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1. Introduction

The term capture-recapture denotes a class of experimental designs concerned
with estimation of the size of a population. It has originally been employed in
biometrics. The first applications regarded estimation of the number of residents
in France (Laplace, 1783) and the size of fish populations in confined waters (Pe-
tersen, 1896). There are many possible ways to design a capture-recapture ex-
periment. Loosely speaking, we focus in this paper on experiments in which as
many subjects as possible are directly sampled from the population and identified
without uncertainty. They are then released if necessary, and the operation is re-
peated S > 1 times. The binary capture history yi of each subject, where yij = 1
if the i-th subject has been observed at the j-th occasion, can be used to infer on
the number of subjects never captured or, equivalently and more interestingly, on
the unknown population size N . There is an impressive literature on population
size estimation, and we point the reader to the excellent reviews and overview of
applications provided by Otis et al. (1978), Pollock (2000), Basu and Ebrahimi
(2001), Chao (2001), Chao et al. (2003), Amstrup et al. (2003).

Population size estimates are obtained after appropriately modeling the cap-
ture histories, under certain assumptions on the data generating mechanisms. As-
sumptions include independence of capture histories at the subjects’ level and that
the population is closed, that is, no births, immigration, emigration and deaths
occur during the sampling period. This assumption is often debated, but tenable
when the time frame of data collection is sufficiently short.

Capture histories may be allowed to depend on subject-specific observed or
unobserved covariates. In the first case we have Mo models, where the most
general and difficult situation is that of individual covariates, which are missing
for all subjects never captured. See for instance Royle (2009). In the second case
we have Mh models where random effects are introduced to capture unobserved
heterogeneity. Additionally, capture histories may depend on occasion-dependent
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features (like weather conditions), making capture more likely or more unlikely
uniformly for all subjects at each occasion. These are called Mt models, where
occasion-specific capture probabilities are used. Finally, the probability of capture
may depend on what happened during the previous capture occasions. Subjects
may be more likely or less likely to be captured again after a capture, or a pattern
of captures, depending on the experience. For instance, animals being fed during
capture may become trap-happy, and looking forward to be captured and fed
again. Models taking into account possible behavioural response to capture are
tagged Mb.

These sources of heterogeneity may be combined, to obtain the most general
possible model, tagged Mhotb. For reasons in our opinion linked with the ap-
plications involved, traditionally Mhtb models were treated separately from Mto

models. Farcomeni and Scacciatelli (2013) in a continuous time framework, and
later Farcomeni (2015), were the first to consider the most general possible class
of Mhotb models.

When dealing with capture-recapture data, the researcher directly faces the
ubiquitous modeling dilemma between bias and variance of the estimates. More
general models very closely fitting the data may provide highly variable population
size estimates, while simpler models may lead to biased estimates. On the other
hand, capture-histories may exhibit subtle dependency patterns leading even the
most complex traditional approaches to be biased.

Traditional behavioural models for instance were rather rigid. In traditional
Mb capture probabilities depended on past occasions only through a single update
after the first capture event. The capture probability was afterwards constant
regardless of the other capture events. This lead some authors to develop more
flexible behavioural models which could better fit the data. Persistence models are
proposed in Ramsey and Usner (2003), where a parameter controls the degree of
attraction or repulsion of subjects towards identification. This effect is overlapped
with possible persistence of the experimenters in returning to the same locations,
from which the name of the model class. This overlap is of course not a problem
given that behavioural effects are often merely nuisance parameters. Yang and
Chao (2005) propose very interesting Markov chain models with short-term and
long-term memory effects. Long-term memory effects are permanent changes in
the capture-probability after the (first) capture, while short-term memory effects
are soon forget and the initial propensity to capture is restored. Farcomeni (2011)
proposed a completely general Mtb model where a completely arbitrary depen-
dence among capture occasions is obtained. These do not even need to be ordered
along a time horizon. The method is based on equality constraints for the condi-
tional capture probabilities. For the Mtb models in Farcomeni (2011) closed form
expressions can be obtained for the MLE of nuisance parameters, and a simple
estimating equation for the population size. See also Alunni Fegatelli and Tardella
(2013).

