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1. Introduction

From a methodological statistical perspective, the operation of merging two (or
more) data sets can be important for two different and complementary reasons:

(i) per sé, i.e. to obtain a larger reference data set or frame, suitable to perform
more accurate statistical analyses;

(ii) to calibrate statistical models via the additional information which could not
be extracted from either one of the two single data sets.

If the merging step can be accomplished without errors (maybe because a clear
identification key is available and it can be used to match units in different
datasets), there are no specific consequences on the statistical procedures under-
taken in both the situations. In practice, however, identification keys are rarely
available and linkage between statistical records is usually performed under uncer-
tainty. This issue has caused a very active line of research among the statistical
and the machine learning communities, named “record linkage”, where the possi-
bility to make wrong matching decisions must be accounted for, especially when
the result of the linking operation, namely the merged data set, must be used for
further statistical analyses.

To briefly explain what record linkage is, let us suppose we have two data sets,
say F1 and F2, whose records respectively relate to statistical units (e.g. individ-
uals, firms, etc.) of partially overlapping samples (or populations), say S1 and S2.
Records in each data set consist of several fields, or variables, either quantitative
or categorical, which may be observed together with a potential amount of noise.
For example, in a file of individuals, fields could be surname, age, sex, and so on.
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The goal of a record linkage procedure is to detect all the pairs of units (j, j′),
with j ∈ S1 and j′ ∈ S2, such that j and j′ actually refer to the same unit, and this
is performed by the use of the information provided by the observed records in the
two datasets. If the main goal of the record linkage process is the former outlined
above (case (i)), a new data set is created by merging together three different
subsets of units: those which are present in both data sets, those belonging to
S1 only and those belonging to S2 only. Of course, information regarding the
first group of individuals will be richer. Appropriate statistical data analyses
may be then performed on the enlarged data set. Since the linkage step is done
with uncertainty, the efficiency of the statistical analysis may be jeopardized by
i) the presence of duplicate units and ii) a loss of power, mainly due to erroneous
matching in the merging process.

On the other hand, the latter situation (case (ii)), which is more important
for the scope of this paper, is even more challenging, both from a practical and
from a methodological perspectives. Let us denote the observed variables in F1

by (Y, V1, V2, . . . , Vh) whereas the observed variables in F2 are (X,V1, V2, . . . , Vh).
One might be interested in performing a linear regression analysis (or any other
more complex association model) between Y and X, restricted to those pairs of
records which are declared matches after a record linkage analysis based on vari-
ables (V1, . . . , Vh). The intrinsic difficulties in such a simple problem are well
documented in Neter et al. (1965) and deeply discussed in Scheuren and Winkler
(1993), Scheuren and Winkler (1997) and Lahiri and Larsen (2005). In the re-
gression example, it might be easily seen that the presence of false matches (that
is, matching record pairs which do not actually refer to the same statistical unit)
reduces the observed level of association between Y and X and, as a consequence,
they introduces a bias effect towards zero when estimating the slope of the regres-
sion line. Similar biases may appear in every statistical procedure and, in most of
the cases, the bias takes a specific direction. As another example, when linkage
procedures are used for estimating the size N of a population through a capture-
recapture approach, the presence of false matches may severely reduce the final
estimate of N .

One should also note, at this point, that in the practical use of record linkage,
it is quite usual that the linker (the researcher who matches the two files) and
the analyst (the one which performs the statistical analysis) are two different
persons, working separately. However, as Scheuren and Winkler (1993) states “...
it is important to conceptualize the linkage and analysis steps as part of a single
statistical system and to devise appropriate strategies accordingly”.

Following such a suggestion, and putting it into a broader perspective, let us
assume we observe variables (Y1, Y2, . . . , Yk, V1, V2, .., Vh) on n1 units in file F1 and
variables (X1, X2, . . . , Xp, V1, V2, . . . , Vh) on n2 units in file F2. In this set-up we
consider the two-fold objective of i) using the key variables V1, V2, . . . , Vh to infer
about the common units between sources F1 and F2 and, at the same time, of ii)
adopting a model M to perform a statistical analysis based on the variables Y s
and Xs (or even including the common variables V ’s), restricted to those records
which have been recognized as matches. In order to pursue this double goal, we
propose a fully Bayesian analysis which is able - in a very natural way - to
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• improve the performance of the linkage step through the use of the extra
information contained in the Y ’s and X’s. This happens because pairs of
records which do not adequately fit the model M will be automatically
down-weighted in the matching process;

• allow to account for matching uncertainty in the estimation procedure re-
lated to model M involving Y ’s and X’s.

