
s) ∈ Kn, for every ϵ > 0 and

all θ ∈ Fn(γ′) such that the q-integrated Hellinger distance h(fθ, f0) > ϵ, there
exists a test ϕn(fθ) satisfying

Pn0 ϕn(fθ) ≤ e−Knϵ
2

and Qnθ,γ′ [1− ϕn(fθ)] ≤ e−Knϵ
2

. (9)

By Corollary 1 of Ghosal and van der Vaart (2007), for every θ ∈ Fn(γ′) such
that h(fθ, f0) > Mϵn, there exists a test ϕn, which is the maximum of all tests
attached to probability measures that are the centers of balls covering {θ ∈ Fn(γ′) :
h(fθ, f0) > Mϵn}, such that

Pn0 ϕn . N(Mϵn/4, Fn(γ′), h)e−n(Mϵn/4)
2

and sup
θ∈Fn(γ′)

Pnθ (1− ϕn) . e−n(Mϵn/4)
2

.

By inequality (7), the requirement on the I type error probability in (9) is sat-
isfied. The second requirement is satisfied provided that, for some constant
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M ′′ > 0, we have h(fψγ′,γ(θ)
, f0) > M ′′ϵn for all γ such that ∥γ − γ′∥ ≤ un.

Since h(fψγ′,γ(θ)
, f0) ≥ 2−1(∥fθ − f0∥1 − ∥fθ − fψγ′,γ(θ)

∥1), it is enough that

supx∈X ∥fθ(·|x) − fψγ′,γ(θ)
(·|x)∥1 ≤ M ′ϵn for some constant M ′ < M so that

M ′′ =M −M ′. This can be seen to hold as for condition (a). Inequality (8) then
follows by combining upper bounds on S1, S2 and S3.

The proof is completed noting that the assertion follows by choosing sequences
vn, wn and zn so that all the constraints arisen in the proof are simultaneously
satisfied.

Remark 3. Theorem 2 takes into account only a data-driven choice of the
scale parameter of an inverse-gamma prior on the bandwidth, but an empirical
Bayes selection of the shape parameter could be considered as well. In order to
identify the mapping for the change of prior measure, it suffices to note that, for

α ∈ N, if αr
iid∼ Gamma(1, 1), r = 1, . . . , α, then β/(σ1 + . . . + σα) ∼ IG(α, β).

2.2. Empirical Bayes dimension reduction in the presence of irrelevant covariates

We now deal with the case where a dx-dimensional explanatory variable is con-
sidered, but not all the covariates are relevant to the response whose conditional
distribution may depend only on fewer of them, say 0 ≤ d0x ≤ dx, which, without
loss of generality, can be thought of as the first d0x of the whole collection employed
in the model specified in (3). Besides rate adaptation, another appealing feature
of the empirical Bayes procedure herein considered is automatic dimension reduc-
tion in the presence of irrelevant covariates, on par with the posterior distribution
corresponding to the prior proposed by Norets and Pati (2014). The posterior
automatically selects the model with the subset of relevant covariates among all
competing models.

Theorem 4. Suppose that the true conditional density f0 depends on the first
d0x ∈ N0 covariates and satisfies assumptions (iii)-(iv) of Section 2.1.1. Under
the same conditions as in Theorem 2, the empirical Bayes posterior distribution
corresponding to the prior in (3) contracts at a rate ϵn = n−β/(2β+d

0)(log n)t, with
d0 := d0x + dy and t > 0 a suitable constant.

The proof follows the same trail as that of Theorem 2, the only difference arising
from the prior concentration rate which turns out to depend on the dimension d0x
of the relevant covariates of f0 because, for all the locations of the approximating
Gaussian mixture, when k > d0x, the components µxjk = 0 so that eventually the

mixture does not depend on the covariates xk for k = d0x + 1, . . . , dx.
As a simple consequence of Theorem 4, we have that, if d0x = 0, then f0(y|x) =

f0(y) and the response is stochastically independent of the predictor.

3. Final Remarks

In this note, we have proposed an empirical Bayes procedure for conditional density
estimation based on infinite mixtures of Gaussian kernels with predictor-dependent
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mixing weights. We have shown that a data-driven selection of the prior hyper-
parameters can lead to inferential answers that are comparable, for large sample
sizes, to those of hierarchical posteriors in automatically adapting to the dimension
of the set of relevant covariates and to the regularity level of the true sampling
conditional density. An empirical Bayes selection of the prior hyper-parameters
may lead to pseudo-posterior distributions with the same performance as fully
Bayes posteriors, provided the estimator β̂n of the scale parameter of an inverse-
gamma prior on the bandwidth takes values in a set [bn, b̄n) such that Pn0 (β̂n ∈
[bn, b̄n)

c) = o(1). The last requirement imposes restrictions on the sequences bn
and b̄n, in particular, on the decay rate at zero of bn, which is expectedly more
important than the rate at which b̄n ↑ ∞. If the prior hyper-parameter has an
impact on posterior contraction rates, then the choice of the plug-in estimator is
crucial and requires special care. This may, for example, rule out the maximum
marginal likelihood estimator for β. When the hyper-parameter does not affect
posterior contraction rates, as it is the case for the mean λ and variance τ2 of the
Dirichlet base measure, there is flexibility in the choice of the estimator: different
choices are indistinguishable in terms of the posterior behavior they induce and
empirical Bayes posterior contraction rates are the same as those of any posterior
corresponding to a prior with fixed hyper-parameters.