The approach of Farcomeni (2011) is extended in Farcomeni (2015) to include
observed and unobserved heterogeneity after a logistic reparameterization of the
capture probabilities. A class of Mhotb models in discrete time, where the tb
part is completely general, is therefore obtained in Farcomeni (2015). Farcomeni
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(2015) considers several possibilities for the distribution of random effects, but
is mostly focused on continuously supported distributions. On the other hand,
latent class models are very popular in capture-recapture given their flexibility.
Latent class models can in fact be used to (i) identify subpopulations within the
captured sample and (ii) approximate virtually any true underlying distribution,
including continuous ones (in a completely different framework, see Bartolucci and
Farcomeni (2009) for a simulation illustrating this, and the discussion of Bartolucci
et al. (2014)).

The choice of a random effects distribution is rather delicate in capture-recapture,
as usually there is substantial dependence of the final estimates on this choice. Ad-
ditionally, a non-parametric MLE in which the distribution of random effects is
unspecified is not possible (Link, 2003), unless one is prepared to consistently
estimate a so-called meaningful lower bound for the population size (Farcomeni
and Tardella, 2012). See also Farcomeni and Tardella (2010) for a Bayesian ap-
proach to Mhtb estimation without assumptions on the underlying random effects
distribution, Holzmann et al. (2006) for models based on minor assumptions (e.g.,
unimodality) on the random effects distribution, and Mao (2008) for one of the
first definitions of estimable lower bound for the population size.

Latent class models were recommended as a general choice in many papers,
including Pledger (2005) and Mao and You (2009). They are routinely employed
in capture-recapture models in many fields, see for instance Coull and Agresti
(1999), Bartolucci and Forcina (2006), Thandrayen and Wang (2010).

Farcomeni (2015) mentions latent class models and gives some guidelines on
them, but an explicit definition of latent class Mhotb models and an explicit in-
ferential procedure are not given. In this paper we will show how to fit Mhotb

models proposed in Farcomeni (2015) under the relevant latent class assumption
for the random effects. This is admittedly a special case of the completely general
Mhotb model proposed in Farcomeni (2015). The inferential strategy will be along
similar lines. We nevertheless believe that expliciting and detailing latent class
Mhotb models is important as latent class models are widespread and generally
recommended in population size estimation under heterogeneity, as argued above.

The rest of the paper is as follows: in the next section we revisit Farcomeni
(2011) approach. In Section 3 we extend the approach to observed and unobserved
heterogeneity based on latent class models. In Section 4 we show an efficient
algorithm to obtain the MLE and estimate the population size.

2. Completely general Mtb models

Let yi = (yi1, . . . , yiS), i = 1, . . . , N , denote the binary capture history for the
i-th subject. Without loss of generality, for i = 1, . . . , n we have that

∑
j yij > 0,

that is, the first n subjects are captured at least once. On the other hand, for
i > n, yi = (0, . . . , 0). The capture history of the N−n subjects never captured is
known and corresponds to a vector of zeros. On the other hand, we do not know
how many subjects we have never sampled.

Let p(y) denote the probability of a capture history y. The joint distribution
of binary capture indicators for the i-th subject, according to the chain rule, can
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be expressed as

p(y) = p(Yi1 = yi1)p(Yi2 = yi2|yi1) · · · p(YiS = yis|yi,S−1, . . . , yi1).

Call now p1 = Pr(Yi1 = 1), pj(aj−1, . . . a1) = p(Yij = 1|Yi,j−1 = aj−1, . . . , Yi1 =
a1); for aj = {0, 1}. These conditional capture probabilities are arranged in lexico-
graphical order in the vector p = (p1, p2(0), p2(1), p3(00), · · · , pS(1, . . . , 1)). In this
paper we work with the conditional likelihood, that is, we condition on observed
subjects. This leads to divide the likelihood by Pr(

∑
j Yij > 0). The conditional

likelihood can be written as

n∏
i=1

∏S
j=1 pj(Yi,j−1, . . . , Y1)

Yij (1− pj(Yi,j−1, . . . , Y1))
1−Yij

1−
∏S

j=1(1− pj(0, . . . , 0))
, (1)

where p1(·) = p1 for notational convenience. In (1), the numerator gives
Pr(Yi1, . . . , YiS) by definition, and the denominator Pr(

∑
j Yij > 0).