• improve the accuracy of the estimators of the parameters of model M in
terms of bias.

A first attempt to frame the statistical problem of record linkage from a
Bayesian perspective can be found in Fortini et al. (2001). In that paper the
likelihood function arising from the set of multiple comparisons among different
records in the two datasets - comparisons which may involve several different vari-
ables - was used to estimate the matching configuration through the use of a
specific Markov Chain Monte Carlo (MCMC) technique. That approach, together
with the one outlined in Larsen (2005), can be interpreted as a Bayesian alter-
native to the classic record linkage approach, formalized by Jaro (1989), which
followed the seminal paper by Fellegi and Sunter (1969). Recently, Tancredi and
Liseo (2011) have proposed a different Bayesian matching procedure, particularly
suited for categorical variables. They explicitly model the fully observed records
through a particular measurement error models, inspired by the so called “hit-
and-miss” strategy proposed by Copas and Hilton (1990). In the same paper, the
problem of uncertainty in population size estimation based on capture-recapture
models with linkage uncertainty was discussed in detail. In addition, Liseo and
Tancredi (2011) have introduced a record linkage model for continuous data based
on a multivariate normal model with measurement error.

In the last years, several Authors have considered the problem of estimating
the parameters of a regression model using linked data. Extending the pioneer-
ing works of Scheuren and Winkler (1993) and Scheuren and Winkler (1997) and
under the somewhat restrictive assumption that the two data sets represent a
permutation of the same list of units, Lahiri and Larsen (2005) have proposed an
estimator (LL) of the regression coefficients which is unbiased, conditionally on
the matching probabilities provided by the record linkage process. Their approach
has been extended by Hof and Zwinderman (2012) to handle more complex and
realistic linkage scenarios and logistic regression problems. Generalizations of the
LL estimator have been also provided by Kim and Chambers (2012) which pro-
posed a method based on estimating equations. A different approach is outlined
in Goldstein et al. (2012); here the Authors consider the probabilities of being a
match - provided by the record linkage algorithm - as an ingredient to be used
within a multiple imputation scenario. Finally, a Bayesian procedure that jointly
models the record linkage and the association between variables in two different
data sets files has been proposed by Gutman et al. (2013). In that paper, the
Authors consider the (at least computationally) simpler situation where the num-
ber of records to match in the two data sets is relatively small; this is obtained
after a large and informative blocking step. They shows that their joint model
both improves the matching procedure and the accuracy of the estimation of the
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regression parameters in a real data example concerning the “end-of life costs”.
Another potential limitation of this paper is that the Authors assume a specific
matching pattern; in fact, for each singe block of comparisons, all cases in the
smaller list are present in the other list.

Practical applications of inference with linked data are very common in bio-
statistics and epidemiology. Recent examples include, for instance, Hof and Zwin-
derman (2015) who estimated the association between pregnancy duration of the
first and second born children from the same mother from a register without
mother identifier and Harron et al. (2013) where a data set comprising pedi-
atric intensive care admission records has been linked with blood-stream infection
surveillance data in order to evaluate the association between this kind of infection
and specific risk factors due to pediatric intensive care.

In the next section we will briefly recall the standard approach to record linkage
and then we will propose a simplified version of the Bayesian model described
in Tancredi and Liseo (2011). We will also provide some details on a possible
simulation strategy for the resulting posterior distribution. In Section 3 we will
consider a generalization of the method in order to include the regression model.
In Sections 4 and 5 we will illustrate our proposals with simulated and real data
sets.

2. Record linkage models

In this section we sketch the probabilistic framework for setting up record linkage
models. We first introduce the standard model for record linkage and then we
discuss a different way of modelling the comparisons among units, which is more
amenable to include the inference model M.

2.1. A brief review of the standard record linkage approach

Suppose we have two matrices of record, say V1 and V2 of different sizes n1 and
n2 respectively. Here

V1 = (v11, . . . v1n1) and V2 = (v21, . . . , v2n2)

and each single vij can be represented as vij = (vij1, . . . , vijh), that is Vij contains
the observed values of a categorical random vector v = (v1, . . . , vh) whose support
is

V = {vs1s2,...,sh = (s1, . . . , sh) s1 = 1 . . . , k1; . . . ; sh = 1, . . . kh}.