The result of Theorem 4 deals with isotropic Hölder densities, but an extension
to anisotropic densities is envisaged. In the anisotropic case, the presented results
provide adaptive rates corresponding to the least smooth direction. Sharper rates
can be obtained using component-specific bandwidths along the lines of Section 5
in Shen et al. (2013) combined with the preceding treatment. Details are omitted.
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Appendix

In this section, an adapted version of Theorem 1 in Donnet et al. (2014) is reported
for easy reference. Some additional notation is preliminarily introduced.

Let (X (n), Bn, (P (n)
θ : θ ∈ Θ)) be a sequence of statistical experiments, where

X (n) and Θ are Polish spaces endowed with their Borel σ-fields Bn and B(Θ),
respectively. Let d(·, ·) denote a (semi-)metric on Θ. Let X(n) ∈ X (n) be the

observation at the nth stage from P
(n)
θ0

, where θ0 denotes the true parameter. Let

µ(n) be a σ-finite measure on (X (n), Bn) dominating all probability measures P
(n)
θ ,

for θ ∈ Θ. For every θ ∈ Θ, let ℓn(θ) denote the log-likelihood ratio log(p
(n)
θ /p

(n)
θ0

).
We consider a family of prior distributions (Πγ , γ ∈ Γ) on (Θ, B(Θ)), with

Γ ⊆ Rk, k ∈ N. Let Πγ(·|X(n)) stand for the posterior distribution corresponding
to Πγ . For any measurable function γ̂n : X (n) → Γ, the empirical Bayes posterior
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law Πγ̂n(·|X(n)) is obtained by plugging γ̂n into the posterior distribution,

Πγ̂n(·|X(n)) = Πγ(·|X(n))|γ=γ̂n .

The statement of the theorem follows.

Theorem 5 (Donnet et al. (2014)). Let θ0 ∈ Θ. For every γ, γ′ ∈ Γ, let
ψγ,γ′ : Θ → Θ be a measurable mapping such that, if θ ∼ Πγ , then ψγ,γ′(θ) ∼ Πγ′ .
Assume that

[A1] there exist sets Kn ⊆ Γ with P
(n)
θ0

(γ̂n ∈ Kc
n) = o(1), positive sequences

un, ϵn ↓ 0, with nϵ2n → ∞, for which Nn := N(un, Kn, ∥ · ∥) = o(enϵ
2
n) and

sets Bn ∈ B(Θ) such that, for some constant C1 > 0,

sup
γ∈Kn

sup
θ∈Bn

P
(n)
θ0

(
inf

γ′: ∥γ′−γ∥≤un

ℓn(ψγ,γ′(θ)) < −C1nϵ
2
n

)
= o(N−1

n );

[A2] for every γ ∈ Kn, there exists a set Θn(γ) ∈ B(Θ) such that

(a) supγ′: ∥γ′−γ∥≤un
supθ∈Θn(γ) d(θ, ψγ,γ′(θ)) ≤ M ′ϵn for some constant M ′ >

0,

(b) for constants ζ, K > 0 and C2 > C1,

(b1) logN(ζϵn, Θn(γ), d) ≤ Knϵ2n/2 and supγ∈Kn

Πγ(Θn(γ))

Πγ(Bn)
≤ eKnϵ

2
n/2,

(b2) defined Q
(n)
θ,γ such that dQ

(n)
θ,γ/dµ

(n) := supγ′: ∥γ′−γ∥≤un
p
(n)
ψγ,γ′ (θ)

,

sup
γ∈Kn

∫
Θ\Θn(γ)

Q
(n)
θ,γ(X

(n))
Πγ(dθ)

Πγ(Bn)
= o(N−1

n e−C2nϵ
2
n),

(b3) for any ϵ > 0, θ ∈ Θn(γ) with d(θ, θ0) > ϵ, there exists a test ϕn(θ) with

P
(n)
θ0

ϕn(θ) ≤ e−Knϵ
2

and Q
(n)
θ,γ [1− ϕn(θ)] ≤ e−Knϵ

2

.

Then, for a sufficiently large constant M > 0,

P
(n)
θ0

Πγ̂n
(
d(θ, θ0) > Mϵn|X(n)

)
→ 0.
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Summary

The problem of nonparametric estimation of the conditional density of a response, given a
vector of explanatory variables, is classical and of prominent importance in many predic-
tion problems since the conditional density provides a more comprehensive description of
the association between the response and the predictor than, for instance, does the regres-
sion function. The problem has applications across different fields like economy, actuarial
sciences and medicine. We investigate empirical Bayes estimation of conditional densi-
ties establishing that an automatic data-driven selection of the prior hyper-parameters in
infinite mixtures of Gaussian kernels, with predictor-dependent mixing weights, can lead
to estimators whose performance is on par with that of frequentist estimators in being
minimax-optimal (up to logarithmic factors) rate adaptive over classes of locally Hölder
smooth conditional densities and in performing an adaptive dimension reduction if the
response is independent of (some of) the explanatory variables which, containing no in-
formation about the response, are irrelevant to the purpose of estimating its conditional
density.

Keywords: Adaptive estimation; Bayesian nonparametrics; Conditional density; Dimen-
sion reduction; Hölder spaces; minimax rates of convergence


