
STATISTICA, anno LXXIV, n. 4, 2014

ONE PARAMETER FAMILY OF ESTIMATORS OF
POPULATION MEAN IN TWO-OCCASION SUCCESSIVE
SAMPLING

Garib Nath Singh

Department of Applied Mathematics, Indian School of Mines, Dhanbad

Alok Kumar Singh 1

Department of Applied Mathematics, Indian School of Mines, Dhanbad

1. Introduction

Successive sampling often applied to gather information in applied sciences and
socio-economic researches where characters are liable to change over the time.
Government agencies such as National Bureau of Statistics and other research
based institutions collect information on regular basis to estimate important pop-
ulation parameters and to find the patterns of variations in these parameters over
the period of time.

The theory of successive sampling appears to have started with the work of
Jessen (1942). He utilized entire information collected on the previous occasion
in order to produce the reliable estimates on current occasion. This theory was
further extended by Patterson (1950), Rao and Graham (1964), Gupta (1979), Das
(1982) and Chaturvedi and Tripathi (1983), among others. Sen (1971) developed
estimators of the population mean on the current occasion using information on
two auxiliary variables which were readily available on previous occasion. Sen
(1972, 1973) extended his work for several auxiliary variables. Singh et al. (1991),
and Singh and Singh (2001) used the auxiliary information on current occasion
for estimating the current population mean in two occasion successive sampling.
Singh (2001) extended his work for h-occasion successive sampling.

In many practical situations, information on an auxiliary variable may be read-
ily available on the first as well as on the second occasion, for example, tonnage
(or seat capacity) of each vehicle or ship may be known in transportation survey,
many other examples may be cited where the information on auxiliary variables
are readily available on both the occasion in two-occasion successive sampling.
Utilizing the auxiliary information on both the occasions , Feng and Zou (1997),
Biradar and Singh (2001), Singh (2005), Singh and Priyanka (2006, 2007), Singh
and Priyanka (2008, 2010), Singh and Karna (2009), Singh and Vishwakarma
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(2009), Singh and Priyanka (2010), Singh et al. (2011), Singh and Prasad (2013),
Singh and Homa (2013) have proposed varieties of estimators of population mean
on current (second) occasions in two occasion successive sampling.

Singh and Shukla (1987) proposed an one parameter family of factor type ratio
estimators of population mean in single occasion sample survey and presented its
nice behaviours. The main attraction of the proposed class of estimators was, it
produces the precise estimate and at the same time controls the bias as well. This
type of the behaviour was not found in any other class of estimators. Motivated
with these points, we wish to extend the possible aspects of one parameter family
of factor type ratio estimators in two occasion successive sampling. Hence, in
this paper we propose two classes of estimators of current population mean in
two-occasion successive sampling under the assumption that the information on a
stable auxiliary variable is readily available on both occasions. Properties of the
proposed classes of estimators have been studied and suitable recommendations
are made.

2. Formulation of the Classes of Estimators

Let U = (U1, U2, ..., UN ) be the finite population of N units,which has been sam-
pled over two occasions. The character under study be denoted by x(y) on the
first (second) occasion respectively. It is assumed that the information on an aux-
iliary variable z (stable over occasion) whose population mean known and closely
related to x and y are available on first (second) occasion respectively. Let a sim-
ple random sample (without replacement) of size n is drawn on the first occasion.
A random sub sample m of m = nλ units is retained (matched) for its use on
the second occasion. While a fresh simple random sample (without replacement)
of size u of u = (n − m) = nµ is drawn on the second occasion from the entire
population so that the sample size on the current (second) occasion is also n. Here
λ and µ (λ+µ = 1) are the fractions of matched and fresh samples respectively at
the current (second) occasion. The values of λ or µ would be choosen optimally.
The following notations have been considered for the further use:

X̄ , Ȳ : The population means of the study variables x(y) on the first (second)
occasion respectively.

Z̄: The population mean of the auxiliary variable z.
x̄n, x̄m, ȳu, ȳmȳu, z̄n, z̄u: The sample means of the respective variables based

on the sample sizes shown in suffices.
ρyx, ρyz, ρxz: The population correlation coefficients between the variables

shown in suffices.
S2
x = (N − 1)−1

∑N
i=1(xi − X̄)2: The Population variance of the variable x.

S2
y , S

2
z : The population variances of the variables y and z respectively.