Also, consider the sets M and U of “true matches” and “true non matches” re-
spectively. More precisely,

M = {(j, j′) : record j ∈ V1 and j′ ∈ V2 refer to the same unit},

and, of course, U = M c, the complementary set. The main goal of any record
linkage technique is to identify which pair of records should be assigned to M ;
notice that, in any application, no matter what is the overlapping of the two
files of records, the cardinality of U is always much larger than the cardinality of
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M . The statistical model for a record linkage analysis is built upon the so called
comparison vectors qjj′ = (qjj′1, · · · , qjj′h), where

qjj′l =

{
1
0

v1jl = v2j′l
v1jl ̸= v2j′l

, l = 1, . . . , h.

The comparison vectors qjj′ are assumed to be independent and identically dis-
tributed random vectors with a distribution given by the following mixture

p(qjj′ |m,u,w) = w
h∏

l=1

m
qjj′ l

l (1−ml)
1−qjj′ l +(1−w)

h∏
l=1

u
qjj′ l

l (1−ul)
1−qjj′ l . (1)

In the previous formula, w represents the marginal probability that a random
pair of records belong to the same unit. In other words, w may be interpreted
as the percentage of overlapping of the two data sets. The quantities ml and ul,
l = 1, . . . , h, are the parameter of the two multinomial distributions associated
with the two set of comparisons M and U , that is

ml = Pr(qjj′ l = 1|j, j′ ∈ M) ul = Pr(qjj′ l = 1|j, j′ ∈ U)

Notice that the independence assumption of the comparison vectors qjj ’s is, strictly
speaking, untenable from a probabilistic perspective. Consider the following ex-
ample; after comparing record A1 with records B1 and B2, and then record A2

with B1 only, the result of the comparison between A2 and B2 is often already
known. Also, in the standard model, the key variables are assumed independent of
each other. Several extensions of this basic set-up have been proposed, mainly by
introducing potential interactions among key variables, see for example Winkler
(1995) and Larsen and Rubin (2001).

To test whether a given pair should be allocated to M or U , one may consider
either the likelihood ratio

λ =
P (qjj′ |(j, j′) ∈ M)

P (qjj′ |(j, j′) ∈ U)
=

∏h
l=1 m

qjj′l
l (1−ml)

1−qjj′l∏h
l=1 u

qjj′l
l (1− ul)

1−qjj′l

or - in a Bayesian setting - the posterior probability that a single pair is a match
p((j, j′) ∈ M |qjj′). In general, a pair of records with a likelihood ratio λ - or a
posterior probability - above a fixed threshold, is declared a match. In practice,
the choice of the threshold can be problematic, as illustrated, for example, in Belin
and Rubin (1995). In this context, optimization techniques may be helpful to rule
out the multiple matches issue, that is the possibility that a single unit in data
set A is linked with more than one unit in data set B.

2.2. An alternative Bayesian record linkage model

A different approach can be obtained by directly modelling the observed data
matrices V1 and V2 of the key variables, rather than the mutual comparisons. In
this way one can take into account both the potential measurement error and
the matching constraints. Let ṽijl be true unobserved value for the field l of the
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record j on data set Vi and let Ṽi be the corresponding unobserved data matrix.
We assume that

p(V1, V2|Ṽ1, Ṽ2, γ) =
∏
ijl

p(vijl|ṽijl, γl) =
∏
ijl

[γlI(vijl = ṽijl) + (1− γl)q(vijl)] .

Notice that vijl is a mixture of two components, the former is degenerate on the
true value while the latter can be any distribution whose support is the set of all
possible values of the variable Vl; we believe that - in absence of specific informa-
tion - taking a uniform distribution for the second component of the mixture is
a reasonable assumption. This way, q(vijl) = 1/kl. Also notice that, in this new
model, γl is the probability that the variable Vl is observed without noise. This
model, known as “hit and miss”, was introduced in the record linkage literature
by Copas and Hilton (1990) and recently adapted in the Bayesian framework by
Tancredi and Liseo (2011) and Hall et al. (2013); Other examples of finite mix-
ture models with uniform background has been discussed in Banfield and Raftery
(1993) for clustering continuous data in presence of noise.

