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1. INTRODUCTION

The problem of estimating the conditional density of a response, given a set of
predictors, is classical and of primary importance in real data analysis since the
conditional density provides a more comprehensive description of the association
between the response and the predictors than, for instance, does the conditional
expectation or regression function which can only capture partial aspects of it.
The conditional density contains information on how the different features of the
response distribution, like skewness, shape and so on change with the covariates.
Conditional density estimation for predictive purposes have applications across
different fields like economy, actuarial sciences and medicine.

Nonparametric estimation of a collection of conditional densities over a co-
variate space presents two main features: (a) the multivariate curve may have
different regularity levels along different directions, (b) the function may depend
only on a subset of the covariates. The goal is to estimate a multivariate func-
tion of the relevant predictors, while discarding the remaining ones, and obtain
procedures that simultaneously adopt to the unknown dimension of the predictor
and to the possibly anisotropic regularity of the function. Classical references on
nonparametric conditional density estimation taking a frequentist approach are
Efromovich (2007, 2010) and Hall et al. (2004); see also the recent contribution by
Bertin et al. (2015). The problem of conditional density estimation has been stud-
ied taking a Bayesian nonparametric approach only recently and popular methods
are based on generalized stick-breaking process mixture models for which support-
ing results, in terms of frequentist asymptotic properties of posterior distributions,
have been given by Pati et al. (2013) and Norets and Pati (2014). The former ar-
ticle provides sufficient conditions for posterior consistency in conditional density
estimation for a broad class of predictor-dependent mixtures of Gaussian kernels.
The latter presents results on posterior contraction rates for conditional density
estimation over classes of locally (isotropic) Holder smooth densities using finite
mixtures of Gaussian kernels, with covariate-dependent mixing weights having a
special structure. The entailed density estimation procedure converges at a rate
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that automatically adapts to the unknown dimension of the set of relevant covari-
ates, thus ultimately performing a dimension reduction, and to the regularity level
of the sampling conditional density.

In this note, the focus is on defining procedures for conditional density esti-
mation that attain minimax rates (up to log-factors) of posterior concentration
adopting to both the dimension of the set of relevant covariates and to the regu-
larity level of the function. We consider a procedure based on infinite mixtures of
Gaussian kernels, with the same predictor-dependent mixing weights as in Norets
and Pati (2014), and show that it can have a performance on par with that of
the procedure proposed by the above cited authors in terms of rate adaptation to
the predictor dimension and to the (isotropic) regularity level. Under the same
set of assumptions on the data generating process and the prior law, the perfor-
mance of the conditional density estimation procedure of an empirical Bayesian,
who considers an automatic data-driven selection of the prior hyper-parameters,
matches with that of an “honest” Bayesian. We deal in detail with the isotropic
case; extension of the result to the anisotropic case follows along the same lines.

The organization of the article is as follows. Section 1.1 sets up the notation.
Section 2 presents the main results on adaptive empirical Bayes posterior concen-
tration at minimax-optimal L!-rates (up to log-factors) for locally Holder smooth
conditional densities, with contextual adaptive dimension reduction in the pres-
ence of irrelevant covariates. Final remarks and comments are gathered in Section
3. The statement of a theorem invoked in the proof of the main result is reported
in the Appendix for easy reference.

1.1. Notation

Let Ng = {0, 1, ...} be the set of non-negative integers and R, that of positive
real numbers. For any a, b € R, we denote by a A b their minimum and by a V b
their maximum. We write “<” and “2” for inequalities valid up to a constant
multiple which is universal or inessential for our purposes. For a generic sequence
{an}, we use the notation a, = o(1) (n — co0) to mean that a, — 0 as n — oo.
For sequences {a,} and {b,}, by writing a,, = O(b,) (n — o0) we mean that
b, # 0 and there exists a constant K > 0 so that |a,/b,| < K for every n € N.
For d, e N, let X C R4 be the covariate space. For dy, € N, let Y C R be
the response space and, for d :=d, +dy, let Z =A xY C R be the sample space.
For any k € N, if E C R* and = € R”, the translate of E is the set E + x :=
{z+2: 2 € E}. If £, 9 € RF, the Euclidean distance between ¢ and 9 is

€ = 0] = {325, (& — 0;)2 3/
Let

F = {f : Z = [0, 00) ’Borel-measurable and, Vo € X, / fylz)dy = 1}
Y

be the space of conditional probability densities with respect to Lebesgue measure
m on ). The same symbol m will also be used to denote Lebesgue measure on
Z. A centered multivariate normal density with covariance matrix oI, for I the
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identity matrix whose dimension is clear from the context, is denoted by ¢,. The
symbol §, stands for point mass at z.

Let @ be a fixed probability measure on the measurable space (X, B(X)), with
B(X) the Borel o-field on X, that possesses Lebesgue density g.

Given any real number p > 1 and Borel-measurable function g : 2 — R,
for every x € X, we introduce the notation ||g||p» = (fy lg(x, 3)|Pdy)/P that is
useful to define global distances between conditional densities. For any pair of
(conditional) densities fi, fo € F, let the g-integrated L!-distance be defined as
I f2 = filly == [y If2 = fill12q(z)dz and, analogously, the squared ¢-integrated

Hellinger distance as h?(fz, f1) = [y ||le/2 - f11/2|\§)$q(m)dx. For (conditional)
densities f, fo € F, the g-integrated Kullback-Leibler divergence of f from fy
is defined as KL(fo; f) := fXxy foqlog(foq/fqg)dm, m being here the Lebesgue
measure on Z, which coincides with the Kullback-Leibler divergence of fq from
fog. Analogously, the g-integrated second moment of log(foq/fq) is defined as
Va(fo; [) =[xy fodl log(foq/fq)|*dm and coincides with the second moment of
log(foq/fq) with respect to foq.