Let now C denote a matrix with exactly one -1 and one 1 per row, where all
other entries are zeros. Equality constraints for the conditional capture proba-
bilities can be expressed as C ′p = 0. The likelihood is as in (1), but only when
C ′p = 0. It is otherwise −∞.

It is shown in Farcomeni (2011) that all possible Mtb models are obtained by
varying C, and that for fixed C the MLE can be found with two simple estimating
equations.

The role of theC matrix is that of selecting one among any possibleMtb model.
This is achieved by constraining some conditional capture-history probabilities to
be equal to each other. If for instance p2(0) = p2(1), we have that captures at
the second occasion are independent of captures at the first occasion. A C matrix
must be always specified. When C is the empty matrix we have the saturated
model based on 2S − 1 free parameters, and the MLE for the population size
corresponds to n, the number of subjects observed at least once. More interesting
estimates are obtained by constraining at least two parameters to be equal. The
maximum number of rows of C is 2S − 2, where it is possible to obtain only
one free parameter and therefore a model M∅, where probability of capture is
homogeneous. If more than 2S − 2 rows are specified for C, a redundant model
specification is obtained. No issues arise for inference though, as some equalities
would simply have been specified more than once. For any C, a minimum of one
and a maximum of 2S−1 free parameters are obtained. See also Farcomeni (2011)
and Farcomeni (2015) for more details.

The likelihood is always identifiable regardless of C (Farcomeni, 2015).
To fix the ideas, we give two examples of C matrices. Let C = D2S−2, where

Dh = {0h−1,1 Ih−1} − {Ih−1 0h−1,1} is a matrix that produces first differences.
Here I and 0 indicate identity and zero matrices of the specified size, and {A B}
indicates that the matrices A and B, having the same number of rows, have been
column combined. If we assume C ′p = 0, we have that all parameters are equal
to each other. This leads to the homogeneous model M∅. If we remove the first
row from this matrix, p1 is left completely free and we obtain an Mt model based
on two parameters. Capture probabilities from the second occasion onwards are
constrained to be equal to each other regardless of the previous capture history.



Behavioural latent class 9

There are also ways to specify the model more simply, for instance by specifying
directly one or more blocks of parameters that are assumed to be equal to each
other.

3. Latent class Mhotb models

We now generalize the Mtb models introduced in the previous section to a la-
tent class Mhotb model. Here the h stands for unobserved heterogeneity, which is
accounted for through the latent class model. The o stands for observed hetero-
geneity, indicating the use of covariates. All possible sources of inhomogeneity
in subject and occasion specific capture probabilities will therefore be taken into
account.

Observed and unobserved heterogeneity is introduced after a logit reparame-
terization. See Huggins (1989), Alho (1990), Coull and Agresti (1999, 2000). The
parameterization for the Mtb class is as follows:

log

(
pj(aj−1, . . . , a1)

1− pj(aj−1, . . . , a1)

)
= βja1,...,aj−1 . (2)

It shall be noted that equality constraints are invariant to this parameterization,
as C ′p = 0 if and only if C ′β = 0.

Let Xij denote a subject- and time-specific vector of covariates for the i-th
subject. The conditional probabilities also depend on a subject-specific parameter
θi, which summarizes subject-specific unobserved heterogeneity. Our final model
is then

log

(
pj(aj−1, . . . , a1, θ,X)

1− pj(aj−1, . . . , a1, θ,X)

)
= βja1,...,aj−1 + θ + γ′X, (3)

for j = 1, . . . , S. In (3) above we have an Mhotb model as β parameters sum-
marize the occasion-specific and behavioural effects, θ summarizes unobserved
heterogeneity, and γ describes the effects of covariates X.

It is important to underline here that Xij is not observed for subjects never
captured, that is, for i > n. We will be able to estimate parameters by relying on
the so called conditional likelihood, that is, by restricting to subjects observed at
least once.

Equality constraints are still specified as C ′β = 0, but now have a slight
different meaning as they lead to equality of capture probabilities only for subjects
sharing the same configuration of observed and unobserved covariates.