To build a model for true values ṽijls we need to introduce a matching matrix
C. In particular, let C be a n1 × n2 matrix whose unknown entries are either
0 or 1, where Cjj′ = 1 represents a match, Cjj′ = 0 denotes a non-match. We
assume that each data set does not contain replication of the same unit so that∑

j′ Cjj′ ≤ 1, and
∑

j Cjj′ ≤ 1. Green and Mardia (2006) have used a similar
matching matrix in slight different context, i.e. in the problem of alignment of
unlabelled points for reconstructing molecular shapes. We assume that the joint
distribution for Ṽ1 and Ṽ2 depends either on the entries of the matching matrix C
and on the probability vector θ = (θs1...sh , s1 = 1 . . . , k1; . . . ; sh = 1 . . . , kh) which
describes the distribution of the true values one can observe on each sample. More
precisely, we assume that

p(Ṽ1, Ṽ2|C, θ) =
∏

j:Cjj′=0 ,∀j′
p(ṽ1j |θ)

∏
j′:Cjj′=0 ,∀j

p(ṽ2j′ |θ)
∏

jj′:Cjj′=1

p(ṽ1j , ṽ2j′ |θ),

(2)
where

p(ṽij |θ) =
∏

s1...sh

θI(ṽij=(s1,...,sh))
s1,...,sh

,

and

p(ṽ1j , ṽ2j′ |θ) =

{
0 if ṽ1j ̸= ṽ2j′∏

s1...sh
θ
I(ṽij=(s1,...,sh))
s1,...,sh if ṽ1j = ṽ2j′

It should be noticed that the above model can be considered a simplified version
of the one proposed in Tancredi and Liseo (2011), where an additional layer -
introducing a super-population model - was added at the top of the hierarchy.
This simplest version, already used in Hall et al. (2013), can be easily obtained by
integrating out the additional layer of hierarchy, under specific prior assumptions.
Following Hall et al. (2013), we also assume that the key variables are independent.
In symbols, setting θl,sl = p(ṽijl = sl|θl), with θl = (θl1, . . . , θl,kl

), we assume that

θs1,...,sh =

k∏
l=1

θl,sl .



Regression analysis with linked data 25

To complete the model we need to specify a distribution for the matching
matrix C and the prior distributions for the parameters γl and θl, l = 1, . . . , h. For
these latter quantities the standard assumptions of independent Beta distributions
for the probabilities γl and independent Dirichlet distributions for the vectors θl
can be adopted. With respect to C, the prior can be elicited in two stages. The
first stage consists of a prior distribution p(t), t = 0, 1, 2, . . . n1∧n2 on the random
variable T : “number of matched pairs in the two data sets”. At this stage, the
researcher can easily collect information, looking at previous experiences or at the
statistical characteristics of the data sets (e.g. if the two data sets refer respectively
to a census and a sample, we can expect a large number of matched pairs). At the
second stage we define a conditional prior distribution for the configuration matrix
C given the number of matches. We take the natural noninformative choice of a
uniform conditional prior on the set C(t) = {C :

∑
jj′ Cj,j′ = t

}
Note also that the

cardinality of C(t) is |C(t)| =
(
n1

t

)(
n2

t

)
t! and that a uniform unconditional prior

for C, that will be our choice throughout this paper, can be obtained by assuming
p(t) ∝ |C(t)| and the aforementioned uniform conditional prior for p(C|T ).

2.3. MCMC estimation

The model just outlined cannot be analyzed in a closed form and some form of
simulation from the posterior distribution is necessary. In particular, we have
implemented a Metropolis within Gibbs algorithm where the updating of param-
eters γl and θl can be easily performed by simulating from their respective full
conditional distributions, for l = 1, . . . , h. On the other hand, the updating of the
matching matrix C and the true values Ṽ1 and Ṽ2 is jointly obtained In particu-
lar, we propose - via a Metropolis-Hastings step - a new matching matrix C, by
adding or deleting one matches or switching two matches. Conditionally on the
acceptance of the proposed value for C, a Gibbs step is used for the updating of
the elements of Ṽ1 and Ṽ2.