The e-covering number of a semi-metric space (M, d), denoted by N (e, M, d),
is the minimal number of d-balls of radius ¢ needed to cover the set M.

2. MAIN RESULTS

Let Z"™) = (Zy, ..., Z,) be a random sample of independent and identically dis-
tributed (i.i.d.) observations Z; = (X;,Y;) € Z,i=1, ..., n, from a probability
measure Py on the measurable space (Z, B(Z)), where B(Z) is the Borel o-field
on Z, that possesses Lebesgue density fpq that is referred to as the true joint
data generating density, with fy € F the conditional density of the response Y,
given the predictor X, and ¢ the marginal density of X, called the design density,
which is fixed and, for theoretical investigation, does not need to be known or
estimated. The problem is to estimate the conditional density fy when no para-
metric assumption is formulated on it, taking an empirical Bayes approach that
employs an automatic data-driven selection of the prior hyper-parameters. For a
recent overview of empirical Bayes methods, the reader may refer to Petrone et al.
(2014a). Even if the proposed empirical Bayes procedure simultaneously leads to
adaptation with respect to both aspects (a) and (b) illustrated in the Introduc-
tion, the two issues are treated separately for ease of exposition: we first deal with
adaptive estimation over classes of locally Holder smooth conditional densities
when the dimension of the predictor is correctly specified and then show adaptive
dimension reduction in the case where fewer covariates are relevant. Adaptive
dimension reduction clearly plays a key role in view of the curse of dimensionality.
In Section 2.2, it is shown that, when the response is independent of (some of) the
covariates introduced in the model, the empirical Bayes posterior asymptotically
performs a dimension reduction, thus contracting at a rate that results from the
combination of the dimension of the subset of relevant explanatory variables and
the possibly anisotropic regularity level of the curve as a function of the selected
covariates.
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2.1.  Empirical Bayes posterior concentration for conditional density estimation

In this section, we consider empirical Bayes posterior contraction rates for estimat-
ing conditional densities when the dimension of the predictor is correctly specified.

Prior law specification. A prior distribution can be induced on the space F of
conditional densities by a law IIy on a collection of mixing probability measures
My = {P, € M(©), x € X}, where M(O) denotes the space of all probability
measures on some subset © C Y, using a mixture of d,-dimensional Gaussian
kernels to model the conditional density

f(~|x):(Fw*qbg)(-):/eqbg(-—e)de(G), reX

where, for every x € X, F, is the cumulative distribution function corresponding
to a probability measure P, which is assumed to be (almost surely) discrete

Pa: = Zp](m)60](z)7
j=1

with random weights p;(z) > 0, j € N, such that >°72, p;(z) = 1 almost surely,
and random support points {#;(z)} that are i.i.d. replicates drawn from a prob-
ability measure G, on O. Following Pati et al. (2013), we single out two relevant
special cases.

o Predictor-dependent miztures of Gaussian linear regressions (MGLR,,): the
conditional density is modeled as a mixture of Gaussian linear regressions

fllx) = ¢o (- — B2)dFy(B), x€X,

R

where 8’z denotes the usual inner product in R% and the mixing measure P,
corresponding to F), is such that P, = Z;’il p;(2)dp, almost surely, with the

vectors of regression coefficients §; X G. For a particular structure of the
random weights p;(x)’s, probit stick-breaking mixtures of Gaussian kernels
are obtained. Probit transformation of Gaussian processes for constructing
the stick-breaking weights has been considered in Rodriguez and Dunson
(2011), who exhibit applications to real data of the probit stick-breaking
process model.

o Gaussian miztures of fived-p dependent processes: if p;(z) = p; forallz € X,
we obtain mixtures of Gaussian kernels with fixed weights. Versions of fixed-
p dependent Dirichlet process mixtures of Gaussian densities (fixed p-DDP)
have been applied to ANOVA, survival analysis and spatial modeling.

We consider a variant of the prior proposed in Norets and Pati (2014). Let v be a
probability measure on X and G a probability measure on ). For (A, 7) € Y xR,
with abuse of notation, let G,(- — \) denote the probability measure on ) with
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Lebesgue density 7~ (dG/dm)((-—\)/7). Given (), pi) € Z,j €N,ando € Ry,
for every z € X, let

Pjdo(r — ﬂf)

p"o-(.'l/') = E3) ) .7 eN. (1)
’ Zq:l PqPo (T — Hﬁ)
We propose the following prior specification:
K'(Xlle)v (Fw)wEXaa ~ ( z; *(ba ij, £ ¢a( _:uj)

j=1
ijé(%q’“?) ~ DP(cov x G(- — A)) independent of o ~ IG(«, ),
j=1

where ¢y € R, is a finite constant and a, § € Ry are the shape and scale pa-

rameters of an inverse-gamma prior distribution, respectively. In this case, F}

corresponds to the probability measure P, = Zj‘;l Pj,o(7)d,v. For later use, note
J

that, defined the mapping g : = — 2211 Pg®o(z — pg) and modeled the condi-

tional density f as Z =1 Pjo(2)ps (- — p1f), the density product fg is a mixture of
d-dimensional Gausblan densities

flylz)g Zpgsbo — 1) e (y — ). (2)

By the stick-breaking representation of a Dirichlet process (DP), the random

weights p; = V;T[2_5(1 — Vi), j € N, with V; % Beta(l, ¢p), and the loca-

tions ;Ly i G-(- — A). The last assertion is equivalent to uj = A+ ¢, with

¢; ™ 771(dG/dm)(-/7), j € N. The overall prior can be rewritten as

Yil(Xi = @), (Fa)rex, 0 ~ ija (=A=¢)

3)

ij5(uf,ﬁj) ~ DP(COV x G,) independent of o ~ IG(a, 5).

j=1

For the vector v = (8, A, 72) of prior hyper-parameters, let IL, stand for the
product prior law DP(cov x G, (- — A)) x IG(a, ). Let IL,(B|Z™) denote the
posterior probability of any Borel set B of (F, d), where d can be either the
g-integrated Hellinger or L'-distance. For any estimator %, = (5n, n, 72) of

~ based on Z(™ the empirical Bayes posterior law L5, (-|Z (")) is obtained by
plugging 4,, into the posterior distribution

’Yn( ‘Z(n)) 'Y(‘Z(n))

|'Y:ﬁ’n .