We assume the random effects arise from a latent class model based on k
support points ξ1, . . . , ξk, with probabilities π1, . . . , πk, so that

Pr(θ = ξj) = πj

for j = 1, . . . , k; and
∑

j πj = 1. For identifiability reasons we must impose a
constraint on the support points vector. After some algebra it is straightforward
indeed to see that without constraints adding a constant to each ξ and substracting
the same from βj(a1, . . . , aj−1) leads to exactly the same value for the likelihood.
A simple and interpretable constraint is that

∑
j ξj = 0, which we will assume
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throughout. We will discuss in the next section how to estimate ξ under the
sum-to-zero constraint. Other possible constraints include a corner point param-
eterization where ξl = 0 for some l. In both cases, it is not possible to add a
constant to c to each ξ, as it would violate the constrain. In fact,

∑
j ξj or xil

would be equal to c, for c ̸= 0.
It shall be noted here that the number of latent classes should be specified

in advance. The usual and recommended route is to repeatedly fit the model
for different choices of k, and then select the best k by trading-off bias (which is
larger for smaller k) and variance (which is larger for larger k). An automatic and
simple way to do so is by optimizing over k some information criterion, like Akaike
Information Criterion (AIC) or Bayesian Information Criterion (BIC). See Akaike
(1973), Anderson et al. (1994), Burnham et al. (1995), Schwarz (1978). AIC is
more appropriate for small sample sizes and it is optimal from a predictive point
of view, BIC is model consistent.

4. Inference through the EM algorithm

As mentioned in the previous section, we work with the conditional likelihood. It
has been shown in Sanathanan (1972) and Fewster and Jupp (2009) that under
parametric assumptions for the random effects this is equivalent to maximization
of the complete likelihood. More importantly, parameter estimates are consistent
and asymptotically normal at the usual rate.

The conditional likelihood is simply obtained by dividing the probability of
each observed capture history by the probability that the subject is indeed ob-
served. That is, the individual likelihood contribution of each observed subject
Pr(yi) is divided by probability of recording him/her/it Pr(

∑
j yij > 0); therefore

obtaining a conditional capture probability. The resulting conditional likelihood
does not depend on N or on the unobserved covariates.

An additional problem with our model formulation is that the latent class of
each subject is not observed. Therefore, we must not only condition the likelihood
on the occurrence of sampling, but also complete it with the unobserved latent
classes. The resulting complete conditional likelihood (Farcomeni and Scacciatelli,
2013; Farcomeni, 2015) will be used to obtain an expectation maximization (EM)
algorithm which will lead to a maximum of the conditional likelihood.

The complete conditional log-likelihood is defined when C ′β = 0 and is given
by the following expression:

lc(β,θ,γ,α) =
n∑

i=1

S∑
j=1

k∑
h=1

ZihYij log(pj(Yi,j−1, . . . , Yi1, ξh,Xi)) + (4)

+ (1− Yij) log(1− pj(Yi,j−1, . . . , Yi1, ξh,Xi)) +

−
k∑

h=1

n∑
i=1

Zih log(1−
S∏

j=1

(1− pj(0, . . . , 0, ξh,Xi)))

+

k∑
h=1

n∑
i=1

Zih log(πh),
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where Zih = 1 if the i-th subject is in class h, and zero otherwise; and with the
convention that p1(·, θi,Xi) = p1(θi,Xi).

It is now a matter of setting up a constrained EM algorithm to obtain the
MLE. The EM algorithm alternates two steps until convergence. At the E step
the expected value of (4) with respect to the current posterior distribution of the
random effects is obtained. At the M step the expected value above is maximized
under the constraints with respect to the parameters.

As usual, the EM algorithm is guaranteed to converge only to a local optimum
of the conditional likelihood function. The EM algorithm is then repeatedly run
from different initial solutions in order to increase the possibilities of finding the
global optimum.

Standard errors and confidence intervals for the parameters, conditionally on
n, may be obtained through a nonparametric bootstrap procedure. The subjects
observed at least once are resampled with replacement and the EM algorithm is
used on these fictitious samples. The standard deviation of the set of resulting es-
timates is a good approximation to the conditional standard errors. Unconditional
estimates involve only an additional term, described in Böhning (2008).