As an example, we illustrate the acceptance probabilities for the specific move
in which we “add” a match: when proposing a move from Cjj′ = 0 to Cjj′ = 1,
we accept it with probability

1 ∧ q(C|C ′)

q(C ′|C)

p(V1, V2|C ′, θ, γ)

p(V1, V2|C.θ, γ)
p(C ′)

p(C)
,

where q(C|C ′) is the probability of proposing the reversible “deleting match” move,
q(C ′|C) is the probability of proposing the “adding match” move. Finally,

p(V1, V2|C ′, θ, γ)

p(V1, V2|C, θ, γ)
=

p(v1j , v2j′ |θ, γ)
p(v1j |θ, γ)p(v2j′ |θ, γ)

= (3)

=

∏h
l=1

(
γ2
l θlv1jl

I(v1jl = v2j′l) + γl(1− γl)(θl v1jl
+ θl v2j′l)/kl + (1− γl)

2/k2l

)
∏h

l=1

(
[γlθl v1jl

+ (1− γl)/kl][γlθl v2jl
+ (1− γl)/kl]

) .

When the move is accepted, we then propose new values (ṽ1j , ṽ2j′) by sampling
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from their full conditional distributions given Cjj′ = 1, that is

p(ṽ1jl, ṽ2j′l|θ, γ, v1jl, v2j′l, Cjj′ = 1) ∝ θl ṽ1jl [γlI(v1jl = ṽ1jl) + (1− γl)/kl]

× [γlI(v2jl = ṽ2jl) + (1− γl)/kl]

if ṽ1jl = ṽ2jl′ and 0 otherwise. Similar expressions can be easily obtained for
the other possible moves, that is deleting a match or switching matches. Notice
that the ratio (3), which appears in the above acceptance probability, is the Bayes
factor for comparing the hypothesis that the pair (j, j′) is a match versus the
alternative hypothesis that it is not a match: see for example Lindley (1977) and
Liseo and Tancredi (2011) for similar expressions involving Gaussian distributions.

After that a reasonably large sample has been drawn from the posterior distri-
bution, we estimate the matching configuration via the following - rather natural
- point estimate of the matrix C, namely

Ĉij =

{
1 if p(Cij = 1|V1, V2) ≥ 1

2
0 otherwise

Some remarks are necessary here. First, the estimate Ĉ is in some sense suggested
by simple decision theoretic considerations (see Tancredi and Liseo (2011)). Notice
that, in this situation, the posterior mean cannot be used since it would provide
useless real numbers between 0 and 1. Second, the estimated matrix Ĉ should
only be used when the linkage procedure is the final goal of the statistical analysis
and a set of potential matches must be declared. If the merged data set is the
starting point of a new statistical analysis, then one should try to account for the
uncertainty on C provided by the posterior distribution of the matrix itself. This
is what we describe next in the particular, although very common, case of linear
multiple regression model.

3. Bayesian Regression with linked data

Consider the situation where the first data set is a n1 × (h+ 1) matrix consisting
of the variables (y, V1), and the other data set is a n2 × (h+ p) matrix, including
variables (V2,X) where X = (X1, . . . , Xp). Also, let X̃ be the matrix containing

the true (unobserved) covariate values for Y . X̃ has dimension n1× p. Condition-
ally on X̃ and on the true matching variables Ṽ1 and Ṽ2, we assume a Gaussian
linear regression model for y, that is,

y|X̃,β, σ2 ∼ N(X̃β, σ2I). (4)

In addition, given the matrices of true values Ṽ1 and Ṽ2, we assume, for V1 and
V2, the “hit and miss” model as illustrated in §2.2.
Conditionally on the matching matrix C, we also assume that the actual covariate
values for yj are given by the vector xj′ (the x-part of the j

′-th row of data set B)
only if Cjj′ = 1; otherwise, when the j-th row of C is a string of 0’s, we assume
that the true covariate values for yj are unknown with a specific distribution
p(x̃). This way the covariates for the non-matches pairs are treated as missing
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variables. The choice of p(·) is often not crucial and, in general, a multivariate
Gaussian distribution will be used. More precisely, we have

p(X̃|C) =
∏

j,j′:Cjj′=1

δxj′ (x̃j)
∏

j:
∑

j′ Cjj′=0

p(x̃j).