We study empirical Bayes posterior concentration rates relative to d at an ordinary
smooth conditional density fo, namely, we assess the order of magnitude of the
radius Me, of a shrinking ball centered at fy so that

PyIL, (f € F 2 d(f, fo) > Mey|2™) =0, (4)
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where Pl is used to abbreviate expectation [ zn pd P under the n-fold product
measure P§'. We consider the case where the true conditional density fy, regarded
as a mapping from Z to Ry U {0}, satisfies a Holder condition in the sense of
the following definition, for which we introduce some more notation. For any
B € Ry, let () := max{i € Ny : i < 8} be the largest non-negative integer
strictly smaller than 3. For a d-dimensional multi-index k = (ki, ..., ka) € Ng,
define k. = k1 + ... + k4 and let D* denote the mixed partial derivative operator
A Jokr 9k

DEFINITION 1. For any 8 € Ry, 7 > 0 and function L : Z — R, U {0}, let
the class C*L7(Z) consist of functions f : Z — R that have finite mized partial
derivatives D* f of all orders k. < (B) and, for every k € N& such that k. = (33),
the mized partial derivatives of order k are locally (uniformly) Holder continuous
with exponent B — (B) in Z with envelope L,

(D*F)(z+ A) — (D*F)(2)] < L) 1A A1~ vz Aez  (5)

This function class has been previously considered by Shen et al. (2013), who
constructively showed that Lebesgue probability density functions in 47 (R9)
satisfying additional regularity conditions can be approximated by convolutions
with the Gaussian kernel ¢, with an L'-error of the order o”. The construction of
the mixing density in the approximation can be viewed as a multivariate extension
of the results in Kruijer et al. (2010, § 3), the main difference being that condition
(5) is weaker than the one employed in Kruijer et al. (2010), where it is assumed
that log fo € C5L:O(R).

If €, is (an upper bound on) the posterior contraction rate and the convergence
in (4) is at least as fast as €2, then ¢, is (an upper bound on) the rate of con-
vergence relative to d of the estimator f,, (-|z) = [z fC|2)I05, (df|Z™). Since the
convergence rate of an estimator cannot be faster than the minimax rate over the
density function class considered, the posterior contraction rate cannot be faster
than the minimax rate. So, if the posterior distribution achieves the minimax rate,
then also {fy(-|#)}zex has minimax-optimal convergence rate and is adaptive.

In order to state the main result on empirical Bayes posterior contraction rates
at locally Holder smooth densities, we report below the assumptions on the “true”
joint data generating density foq and the prior law IL,.

2.1.1. Assumptions on the joint data generating density and on the prior law
Assumptions on foq

(i) X =0, 1],

(#i) ¢ is bounded;

iii) fo € CPL7(Z). For some n € R, L|/f0)?>T/5 fodm < oo and
( ) f n +5 Jz

/ (ID* fol/ fo) M/ fodm < 0o for all k. < (B);
z

1) there exist constants By, 7 € Ry such that, for every xz € X,
+

fo(ylz) Sexp (=Bollyl|”)  for large [|y]|.
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Assumption on 11,

(v) the base probability measure vx G of the Dirichlet process possesses Lebesgue
density and there exist constants p, Cy € R so that

dG

S (y) o< exp (~CollyllP) for laxge [yl

Assumption (i7) is verified as soon as the design density is continuous on the
closed unit interval, see the comments following the statement of Theorem 2 con-
cerning its role in the proof. Assumption (ii7) requires Holder type regularity of
fo in addition to integrability conditions, which jointly with assumption (iv), are
used to approximate fyly with a finite d-dimensional Gaussian mixture having a
sufficiently restricted number of support points, see Theorem 3, Proposition 1 and
Theorem 4 of Shen et al. (2013).

We now state the main result.

THEOREM 2. Suppose there exists a set K, C Ry xRx Ry such that P (4, €
K¢) = o(1). Under assumptions (i)-(v), the empirical Bayes posterior distribution
corresponding to the prior in (3) contracts at a rate €, = n~ /BT (logn)t for a
suitable constant t > 0.

We give a few comments on Theorem 2 before presenting its proof. The em-
pirical Bayes posterior distribution corresponding to the prior described in (3)
contracts at a rate n~3/(2#+d) (logn)* which differs from the minimax L'-rate at-
tached to the class of locally Holder densities C#1>7(Z) for at most a logarithmic
factor. The quality of the estimation improves with increasing regularity level 3
and deteriorates with increasing dimension d. Furthermore, the rate automati-
cally adapts to the unknown regularity level 8 of the “true” conditional density
fo, whatever 8 € R, see, e.g., Scricciolo (2015) for an overview of the main
schemes for Bayesian adaptation. This implies existence of empirical Bayes pro-
cedures for conditional density estimation that attain minimax-optimal rates, up
to logarithmic terms, over the full scale of locally Holder densities and perform
as well as adaptive Bayesian procedures like the one entailed by the hierarchical
prior of finite Dirichlet mixtures of Gaussian densities proposed by Norets and
Pati (2014).