4.1. E step

It is straightforward to check that the complete conditional likelihood above de-
pends linearly on missing values Zih. Therefore, we can obtain the expected value
of (4) simply by plug-in of the posterior expectation of Zih. This is as follows:

z̃ih = Pr(Zih = 1|Y ) ∝ Pr(Y |Zih = 1)Pr(Zih = 1) = (5)

= πh

S∏
j=1

pj(Yi,j−1, . . . , Yi1, ξh,Xi)
Yij

(1− pj(Yi,j−1, . . . , Yi1, ξh,Xi))
1−Yij

(1−
S∏

j=1

(1− pj(0, . . . , 0, ξh,Xi)))
−1,

where the normalizing constant is given by the sum over h of the right hand
side of the expression above. It is important to underline that (5) is evaluated
conditionally on the current parameter estimates.

4.2. M step

At the M step we maximize the expected complete conditional likelihood under
the constraintC ′β = 0. It is straightforward to check that a closed form expression
is available for π̂h, that is,

π̂h =

∑
i z̃ih∑

i

∑
h z̃ih

.

Maximization of the rest of the complete conditional likelihood is slightly more
cumbersome, and we proceed as in Farcomeni (2015) through the Aitchison and
Silvey (1958) (AS) algorithm.
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The AS algorithm recognizes that optimization of the expected complete con-
ditional likelihood is equivalent to the system of non-linear equations{

s(η|η′) +Cλ = 0
C ′β = 0,

where η = (β γ ξ), s(η|η′) denotes the gradient of the expected complete likeli-
hood with respect to η, λ is a vector of unknown Lagrange multipliers, and s(·|·)
denotes the score of the expected complete likelihood. The AS algorithm pro-
ceeds by substituting s(η|η′) with a first order linear approximation based on the
Hessian −I(η|η′), that is,

s(η|η′) ≈ s(ηt|η′)− (η − ηt)
′I(ηt|η′),

where ηt is the value of η at the current iteration of the AS algorithm. The
expression for s(η|η′) is given in appendix, while I(ηt|η′) is obtained as minus
the numerical first derivative of s(η|η′).

We now augment C to obtain D, so that the constraint C ′β = 0 is equivalent
toD′η = 0. The augmented matrixD will contain rows of zeros in correspondence
of the unconstrained slopes γ. The sum to zero constraint

∑
h ξh = 0 is simply

and directly obtained with a single column of D being 1/k in correspondence of
the entries of ξ within η, and zero otherwise.

Suppose now D′ηt = 0, e.g., that the algorithm is initialized from a set of
parameters satisfying the constraints. Note that a feasible set of parameters can
always be obtained by initializing β, γ and ξ to the zero vector and πh to 1/k.

The approximated system of non-linear equations is exactly solved by the up-
dating rule

ηt+1 = ηt + I(ηt|η′)−1s(ηt|η′) + (6)

−I(ηt|η′)−1D(D′I(ηt|η′)−1D)−1(D′I(ηt|η′)−1s(ηt|η′)).

The updating rule, which is similar to the Newton-Raphson one, is then iterated
until convergence to obtain the current update of β, γ and ξ. The constraint
will be exactly satisfied for β and ξ. See also Evans and Forcina (2013) for
improvements and more details on the AS algorithm.

4.3. Population size estimates

An Horvitz-Thompson estimator for the population size is given by

N̂ =
n∑

i=1

1−
S∏

j=1

(1− pj(0, . . . , 0, ξ̂i,Xi))

−1

, (7)

where pj(·) is obtained after plug-in the MLE for all parameters and ξ̂i is the
empirical Bayes estimate of the latent location for subject i. More precisely,

ξ̂i =

k∑
h=1

ξhz̃ih,

where the posterior z̃ih is evaluated at the MLE.
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5. Conclusions

We have shown in detail a special case of the Mhotb class of models of Farcomeni
(2015). Farcomeni (2015) introduces the model class based on a general (paramet-
ric) form for the mixing distribution, giving some guidelines on latent class models
but focusing mostly on continuously supported random effects. In this paper we
have explicited and discussed in details the subtleties (e.g., why and how to impose
constraints on ξ) linked with latent class Mhotb models.