For the matrices of true values Ṽ1 and Ṽ2 we will adopt the same model described
in (2). The posterior simulation can be easily conducted via a Metropolis-Hastings
within Gibbs algorithm where the matching matrix C, the true values Ṽ1 and Ṽ2

and the true covariates X̃ are jointly updated, in a way very similar to what we
have described in the previous section. In particular, in this case, the “add-one-
match” move is accepted with probability

1 ∧ q(C|C ′)

q(C ′|C)

p(y, V1, V2|C ′, θ, γ,β, σ2)

p(y, V1, V2|C, θ, γ,β, σ2)

p(C ′)

p(C)
,

where

p(y, V1, V2|C ′, θ, γ,β, σ2)

p(y, V1, V2|C, θ, γ,β, σ2)
=

ϕ(yj ;x
T
j′β, σ

2)∫
ϕ(yj ; x̃Tβ, σ2)p(x̃)dx̃

p(v1j , v2j′ |θ, γ)
p(v1j |θ, γ)p(v2j′ |θ, γ)

, (5)

with ϕ(·;µ, σ2) representing the density of a Normal variable with mean µ and
variance σ2. There are several important remarks and comments concerning the
acceptance probability (5).

i) Formula 5 points out that distribution of the matching matrix C is dependent
on the values of the β parameters and makes explicit the feed-back effect
between the parameters of the regression model and the matching process.
This effect has the role to modify the matching estimation leading both to a
possible improvement for the record linkage process and to a “bias-correction”
effect for the regression estimates.

ii) A closed-form expression for

p(yj ;β, σ
2) =

∫
ϕ(yj ; x̃

Tβ, σ2)p(x̃)dx̃

can be obtained, for example, by assuming a multivariate normal for p(x̃). In
fact, assuming that x̃ ∼ N(µ0,Σ0), a simple calculation shows that

yj |β, σ2 ∼ N(µT
0 β, σ

2 + βtΣ0β).

iii) When the “add-one-match” move is accepted, one updates the true values
(x̃j , ṽ1j , ṽ2j′) by drawing a value from their full conditional distributions con-
ditionally on the new status Cjj′ = 1

We also observe that, in order to update the regression parameters β and σ2, we
only need to consider the likelihood provided by the regression model (4); hence
a standard Gibbs move can be adopted.
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Figure 1 – Simulation study. The posterior distributions of β’s obtained under the
“record linkage and regression” model, the “plug-in” approach from the record linkage
model, the “matching uncertainty propagation” approach from the record linkage model
and the plug-in approach from the “comparison vector record linkage” model (Fortini
et al., 2001). The true value of β is 2.

4. Simulation study

We now evaluate our hierarchical model for regression analysis with linked data
via a simulation study. In particular we have generated 100 pairs of data sets with
sizes n1 = 100 and n2 = 80. The number of true matches T is Binomial with size
80 and probability 0.75 and the distribution of the matching matrix C given T is
uniform. Each pair of data sets shares 3 independent key variables Ṽj , j = 1, . . . , 3
with 5, 10 and 50 categories, respectively, and different probability distributions.
The probability of correctly observing the true values is γl = 0.95 l = 1, . . . , 3. For
the regression model, we assume a single covariate X whose values are generated
from a Normal distribution with mean µx = 100 and variance σ2

x = 202 and for
the response variable we assume that y|x is Normal with mean α+βx with α = 3
and β = 2, and variance σ2

y|x = 102.

For each simulated pair of data sets we run the MCMC sampler both for
the joint “record linkage and regression” model outlined in Section 3 and for
the “record linkage only” discussed in Section 2.2. For both models we have
initialized the algorithms via a matching matrix without matches and we have
drawn 55000 iterations of the algorithm with a burn-in of 5000. With the “record
linkage and regression” model the natural estimate of β is the posterior mean
E(β|V1, V2, y,X). The upper left panel of Figure 1 reports the histogram of the
100 posterior means. In order to estimate β with the “record linkage only” model.
one can consider a plug-in approach by using the posterior mean of β, conditionally
on the matching configuration provided by the point estimate Ĉ. Alternatively,
in order to better propagate the matching uncertainty in the regression estimates,
one can adopt a hybrid approach where the MCMC estimates β̂ provided by the
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simulated matching matrix at each MCMC iteration of the record linkage model,
are averaged. The resulting estimates of β are reported respectively in the upper
right and lower left panels of Figure 1. For each simulated pair of data sets we also
provide an estimate of the matching matrix via the standard approach outlined in
Section 2.1. The lower right panel of Figure 1 shows the corresponding estimates
of β obtained conditionally on the estimated matching matrix.