The problem presents two main difficulties:

(a) data-dependence of the prior law due to an automatic data-driven selection of
the prior hyper-parameters;

(b) dependence of fj on the covariates, which gives account for dependence of the
convergence rate on the dimension d of the sample space Z.

Concerning (a), data-dependence of the prior can be dealt with resorting to the
same key idea as in Petrone et al. (2014b) and Donnet et al. (2014), which is based
on a prior measure change aimed at transferring data-dependence from the prior
law to the likelihood, as long as a parameter transformation can be identified.
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Concerning (b), dependence of f on the covariates can be dealt with regarding fo
as a d-multivariate joint density with respect to Lebesgue measure on [0, 1]% x ).
Indeed, fj is a joint density, but with respect to the measure @ x m on Z, which
prevents immediate use of Gaussian mixtures for its approximation. A device due
to Norets and Pati (2014) based on the inequality

h(f, fo) S I1(F9)'? = (folo, 1ax)/?]l2,

which relates the g-integrated Hellinger distance between the conditional densities
J and fo to the Hellinger distance between the joint densities fg and foljg, qja.,
where f(y|z)g(z) = Zj’;l Pjdo(x — p1f) o (y — 1) by virtue of equality (2), takes
advantage of the special structure of the mixing weights p; »(«) in model (1) for
the conditional density f to approximate the joint Lebesgue density foljg 1je. by
mixtures of d-dimensional Gaussian densities. Thus, the problem of approximating
the “true” joint data generating density foq with fq is translated into the problem
of approximating foljg, 1je. With mixtures of d-dimensional Gaussian densities.

PrROOF. We appeal to Theorem 5 reported in the Appendix which is an adapted
version of Theorem 1 in Donnet et al. (2014).

We first define the parameter transformation for the change of prior law. For
sequences b, | 0, b, 1 00, L, | —00, I, T o0, t,, | 0 and %, 1 oo, consider a set
K, =1[b,, bn) x [L,,, In) x [t2, #2) C R, x R x Ry such that P} (5, € K2) = o(1).
For a sequence u, J 0 to be suitably defined later on, consider a u,-covering of
K, by Euclidean open balls of radius u,. To the aim, let v,, w,, z, be positive

infinitesimal sequences to be chosen as later on prescribed. Consider

bn) with intervals B, = [b;., by11), where b, := b, (1 4 z,)" "
[og(bn /by,)/ log(1 + 251,

s In) with intervals Ly = [Iy, lr41), where Iy := L, +(k—1)v,
[(In = L) /vn + 11,

- a covering of [t2, #2] with intervals T, = [t

=N’ 'n LR

for s =1, ..., [2log(tn/t,,)/ log(l + wy,)].

For any b € B,, let m, := b/b.. We have 1 < 7, < 1+ z,. For any t? € Ty, let
ps = (2/t)1/2. We have 1 < p, < (14 w,)Y?. Fix v/ = (b, Iy, t?). For any
v = (b, 1, t?) € B, x Ly, x Ty, the Euclidean distance ||y — /|| = [(b — b,.)% + (I —
L)% 4 (82 — 12212 < [(1 4 2,)%2202 + 02 + (1 + wy, ) ?w?t2]Y/? =: u,,. In order to
have u,, = o(1), it suffices that w, = o(f,?) and 2z, = o(b;'). The u,-covering
number N,, of K, relative to the Euclidean distance is

N - 10g(bn/by)  In =Ly 1og(tn/t,) 7
log(1 + zy,) Un log(1 + wn)

- a covering of [b

=N’

forr=1, ...

b
- a v,-covering of [1
fork=1, ...,

t2,1), where 2 := 2(1 + w,, )"~

with v,, wy,, z, that need to be chosen so that N, = o(enfi) as postulated by
requirement [A1].

Fix v/ = (by, I, t?) € B, x Ly x Ty and consider any v = (b, 1, t%) €
B x Ly x Ts. If 0’ ~ 1G(e, b)) then m,.0" ~ 1G(a, b). For 2} = (uF, (j), if F' =
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252120z ~ DP(corv x Gy,) then F' = 3772 pjd(us 11p.¢) ~ DP(cov x Gi(- = 1)),
where [ denotes a d,-dimensional vector Wlth components all equal to [. Through-
out, we use the same symbol [ to denote either the scalar or the vector, the correct
interpretation being clear from the context.

Let 6 = (F, 0). For every x € X, let fo(-|z) = 372, pjo(2)do(- — pf). The
transformation ./ (@) gives rise to the following density

fd) /) 0) ‘LL' ij o’ ¢7rra ( PsC )

We now identify a set B,, such that

inf 11 > e=Onen 6

nf T (B Ze (6)

for some constant C' > 0. Preliminarily, note that, by Lemma 7.1 of Norets

and Pati (2014), in virtue of assumption (i¢), the squared ¢-integrated Hellinger
distance between fp and fy can be thus bounded above:

h2(fo, fo) < Alldlls 1(fo9)? — (folx)'/?|3,

where ||¢||« := sup, ¢y ¢(x) and the Lebesgue density g is such that fo(y|z)g(x) =
Z;‘;lquzﬁwvg(x, y), that is, g(z) = Zgilpqqzﬁuzvg(x). This allows us to use d-
dimensional Gaussian mixtures Z;‘;l Pj®u;,0(x, y) to approximate the density
fo(ylx)1x(z) defined on Z. The set B, is the same as the one described in
Theorem 3.1 of Norets and Pati (2014). Let o, = (e,]logen|™1)Y? and a,, =
aollog o, |M/7, with ag = [(88 + 4n + 16)/(Byd)]'/™ for a sufficiently small § > 0.
Find b; > max{1, 1/(28)} so that €% |loge,|*/* < €,. As in the proof of Theorem
3.1 in Norets and Pati (2014), which is an adaptation of that of Theorem 4 in Shen
et al. (2013), the following facts hold. First, there exists a partition Uy, ..., Uk
of {z € Z: ||z|| € a,} such that, for j = 1,..., N, with 1 < N < K, the
ball U; is centered at z; = (z;, y;) and has diameter o,e2%', while, for j =
N+1, ..., K, each set U; has diameter bounded above by ¢,,. This can be realized
with 1 < N < K = O(0;%loge,|4*+1/7)). Further extend this to a partition
Ui, ..., Uy of R, for M = O(e;d/5| log e, |%), with s = 1+1/8+1/7, such that
1 > inf yer, (cov x Gi(- = 1) (U;) Z (0n€21)? for all j = 1, ..., M, provided
that I, = O(ae,), t, = O(a?, ) and a,, = O(t,|loge,|'/P). Second, by virtue of
N

assumptions (izi) and (iv), there exists 0" = (F*, 0y,), where F* = 7.7, pidyr,
with i = z; for j =1, ..., N, so that fo.(y|z)g(z) = Z;\;l P;us 0, (€, y) and
[(fo-9)*/% = (folx)Y2|2 = O(cf). Third, Po(||Z] > aq,) = O(cpP+21+8).

Let M(R?) denote the class of all probability measures on R%. Define p; =0
forj=N+1,..., M. Let B, =P, xS, be the set with

Pn:{FeM]Rd Z|F )= pil <2 min  F(U;) > dbl/g}

j=1,.., M

and S, = [0,(1 4+ 02%)~1/2 5,]. Note that Me2d < eid(bl_l/zﬂ)ﬂogen\ds <1
and inf(, erxr, mini< < (cor x Gy(- — ) (U;)? 2 231 (e 7> log e, )~ 2
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€241 For every § = (F, o) € B, the g-integrated Hellinger distance h(fq, fo) =
O(c?). Proceeding as in Theorem 3.1 of Norets and Pati (2014), we obtain that
max{KL(fo; fo), V2(fo; fo)} = O(ne2). We now evaluate the probability of the
set B,, = P,, X S,,. By applying Lemma 10 of Ghosal and van der Vaart (2007),

IBE DPey iy (Pa) Z exp (=M log enl) 2 exp (—er; 7 loger[41).

Also, for the probability of the set S, under the IG(«, b), which is denoted by
Py(Sy,), we have

o (a2 pa
inf Pp(S,) = inf / e 70t do

beK, beEKn Jort I'«)

> 0% exp (—V/2by, Jop o “[(1 4 028 a/2 _q > exp (—caby /on
n n n

for a suitable constant c; > 0, provided that b, = O(log®n), with a > 0, and
b,' = 0(0;"). Consequently,

in}? DP yvxG,(-—1)(Pn) X Py(Sn) 2 exp (—cze;, Y8 log e, | B HDVe) > exp (—ezne?),
yeEK,

provided that, for ¢, = n=8/(26+4) (logn)*, the exponent t > [(ds+1)Va]/(2+1/5).

To complete verification of condition [A1], we show that, for some constant ¢4 > 0,

sup sup Py

(i La(yra(0) < —eanel) = o(N, ).
v €K, 0€B, Yl =7 [I<un

Fix v = (b, I, t?) € B, x L, x Ty and consider any v = (b, [, t?) € B, x L x T.
For every 6 € B,

M
inf . o) (ylz) > inf 1 1<an. Pjmro (T)Pror (y — 1 — psC;
o e | < f’l’«, ~( )(y| ) . ||"/—'Y/H§Unj; IgjI<ac, Pi,mro ( ) o ( s g)

> Tn(y)(l + Zn)f2efl2dwzn/o—i
M
X Y 1yci<a,, Pio (@) b0 (y — I = (),
j=1

where

swa2, + dyvd + (Wats, +va)dy"/*(as, + Iy = Ll)])-

T,.(y) := exp ( — W

Over the set V' = {(y1, -, yn) € (R%)™: S0 5302 (i — Bo[Y3])? < dynr?},
where 7, = O(log" n) for k > 0,

4 —
Ta(y) = exp (= — (1+ dy/)malas, +4max{d}/*l, /2. m}]).
n

. 1/2 M
with m,, := max{wpa,,, dy/ Un}. Set ep(z; 0’) = ijl 1\|C§|\Sagnpj,<7’($)7 we

_eql/2 2 M _eql/2 2 _eql/2 2
have ¢,(z; 0') = e T 1 0co,, py = e S (1m2e M) > oS e,
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Let F’ be the distribution obtained by re-normalizing Z]A/il Lyt l1<an, P3Oz, L)) -
For ' = (F’, ¢’), on the event ), for a suitable constant C’ > 0,

inf gn(fwwl,.y(e))

v v =7 lI<un
f9 y1|xz - /
> log —2nlog(1l + z,) + log cp (x5 0
Z B ey (14 2n) ; (25 o)
4n

— (1 + d1/2)mn(ao.n + 4max{d1/2ln/2 Tn}) + 3dy2n)

Tl

& for (yilzs) .
> log ——— — C'ne;,,
- Z ® Foluil:)

provided that z, = O(c2¢2) and m,, = O(c2e?(max{a,,, ln, 7,})""). Also, we
have 1 — P(Yy) = ((nrﬁ) 1) and need that ( h=t =0o(N;1).