The class of models proposed is very large and provides extreme flexibility for
even the most complex capture-recapture experiments. It has proved very useful
in applications in rather different fields, see for instance the examples developed in
Farcomeni and Scacciatelli (2013) and Farcomeni (2015). In Farcomeni (2015) it
is argued, through examples and extensive simulations, that time and behavioural
heterogeneity can be rather complex in common ecological applications, and that
specifying an overly simplified model can lead to substantial bias. The proposed
approach is flexible enough to allow the researcher to capture heterogeneity. A
form of misspecification that is particularly problematic, and not investigated in
Farcomeni (2015), is that arising from the mixing distribution. In this paper we
have used latent class models, which are somehow more flexible than continuous
mixing distributions.

The are many possibilities for further work. First of all, standard errors are
not directly available from the EM algorithm output. We have used resampling so
far, but they could also possibly be obtained by combining results from Aitchison
and Silvey (1958) and Oakes (1999), as in Bartolucci and Farcomeni (2015).

Secondly, data collection is often complex and possibly imprecise with capture-
recapture, hence for Mo models the covariate matrices may include outliers. A
possibility for further work includes providing robust inference for the Mhotb model
class (see e.g. Farcomeni and Ventura (2012); Farcomeni and Greco (2015)).

Third, we rely on the conditional likelihood. In presence of unobserved hetero-
geneity, the complete likelihood may have advantages (Farcomeni and Tardella,
2012). We could work with the complete likelihood via data augmentation schemes
as in Royle (2009).

Finally, the approach could be extended to the more difficult situation of open
population models where the population size changes during the observation pe-
riod. This is straightforward and involves only multiplying the likelihood by the
appropriate individual survival and birth probabilities. Adjustments to the EM
algorithm are though really substantial, and we leave them for further work.

Acknowledgements

This work was supported in part by a grant from Sapienza - University of Rome.
The author is grateful to two referees for stimulating comments.



14 A. Farcomeni

Appendix

A. Score of the expected complete log-likelihood

The score involved in (6) at the M step of the algorithm is given in this section. In
the following we denote with Q(β,γ, ξ,β′,γ′, ξ′) the expected complete likelihood
obtained after plug-in of z̃ih. η = (β γ ξ) denotes the parameter vector to be
optimized upon, while η′ denotes the current parameter estimates which are used
to compute z̃ih.

Let a ̸= 0. For j = 1, . . . , S;

∂Q(η|η′)

∂βja
=

n∑
i=1

I(Yi1 = a1, . . . , Yi,j−1 = aj−1)

(
Yij −

∑
h

pj(a)z̃ih

)
, (8)

where I(·) is the indicator function.
Let 0 denote a vector of zeros of the opportune size. We have

∂Q(η|η′)

∂βj0
=

n∑
i=1

I(Yi1 = 0, . . . , Yi,j−1 = 0)

(
Yij −

k∑
h=1

pj(0)z̃ih

)
+ (9)

−
n∑

i=1

k∑
h=1

pj(0)
∏S

h=1(1 + exp(βh0 + ξh + γ′Xi))
−1

1−
∏S

h=1(1 + exp(βh0 + ξh + γ′Xi))−1
z̃ih

After some algebra it can also be seen that

∂Q(η|η′)

∂γh
=

k∑
l=1

n∑
i=1

Xih

S∑
j=1

(
Yij −

∫
pj(Yi,j−1, . . . , Yi1)z̃il

)
+ (10)

−
n∑

i=1

Xih

k∑
l=1

 S∑
j=1

pj(0)

 ∏S
j=1(1 + exp(βj0 + ξl + γ′Xi))

−1

1−
∏S

j=1(1 + exp(βj0 + ξl + γ′Xi))−1
z̃il

Finally,

∂Q(η|η′)

∂ξh
=

n∑
i=1

S∑
j=1

(Yij − ξhpj(Yi,j−1, . . . , Yi1, ξh,Xi)) + (11)

−
n∑

i=1

 S∑
j=1

pj(0, ξh)

 ∏S
j=1(1 + exp(βj0 + ξh + γ′Xi))

−1

1−
∏S

j=1(1 + exp(βj0 + ξh + γ′Xi))−1
z̃ih
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allowing for flexible behavioural and time response, observed heterogeneity and unob-
served heterogeneity. The latter is taken into account by means of discrete random
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