Note that in terms of the inference for β, the “record linkage and regression”
model outperforms all other three estimation strategies. In particular the sam-
pling distribution of the estimator E(β|V1, V2, y,X) is centred around the true
value β = 2 (the observed average is 2.01) while all other estimators are strongly
biased towards 0. The bias elimination effect provided by the “record linkage
and regression” model is mainly due to the low value of likelihood that the false
matches, leading to independent y and x pairs, receive from the regression part
of the model. We also notice that the sampling variability of E(β|V1, V2, y,X) is
much smaller when compared with the other approaches. In fact, the introduc-
tion of the information provided by the linear relationship between y and x in
the “record linkage model” has also had the effect of improving the record link-
age quality via a reduction of the matching uncertainty. This feedback effect is
confirmed by the true positive matches rate

TPR =

∑
jj′ Cjj′Ĉjj′∑

jj′ Ĉjj′

distribution reported in Figure 2 together with the distribution of the declared
matches T̂ =

∑
jj′ Ĉjj′ . With respect to the other approaches, the “record linkage

and regression” model has, on average, the higher and less variable true positive
matches rate and a distribution of T̂ more concentrated on the correct number of
matches.

5. An Illustration: Italian Survey of Household Income and Wealth

In this section we illustrate an application of the proposed methods using data
from the Italian Survey on Household Income and Wealth. The Italian Survey
on Household Income and Wealth (SHIW) is a sample survey conducted by the
Bank of Italy every 2 years. The 2010 survey covers 7,951 households composed of
19,836 individuals. Panel households and individuals represent 58% of the data.
From the 2010 survey we consider the individual net disposable income as the
response variable Y of our regression model and the following matching variables:
sex, age, marital status, employment status, working sector. From the 2008 survey
we consider, in addition to the matching variables, the 2008 net disposable income
which is assumed as the covariate X of the regression model. The aim of the
application is to calibrate a regression model of Y on X, which is based on those
pairs of records which are declared matches by the record linkage procedure.

Before illustrating the results of the matching model in this particular example,
where the linkage structure is known for each pair of records, we first note how
a slight modification of the matching configuration, for example by deleting 10%
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Figure 2 – Simulation study. True positive rate and declared matches distributions
obtained with the “record linkage and regression” model, the “record linkage only” model
and the “comparison vector record linkage” model.

of the true matches and adding 10% of false matches, may lead to dramatically
different regression analyses. This is illustrated in Figure 3 for the single block
provided by the Friuli region. In the left panel the circle dots represent the true
matching configuration while the cross dots represent the perturbed one. In the
left panel, the two ordinary least square regression lines, obtained with the two
different data sets, are also reported; as expected, the line with the smaller slope
refers to the perturbed data set. In the right panel we show the posterior distribu-
tions of the slope coefficient with the two data sets and the usual noninformative
prior for (α, β, σ). namely π(α, β, σ) ∝ σ−1. Note that the the two distributions
provide quite different credible intervals.

To illustrate the results of our methods we focus on the single Friuli block by
comparing different regression analyses. The first one is based on a subset of six
key variables for the matching part of the model and the raw income data for the
regression fitting. In the upper panels of Figure 4 we show the regression estimates
obtained (i) by

i. fitting a Bayesian regression model directly on the true matching configura-
tions (203 matches);

ii. applying our regression and matching model;

iii. fitting a Bayesian linear regression via the matching matrix estimated by the
record linkage model, i.e. the plug-in approach;

iv. repeating the analysis on the true matching configurations without the two
very influential observations with 2008 income level larger than 150000 Euros.

It is interesting to note that the integrated model produces inferences which are
very similar to those obtained by using the true matches, but without the two
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Figure 3 – SHIW data (Friuli block, n1 = 434, n2 = 355). Regression analysis with
the 2010 individual income as the response variable and the 2008 individual income as
a covariate. Left panel : ◦ =true matches, + =declared matches after a perturbation
procedure. Right panel : posterior distributions for the regression coefficientes with the
true matches (black line) and the declared matches.

outliers: since these two observations do not fit the regression model calibrated
on the bulk of the matched pairs, they receive a low likelihood of being a match
from the regression part of the model. As a consequence they are erroneously
considered as non matches, thus removing, or at least mitigating, their effect on
the regression estimates. Also, note that the plug-in approach with the record
linkage model does not have this protection mechanism against outliers.