βyx: The population regression coefficient of y on x.
Cx, Cy, Cz: The coefficient of variations of the variables shown in suffices.
To estimate the population mean Ȳ on the current (second) occasion, two non

overlapping samples of size u and m are available. Therefore, we suggest some
relevant estimators based on these two samples.Knowing the attractive behaviours
of one parameter family of factor type ratio estimators of Singh and Shukla (1987),
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we considered this estimator for estimation of population mean Ȳ on current
occasion based on fresh sample of size u.

Tu(d) = ȳu

[
(A+ C)Z̄ + fBz̄u
(A+ fB)Z̄ + Cz̄u

]
(1)

where A = (d− 1)(d− 2), B = (d− 1)(d− 4), C = (d− 2)(d− 3)(d− 4), f = n
N

and d is non negative constant identified to minimize the mean square error of the
class of estimator Tu(d).

Remark 1. The classes of estimators Tu(d) reduce to following form of esti-
mators for different value of d.

Value of d Estimator Remark

d = 1 Tu(1) = ȳu

(
Z̄
z̄u

)
Ratio Estimator

d = 2 Tu(2) = ȳu
(
z̄u
Z̄

)
Product Estimator

d = 3 Tu(3) = ȳu

(
z̄∗
u

Z̄

)
Dual to Ratio Estimator

d = 4 Tu(4) = ȳu Sample Mean
d → ∞ Tu(d) = Tu(1) Ratio Estimator

where

z̄∗u = ȳu

[
NZ̄ − nz̄u
(N − n)Z̄

]
Again we considered two more estimators Tjm(j = 1, 2) proposed by Chand (1975)
and Kiregyera (1980) for the estimation of current population mean Ȳ based on
the matched sample of size m and presented as

T1m =
ȳm
x̄m

(
x̄n

z̄n
Z̄

)
(2)

and

T2m =
ȳm
x̄m

[x̄n + b(n)xz (Z̄ − z̄n)] (3)

where b
(n)
xz is the sample regression coefficient between the variable shown in suf-

fix. As per the philosophy of successive sampling, the class of estimators Tu is
suitable to estimate the population mean on each occasion, while the estimators
Tjm(j = 1, 2) are more appropriate for estimating the change over two occasions.
To address both the problems simultaneously, a suitable combination of Tu and
Tjm are required.

Motivated with the above arguments the final estimators of current population
mean Ȳ is consider convex linear combinations of Tu and Tjm and presented as

Tj(d, φj) = φjTu(d) + (1− φj)Tjm ; (j = 1, 2) (4)

where φj(0 ≤ φj ≤ 1) is an unknown constant (scalar) to be determined under
certain criterion.
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3. Properties of the Proposed Classes of Estimators

3.1. Bias and Mean Square Error

Since the estimator Tu(d) and Tjm (j = 1, 2; d > 0) are one-parameter family of
factor-type ratio estimators and chain-type ratio, and chain-type ratio to regres-
sion estimators respectively and they are biased estimators of the population mean
Ȳ . Therefore, the resulting classes of estimators are also biased estimators of Ȳ ,
Singh and Shukla (1987) and Cochran (1977). The bias B(.) and mean square
errors M(.) of the estimators Tj(d, φj) are derived under large sample assumption
and up to the first order of approximations using the following transformations:

ȳu = (1 + e0)Ȳ , ȳm = (1 + e1)Ȳ , x̄n = (1 + e2)X̄, x̄m = (1 + e3)X̄,
z̄u = (1 + e4)Z̄, z̄n = (1 + e5)Z̄, sxz(n) = (1 + e6)Sxz, s

2
z(n) = (1 + e7)S

2
z

such that E(ek) = 0 and |ek| ≤ 1 ∀ k = 1, 2, ..., 5.
Under the above transformations, the estimators Tu(d) and Tjm (j = 1, 2; d >

0) take the following forms:

Tu(d) = Ȳ (1 + e0)

[
(A+ C)Z̄ + fBZ̄(1 + e4)

(A+ fB)Z̄ + CZ̄(1 + e4)

]

Tu(d) = Ȳ (1 + e0)(1 + θ1e4)(1 + θ2e4)
−1 (5)

where θ1(d) =
fB

A+fB+C and θ2(d) =
C

A+fB+C

T1m =
Ȳ (1 + e1)

X̄(1 + e3)

[
X̄(1 + e2)

Z̄(1 + e5)
Z̄

]

T1m = Ȳ (1 + e1)(1 + e3)
−1(1 + e2)(1 + e5)

−1 (6)

T2m =
Ȳ (1 + e1)

X̄(1 + e3)
[X̄(1 + e2) + (1 + e6)(1 + e7)