We show that the requirements of condition [A2] are satisfied. We start by
describing a set F,, of conditional densities such that, for some constant ¢ > 0,

log N((en, Fr, h) = O(ned). (7)
We consider the same sieve {]—"n} as in Theorem 4.1 of Norets and Pati (2014).
For H, = |ne2/(logn)|, p =e " o = et/?, 5, = T for some constant

T >0, and fi, = (logn)™ for some 7 > 0, let
_{<ij, —,Uj)> ngQna Mge[_ljf’nn ﬂn]dy7.j:17"'aw7
TeEX

w< Hy, o€ lg,, on]}.

For every fixed 7/ € K, let Fo(y) = Uvr lv='lI<un 1/@}7(]?—”)7 where w’?’%’v(}—")
denotes the preimage of the set F,, under the transformation v, . We show
that condition (a) is satisfied. Fix any 7/ = (b,, Iy, t2) € K,. Proceeding as in

Theorem 4.1 of Norets and Pati (2014),

sup sup sup |[fo(|z) = fy,_0)(lz)]1
Vi llv =7 | Sun 0€Fn (v') z€EX
1 & 1
< ST-1 1—m |+ —1—m,
< (1/\7”]21“ K|+ 0’ 7T|]+g%| 7|
o, o2b

n —n=n

as long as v,, = O(g,,€,) and z, = O(a2b,,€,/bn).
Regarding condition (by ), it follows from (6) that sup. ¢ s, 1L, (Fn (7)) /1L, (Br) <

eKn€/2 for a suitable constant K > 0 arising from condition (bs).
To check condition (by), for every ' = (b, lx, t?) € K, and any 0 € F,,(7'), we
find an upper bound on sup.,. |y—/|j<u, f%, L(0) (-|z) by a function (not necessarily
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a density) f(:|z). For some constant ¢y > 0, let a,, = co(logn)'/7. For [ly|| <
an/2, it |G > an and dy°l, < an/4 then |y — &, — Il > [ICH)|/4. Setting
r2=[1- 16d11/2(vn V wy,)] 7L, for every w < H,,

n

Fo 5@ W2 y)<a, /2(Y)
S ij,a(x)¢o(y - lk - CJ/)
j=1

1
e g max{on. 0,12+ 1GDI = = G ipia, 200

1/242 7 2
< max{e(3/2+dy/ )2 (v Vwn)(anVip)an /o 77'n}

X Zpaa Licii<anPurcto W) + Ljcti>an Prtct rno W Lyli<a, 2(%)

S max{e(3/2+dzl/2) (Un\/wn)(an,VZn)awL/(Trro',)z7 T’I’L}

2 0‘/ 2
x €04/ o o (Y)

X Zpa o (@) )¢s1<an Prtcmro (U) + LcH1>an Pl ¢ iramror (Y)]

(ylw),

where in the third inequality we have used the fact that p; , () < eGdzZ"/(U/fpj,a/ (z).
Note that 0" € [g,,, 0] and Iy +(} € [~fin, fin]% forj =1, ..., w, withw < H,.
Set the positions

= maX{€(3/2+d?1//2)2(vnvw")(a"Vi")a"/(ﬂrgl)Q, Tn} % EGdIZn/(U,)Q

and

me { I lI<an / Plitcymeor () dy
lyll<an/2

+1¢)>an / P+t rameo (Y) dy],
lyll<an/2

and observed that ¢(z) < 1 for all z € X, under the constraints z, = O((ne,)?)
and v, V w, = O(((an V ly)a,ne?)™t), the normalizing constant of [, f(y;|z;)
can be thus bounded above

n
[l x () < (max{e(3/2+dé/2) (wnVwn)(@anVin)an/a p 4 edezn(Hzn)?/zi)"

=1

S exp (Can(v, V wy)(an V 1) an(ne2)? + 48d,nz, (ne2)?) Se Cyne,

for suitable constants C3, C4 > 0. Let Yy = {y € Y : |ly|| < an/2}. We are allowed
to consider the restriction to (X' xY;)™ since, by virtue of assumption (iv), Py ((X x
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c\n 1 n —Bon(a T —Bgné? :
yor) = (fo f”y”>an/2 folylz)g(x) dady)™ < e Bon(an/2) <e Bone,, Recalling
that, in the present setting, dQg . /dm = sup,, =" | <un f%,ﬁ(e)(-m)q(x), in
order to show that condition (by) is satisfied, we need to prove that

1 /(d9) —1_—Cane?
sup / Qf (2" ==~ = o(N, te "),
v EKn JFS () o 1L, (By)

n

By inequality (6), it suffices to show that

sup / Qi (2L, (d0) = O(eEneh) (8)
v eKn JFe(y)

for some constant E > (C3 V c3), where c3 plays the role of C in (6). The integral
in (8) can be thus split up:

sup / Qp (2L, (d0)
Fi(¥)

Y eEK,
= sup [ / ( / + / )Q?,y((/”fxyl)")ﬂw(dﬂ)
v EKnR FeM(R9) o'<o, o'>5,/2

+ / Qi (X x Vi)™ (d0)
FeFe(v')

a,/2

n

=: 51+ 55+ 55.

To deal with the term Sj, we partition (0, g,,) = LJ;';O[QTLQ*(J‘JFI)7 ,277).