In the central panels of Figure 4 we show the results obtained by taking the
logarithm of the income variables and repeating the four regression analyses listed
above. After the log transformation, the two extreme observations do not produce
any effect on the regression fitting: in this case the plug-in approach produces very
similar estimates when compared to the true regression line, while the integrated
model provides a slightly larger slope coefficient. Finally, in the bottom panels we
show all the nine variables and the log-transformed regression variables. With the
additional information provided by the three additional key variables the results
of the plug-in approach are even more closer to the true fitting.

We conclude this Section by analysing the record linkage performance. In
Table 1 we report the false negative rate, FNR, and the false positive rate FPR

FNR =

∑
jj′(1− Ĉjj′)Cjj′∑

jj′ Ĉjj′
FPR =

∑
jj′ Ĉjj′(1− Cjj′)∑

jj′ Ĉjj′

of the several approach proposed, obtained by changing the number of key vari-
ables or by using the log trasformation for the regression variables. Note that the
integrated “record linkage and regression” model, because of the feedback effect
on the matching estimation, produces better record linkage performance, by low-
ering both the false negative rate and the false positive rate with respect to the
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Figure 4 – Results for the SHIW data (Friuli block). Black line: true regression line
using the 203 true matches. Black dashed line: true regression line without 2 very
influential observations. Red line: Bayesian estimate with the “regression and record
linkage”. Green line: Bayesian estimate with the “record linkage only” model and poste-
rior regression on the matched pairs. First row: six key variables, non transformed data.
Second row: six key variables, log transformed response and covariate. Third row: nine
key variables, log transformed response and covariate



Regression analysis with linked data 33

TABLE 1
Record linkage performance for the SHIW data with the Friuli block.

model RL RL+REG RL+REG (log) RL RL+REG (log)
key variables 6 6 6 9 9
FNR 0.43 0.33 0.33 0.27 0.22
FPR 0.33 0.30 0.28 0.29 0.30

simple Bayesian matching model. We also note that the record linkage results
are affected by the use of the logarithm trasformation for the regression variables
which, in this particular example, provide better performance. Such a behaviour
is connected with the improved goodness of fit of the linear model on the log vari-
ables. As a general comment, one might argue that a perfect linear relationship
between the response and the covariates would be practically equivalent to hav-
ing a common identification key between the two files. This suggests that strong
linear relationships are generally more informative for the matching process than
weak relationships. For example, with the above data, the value of the R2 index
calculated with the true matches is equal to 0.68 on the original scale and 0.77
after the log trasformations.

6. Discussion

We have described the possibility to deal with record linkage and a regression
model for linked data within a common Bayesian framework. The resulting model
has the twofold effect of propagating the matching uncertainty into the regression
analysis and to account for the information provided by the linear relationships
between the response and the covariates into the matching estimation. We have
shown via simulated data that the latter effect may significantly improve the
estimation process.

Anyway in real applications, where the linear dependence between a response
variable and a set of covariates is no more than a model assumption, the matching
results should be presented together with an additional sensitivity analysis with
respect to the possible modeling alternatives and/or with an evaluation of the
uncertainty associated with the selected model. In fact different set of covariates
or transformations involving both the response and the covariates may affect the
record linkage process. On the other hand, we also notice that classical record
linkage techniques usually face similar problems regarding the transformation of
the key variables and the modeling assumptions of the comparison vector. All
in all, the additional sensitivity induced by the regression variables should be
interpreted as the fair price to pay for the “creation” of an extra key variable
comprised by the response variable on one dataset and the regression covariates
on the other.
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Summary

In this paper we have described and extended some recent proposals on a general Bayesian
methodology for performing record linkage and making inference using the resulting
matched units. In particular, we have framed the record linkage process into a formal
statistical model which comprises both the matching variables and the other variables
included at the inferential stage. This way, the researcher is able to account for the
matching process uncertainty in inferential procedures based on probabilistically linked
data, and at the same time, he/she is also able to generate a feedback propagation of
the information between the working statistical model and the record linkage stage.
We have argued that this feedback effect is both essential to eliminate potential biases
that otherwise would characterize the resulting linked data inference, and able to im-
prove record linkage performances. The practical implementation of the procedure is
based on the use of standard Bayesian computational techniques, such as Markov Chain
MonteCarlo algorithms. Although the methodology is quite general, we have restricted
our analysis to the popular and important case of multiple linear regression set-up for
expository convenience.

Keywords: Bayesian regression; Hit-miss model; Metropolis-Hastings algorithm; Record
linkage