−1Z̄βxz(−e5)]

T2m = Ȳ (−e5)(1 + e1)(1 + e3)
−1(1 + e6)(1 + e7)

−1(1 + e1)(1 + e3)
−1 Ȳ Z̄βxz

X̄
(7)

Thus we have the following theorems:

Theorem 2. Bias of the estimators Tj(d) (j = 1, 2; d > 0) to the first order
of approximations is obtained as

B(Tj(d)) = φjB(Tu(d)) + (1− φj)B(Tjm) ; (j = 1, 2) (8)

where

B(Tu(d)) = Ȳ

(
1

u
− 1

N

)
(θ2 − θ1)(θ2C

2
z − ρyzCyCz) (9)

B(T1m) = Ȳ

[(
1

m
− 1

n

)
(C2

x − ρyxCyCx) +

(
1

n
− 1

N

)
(C2

z − ρyzCyCz)

]
(10)
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B(T2m) = Ȳ

[(
1

m
− 1

n

)
(C2

x − ρyxCyCx) +

(
1

n
− 1

N

)
(ρ2xzC

2
z − ρxzρyzCyCx)

]
(11)

Proof. The bias of the estimators Tj(d) are given by

B(Tj(d)) = E[Tj(d)− Ȳ ] = φjE(Tu(d)− Ȳ ) + (1− φj)E(Tjm − ȳ)

B(Tj(d)) = φjB(Tu(d)) + (1− φj)B(Tjm) (12)

where B(Tu(d)) = E[Tu(d)− Ȳ ] and B(Tjm) = E[Tjm − Ȳ ]

To derive the B(Tu(d)), we proceed as follows:

E[Tu(d)− Ȳ ] = E[Ȳ (1 + e0)(1 + θ1e4)(1 + θ2e4)
−1)] (13)

Now we expand the right hand side of equation (13) binomially, taking expec-
tations and retaining the terms up-to the first order of approximations, we have
the expression of the bias of the estimator Tu(d) as given in equation (9).

Similarly, the bias of the estimators Tjm ;(j=1,2) are written as

E[T1m − Ȳ ] = E[Ȳ (1 + e1)(1 + e3)
−1(1 + e2)(1 + e5)

−1 − Ȳ ] (14)

E[T2m − Ȳ ] = E[Ȳ (1 + e1)(1 + e3)
−1(1 + e2)

− e5(1 + e6)(1 + e7)
−1(1 + e1)(1 + e3)

−1 Ȳ Z̄βxz

X̄
− Ȳ )] (15)

Expanding the right hand side of equation (14) and (15) binomially, taking
expectations retaining the terms up-to the first order of approximations, we have
the expressions of the bias of the estimators T1m and T2m as shown in equations
(10) and (11) respectively.

Theorem 3. Mean square error of the estimators Tj(d) (j=1, 2) to the first
degree of approximation are obtained as

M(Tj(d)) = φ2
jM(Tu(d))min + (1− φj)

2M(Tjm); (j = 1, 2) (16)

where

M(Tu(d))min =

(
1

u
− 1

N

)
(1− ρ2yz) (17)

M(T1m) = S2
y

(
1

m
(2− 2ρyx) +

1

n
(2ρyx − 2ρyz)−

1

N
(2− 2ρyz)

)
(18)

M(T2m) = S2
y

(
1

m
(2− 2ρyx) +

1

n
(2ρyx − 1− ρ2yz)−

1

N
(1− ρ2xz)

)
(19)
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Proof. Since the estimators Tu(d) and Tjm (j=1, 2) are based on two different
non overlapping samples, the covariance terms are of order O(N−1) , therefore,
they are ignored for large population size. It is obvious that mean square errors
of the estimators Tj(d) (j=1, 2) are given by

M(Tj(d)) = E[Tj(d)− Ȳ ]2 = E[φj(Tu(d)− Ȳ ) + (1− φj)(Tjm − ȳ)]2

M(Tj(d)) = φ2
jM(Tu(d)) + (1− φj)

2M(Tjm); (j = 1, 2) (20)

where M(Tu(d)) = E(Tu(d)− Ȳ )2 and M(Tjm) = E(Tjm − ȳ)2

To derive the M(Tu(d)), we proceed as follows:

E(Tu(d)− Ȳ )2 = E(Ȳ (e0 + θ1e4 − θ2e4)− Ȳ )2 (21)

Now we expand the right hand side of equation (21) binomially, taking expec-
tations and retaining the terms up-to the first order of approximations, we have
the expression of the mean square error of the estimator Tu(d) given as

M(Tu(d)) = Ȳ 2

(
1

u
− 1

N

)
(C2

y + θ2C2
z + 2θρyzCyCz) (22)

where θ(d) = θ1(d)− θ2(d).