For every j € Ny, let u, ; = e,(c,277), with e, = o(1) so that u, ; < u,. For
every v = (b, l, t2) € K, consider a u, j-covering of {v : [|[v — | < u,}
with centering points v;, for i = 1, ..., N;, with N; < (u,/uy ;)®. For a suitable
constant A > 0,

swp [ [ @< 2 ()
veEKy, JFEMRY) Jo' <o,

= O(Zexp (nunj[(3/2 + d;/2)2(an V i)y + 6d,]/ (0,27 02 4 nun,j)

Jj=0

—(+1) =7
x max P(le,2 ) 052 ))

=0 ( Z exp (2nen[(3/2 + d;/Q)Q(an Vin)an +6d,]/(c,27 0y 4 nengn2*j)
§=0

N;
e (= (b /2,22 Y (b /,)

~0 (u (b /3:)" " exD (nengy + ttn — log(enc,)

Z o~ (2 {[b, —2nen[(3/2+d,/?)* (anVin)an+6ds]/c, ~1}+j(1-a)log 2)>
j=0
_ O(e—AnefL)
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provided that e, = o((ng,)™!), b, 2 (logn)™¥ for some v > 0 and e, =
O(n~Y(a, Vi) ta,t).

n
Concerning S5, for a suitable constant B > 0

1/242 7 —2Tne2
S5 5 (max{e4(3/2+dy ) (vnVwy)(anViy)ane n 7 ,rn})n

- 71,62
x 2enane TR )" sup Py((60/2, 00)) S e
beK,

because

4652
n ba
sup Py((d,/2, 00)) = sup / T e brogeldg
0

beK, beK, ['(«)
< (45715_;2)&71(1 o 6745"&;2)
_ e -1 E+1
= (4b,0, 7)1y = k)' (4b,5,2)"
k=1 :

< bye2Tnen exp (—2aTne’ + alogb,)

provided that z, = O(¢2) and (v, V w,) = O(n " (a, V1,) ta, te2).
Concerning Ss, for any € € (0, 1) and a suitable constant D > 0,

/ Qi (X % 2)™)ILy (d6)
FeFs(y') Ja,/2

1/242 7 2 2
< (max{e4(3/2+dy ) (vn\/wn)(an\/ln)an/zn7 rn})ne24dmnzn/gn+nzn

—Dneé?
<e "

~

X (14 20) "oy ™ exp (—ne™ 362 Vo) g2 j19(1 4 2,)252])

provided that z, = O(n"'g2¢2) and (v, Vw,) = O(n"Y(a, Vi) ta,;c?e?), with
1/2 -
Gn < 2dy “fip,.
We now check that condition (bs) is satisfied. We show that there exists a
constant K > 0 such that, for any fixed 7' = (b,, Iy, t2) € K, for every ¢ > 0 and
all 6 € F,(7') such that the g-integrated Hellinger distance h(fy, fo) > €, there

exists a test ¢, (fp) satisfying

Fygn(fo) < e ™ and  Qf [l—dulfo)l Se K (9)

By Corollary 1 of Ghosal and van der Vaart (2007), for every 6 € F, (') such
that h(fe, fo) > Me,, there exists a test ¢,,, which is the maximum of all tests
attached to probability measures that are the centers of balls covering {6 € F,,(7') :
h(fo, fo) > Mey}, such that

Pgl¢n 5 N(Men/4, ]:n(')//), h)e_n(M€"/4)2

and sup Pj(l—¢,) < e n(Men/9)?
96}—”(’\/’)

By inequality (7), the requirement on the I type error probability in (9) is sat-
isfied. The second requirement is satisfied provided that, for some constant
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M" > 0, we have h(fww,ﬁ(g), fo) > M"e, for all v such that ||y — /|| < up.

Since h(fy_, (0)s fo) = 271 fo — foll = Ilfo — fy @), it is enough that
supgex [[fo(-l2) = fu, @) (|2)l1 < M'e, for some constant M’ < M so that
M" = M — M’. This can be seen to hold as for condition (a). Inequality (8) then
follows by combining upper bounds on Sy, So and Sj.

The proof is completed noting that the assertion follows by choosing sequences
Upn, Wy and z, so that all the constraints arisen in the proof are simultaneously
satisfied.

REMARK 3. Theorem 2 takes into account only a data-driven choice of the
scale parameter of an inverse-gamma prior on the bandwidth, but an empirical
Bayes selection of the shape parameter could be considered as well. In order to
identify the mapping for the change of prior measure, it suffices to note that, for

aeN, if a, iir\(}C‘ramma(L 1, r=1,...,«a, then /(o1 + ... +04) ~1G(a, ).

2.2.  Empirical Bayes dimension reduction in the presence of irrelevant covariates

We now deal with the case where a d,-dimensional explanatory variable is con-
sidered, but not all the covariates are relevant to the response whose conditional
distribution may depend only on fewer of them, say 0 < d° < d,, which, without
loss of generality, can be thought of as the first d2 of the whole collection employed
in the model specified in (3). Besides rate adaptation, another appealing feature
of the empirical Bayes procedure herein considered is automatic dimension reduc-
tion in the presence of irrelevant covariates, on par with the posterior distribution
corresponding to the prior proposed by Norets and Pati (2014). The posterior
automatically selects the model with the subset of relevant covariates among all
competing models.

THEOREM 4. Suppose that the true conditional density fo depends on the first
d% € Ny covariates and satisfies assumptions (iii)-(iv) of Section 2.1.1. Under
the same conditions as in Theorem 2, the empirical Bayes posterior distribution
corresponding to the prior in (3) contracts at a rate e, = n~P/28+d") (logn)t, with
d?:=d) +d, and t > 0 a suitable constant.

The proof follows the same trail as that of Theorem 2, the only difference arising
from the prior concentration rate which turns out to depend on the dimension d9)
of the relevant covariates of fy because, for all the locations of the approximating
Gaussian mixture, when k > d°, the components Kjx = 0 so that eventually the
mixture does not depend on the covariates zy for k =d2 + 1, ..., d,.

As a simple consequence of Theorem 4, we have that, if d° = 0, then fo(y|z) =
fo(y) and the response is stochastically independent of the predictor.