The expression for mean square error of estimator Tu(d) derive in equation (22)
is a function of unknown constant d. To derive the optimum value of d, differen-
tiating M(Tu(d)) with respect to d and writing θ

′
for the differential coefficient of

and equate it to zero, we have

∂M(Tu(d))

∂d
= 2

(
1

u
− 1

N

)
Ȳ 2θ

′
[θC2

z + ρyzCyCz] = 0 (23)

where θ
′
= ∂θ

∂d .
Further from equation (24), we get

fB − C

A+ fB + C
= −V (24)

where V = ρ
Cy

Cx
.

On simplifying the above equation, we have the cubic equation in the form of
d. This equation can be solved for d in order to get optimum value say d = d0.
Since there will be three possible values of d. Although MSE will be minimum for
all these three values of d a criterion for selecting suitable d can be set as follows:
Out of all the possible values of optimum d, select the d = d0 as the most suitable
choice, which makes |B(Tu(d))| smallest. Using equation (24) the minimum mean
square error of the estimator M(Tu(d))min is given in (17).
Similarly the mean square errors of the estimators Tjm; (j = 1, 2) is written as

E(T1m − Ȳ )2 = E[Ȳ (e1 + e2 − e3 − e5)− Ȳ ]2 (25)
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E(T2m − Ȳ )2 = E

[
Ȳ

(
(e1 + e2 − e3)−

Z̄

X̄
βxze5

)
− Ȳ

]2
(26)

Expanding the right hand side of equations (25) and (26) binomially, taking
expectations both sides, retaining the terms up-to the first order of approxima-
tions, we have the expression of the mean square error of the estimator T1m and
T2m as shown in equation (18) and (19).

Remark 4. The above results are derived under the assumptions that the coef-
ficients of variation of variables x,y and z are approximately equal. Reddy (1978)
as described that the coefficients of variation is a stable quantity over the period
of time. Since x and y are same study variable over two occasions and z is an
auxiliary variables correlated to x and y, therefore their coefficient of variations
are assumed equal and the results are derived under these assumption.

3.2. Minimum mean square errors of the classes of estimator

Since the mean square errors of the estimator Tj(d); (j = 1, 2) in equation (16) are
the functions of the unknown constants (scalar) φj , therefore, we have minimized
them with respect to φj and subsequently the optimum value of φj is obtained as

φjopt =
M(Tjm)

M(Tu(d)) +M(Tjm)
; (j = 1, 2 ; d > 0) (27)

From equation (27), substituting the value of φjopt in equation (16) we get the
optimum mean square errors of the estimator Tj as

M(Tj(d))opt =
M(Tu(d))minM(Tjm)

M(Tu(d))min +M(Tjm)
; (j = 1, 2 ; d > 0) (28)

Further substituting the values from equations (17) - (19) in equations (27)
and (28), the simplified values of φjopt and M(Tj(d))opt(j = 1, 2) are obtained as

φ1opt =
µ1(A6 − µ1A5)

A1 − µ1A9 − µ2
1A8

(29)

M(T1)opt =

[
A14 + µ2

1A13 − µ1A15

A1 − µ2
1A8 − µ1A9

]
S2
y

n
(30)

φ2opt =
µ2(A18 + µ2A17)

A1 − µ2A20 + µ2
2A20

(31)

M(T2)opt =

[
A23 − µ2

2A22 + µ2A24

A1 + µ2
2A19 − µ2A20

]
S2
y

n
(32)

where µj =
uj

n (j = 1, 2) are the fractions of fresh sample.

A1 = 1−ρyz2, A2 = (2−2ρyx), A3 = (2ρyx−2ρyz), A4 = (2−2ρyx), A5 = A3−fA4,
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A6 = A2 +A5, A7 = A1 +A4, A8 = A3 − fA7, A9 = A1 −A2 −A8, A10 = A1A2,