3. FINAL REMARKS

In this note, we have proposed an empirical Bayes procedure for conditional density
estimation based on infinite mixtures of Gaussian kernels with predictor-dependent
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mixing weights. We have shown that a data-driven selection of the prior hyper-
parameters can lead to inferential answers that are comparable, for large sample
sizes, to those of hierarchical posteriors in automatically adapting to the dimension
of the set of relevant covariates and to the regularity level of the true sampling
conditional density. An empirical Bayes selection of the prior hyper-parameters
may lead to pseudo-posterior distributions with the same performance as fully
Bayes posteriors, provided the estimator Bn of the scale parameter of an inverse-
gamma prior on the bandwidth takes values in a set [b,, b,) such that PJ'(3, €
[b,,5 bn)¢) = o(1). The last requirement imposes restrictions on the sequences b,
and b, in particular, on the decay rate at zero of b,,, which is expectedly more
important than the rate at which b, 1 co. If the prior hyper-parameter has an
impact on posterior contraction rates, then the choice of the plug-in estimator is
crucial and requires special care. This may, for example, rule out the maximum
marginal likelihood estimator for 5. When the hyper-parameter does not affect
posterior contraction rates, as it is the case for the mean \ and variance 72 of the
Dirichlet base measure, there is flexibility in the choice of the estimator: different
choices are indistinguishable in terms of the posterior behavior they induce and
empirical Bayes posterior contraction rates are the same as those of any posterior
corresponding to a prior with fixed hyper-parameters.

The result of Theorem 4 deals with isotropic Holder densities, but an extension
to anisotropic densities is envisaged. In the anisotropic case, the presented results
provide adaptive rates corresponding to the least smooth direction. Sharper rates
can be obtained using component-specific bandwidths along the lines of Section 5
in Shen et al. (2013) combined with the preceding treatment. Details are omitted.
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APPENDIX

In this section, an adapted version of Theorem 1 in Donnet et al. (2014) is reported
for easy reference. Some additional notation is preliminarily introduced.

Let (X, B, (Pg(”) : 8 € ©)) be a sequence of statistical experiments, where
X and © are Polish spaces endowed with their Borel o-fields B, and B(©),

respectively. Let d(-, -) denote a (semi-)metric on ©. Let X € X be the

)

observation at the nth stage from P(,(: , where 6y denotes the true parameter. Let

1™ be a o-finite measure on (X B,,) dominating all probability measures Pe(n)7
for § € ©. For every 0 € O, let £,,(0) denote the log-likelihood ratio log(pén)/péz)).

We consider a family of prior distributions (IL,,y € T') on (©, B(©)), with
I CR* ke N. Let I, (| X (")) stand for the posterior distribution corresponding
to IL,. For any measurable function 4, : X (") T, the empirical Bayes posterior
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law II, (-] X (")) is obtained by plugging 4, into the posterior distribution,
H%('|X(n)) = HW("X(n))‘W:‘Ym

The statement of the theorem follows.

THEOREM 5 (DONNET et al. (2014)). Let 6y € ©. For every v, v € T, let
hy 1 © = O be a measurable mapping such that, if 6 ~ IL,, then i 1 (0) ~ I1,.
Assume that

[A1] there exist sets K, C T with P‘g(:)(’?n € K&) = o(l), positive sequences
Up, €n | 0, with ne2 — oo, for which N, := N(up, K, || -]|) = a(enei) and
sets By, € B(©) such that, for some constant C1 > 0,

sup sup Pe(:)( inf Cn(hy A (9)) < —Clnei) =o(N,Y);
~eK, 0B, VY =y Lun
[A2] for every v € K, there exists a set ©,(y) € B(O) such that

(@) SUPy/. g/ <u, SUPsco, (1) A(Os Vryy/ () < M'ey for some constant M’ >

’

(b) for constants ¢, K > 0 and Cy > Cy,

1I 2
(b1) log N (e, On(v), d) < Kne2/2 and Sup, ek, M < eKnen/2

n
IL(Bn) —
(ba) defined Qgﬁ){ such that dQérfv)/dM(”) 1= SUDA/, 7 [ <un pf;:)ﬂ/(a)’

(n) (n) H’Y(de) _ —1_—Cone?
sup [ @) — o te €,
vek, Joven(y) 7 1L, (B)

(bs) for any e >0, 0 € O, () with d(0, Oy) > €, there exists a test ¢, (0) with

Py ¢, (0) < e Kne nd QYL — pu(0)] < e~ K7

Then, for a sufficiently large constant M > 0,

Pe(:)nw (d(8, 6p) > M€n|X(n)) 0.
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SUMMARY

The problem of nonparametric estimation of the conditional density of a response, given a
vector of explanatory variables, is classical and of prominent importance in many predic-
tion problems since the conditional density provides a more comprehensive description of
the association between the response and the predictor than, for instance, does the regres-
sion function. The problem has applications across different fields like economy, actuarial
sciences and medicine. We investigate empirical Bayes estimation of conditional densi-
ties establishing that an automatic data-driven selection of the prior hyper-parameters in
infinite mixtures of Gaussian kernels, with predictor-dependent mixing weights, can lead
to estimators whose performance is on par with that of frequentist estimators in being
minimax-optimal (up to logarithmic factors) rate adaptive over classes of locally Hélder
smooth conditional densities and in performing an adaptive dimension reduction if the
response is independent of (some of) the explanatory variables which, containing no in-
formation about the response, are irrelevant to the purpose of estimating its conditional
density.

Keywords: Adaptive estimation; Bayesian nonparametrics; Conditional density; Dimen-
sion reduction; Holder spaces; minimax rates of convergence