A11 = A1A3, A12 = A1A4, A13 = fA11 − f2A12, A14 = A10 +A11 − fA12,

A15 = A11 − fA12 + fA10 +A13, A16 = (1 + ρ2yz − 2ρyx), A17 = A16 + fA1,

A18 = A2 −A17, A19 = A16 + 2fA1, A20 = A1 −A2 +A19, A21 = A1A16,

A22 = fA21 + f2A21, A23 = A10 −A21 − fA2
1, A24 = A21 − fA10 + fA2

1 +A22,

f =
n

N

4. Optimum replacement strategies of the classes of estimators
Tj(d)

The optimum mean square errors M(Tj)opt (j=1, 2) in equations (30) and (32)
are functions of µj (j=1, 2) (fractions of sample to be drawn afresh at the second
occasion) which play important role in reducing the cost of the survey, therefore,
to determine the optimum values of µj so that Ȳ may be estimated with maximum
precision and minimum cost, we minimize M(T1)opt and M(T2)opt with respect to
µ1 and µ2 respectively which results in a quadratic equations in µ1 and µ2 , which
are shown as

µ2
1D1 − 2µ1D2 −D3 = 0 (33)

and

µ2
2D4 − 2µ2D5 +D6 = 0 (34)

Solving the equation (33) and (34) for µ1 and µ2 respectively, the solutions of
µj (say µ̂j) (j = 1, 2) are given as

µ̂1 =
D2 ±

√
D2

2 +D1D3

D1
(35)

and

µ̂2 =
D5 ±

√
D2

5 +D4D6

D4
(36)

where, D1 = (A9A13+A8A15), D2 = (A1A13+A8A14), D3 = (A9A14−A1A15),
D4 = (A20A22 −A19A24), D5 = (A1A22 +A19A23), D6 = (A1A24 +A20A23).

From equations (35) and (36) it is clear that the real values of µ̂j (j = 1, 2)
exist, iff, the quantities under square roots are greater than or equal to zero. For
any combinations of correlations, which satisfy the condition of real solutions, two
real values of µ̂j (j = 1, 2) are possible. Hence, while choosing the values of µ̂j

, it should be remembered that 0 ≤ µ̂j ≤ 1 , all other values of µ̂j are said to
be inadmissible. If both the values of µ̂j are admissible, the lowest one is the
best choice as it reduces the cost of the survey. From equation (35) and (36),
substituting the admissible value of µ̂j (j = 1, 2) (say µ̂0

j ) in equation (30) and
(32), we have the optimum values of mean square errors of the classes of estimator
Tj(d) , which is shown below:
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M(T1)
∗
opt =

[
A14 + µ

(0)2
1 A13 − µ0

1A15

A1 − µ
(0)2
1 A8 − µ0

1A9

]
S2
y

n
(37)

M(T2)
∗
opt =

[
A23 − µ

(0)2
2 A22 + µ0

2A24

A1 + µ
(0)2
2 A19 − µ0

2A20

]
S2
y

n
(38)

5. Efficiency Comparison

The percent relative efficiencies of the classes of estimators Tj(d, φj)(j = 1, 2)
with respect to (i) sample mean estimator ȳn when there is no matching and (ii)

natural successive sampling estimator ˆ̄Y = φ∗ȳu + (1− φ∗)ȳ
′

m when no auxiliary
information is used at any occasion where,ȳ

′

m = ȳm + βyx(x̄n − x̄m) have been
computed for different choices of correlations and presented in Tables 1-2. Since

ȳn and ˆ̄Y are unbiased estimators of Ȳ , therefore, following Sukhatme et al. (1984),

the variance of ȳn and optimum variance of ˆ̄Y are given by

V (ȳn) =

(
1

n
− 1

N

)
S2
y (39)

V ( ˆ̄Y ) =
[
1 +

√
1− ρ2yx

] S2
y

2n
−

S2
y

N
(40)

For different choices of correlations ρyz, ρyx and f Tables 1-2 present the op-
timum values of µj (j = 1, 2) and the percent relative efficiencies E1 and E2

of T with respect to ȳn and ˆ̄Y respectively, where E1 = V (ȳn)
M(T1)∗opt

× 100 and

E2 = V ( ˆ̄Y )
M(T2)∗opt

× 100.

6. Interpretation of results

From Table 1 it is clear that
(a) For fixed value ofρyz and different values of f, the values of µ1, E1 and E2

are increasing with the increasing values of ρyx . This behaviour is in agreement
with Sukhatme et al. (1984), results which explain that more the value of ρyx ,
more the fraction of fresh sample required at the current occasion.

(b) For fixed value of ρyx , the values of E1 and E2 are increasing while the
values of µ1 do not follow any definite pattern with the increasing value of ρyz.

(c) Minimum value of is observed as 0.2222, which indicates that the fraction
to be replaced at the current occasion is as low as about 22 percent of the total
sample size, which leads to appreciable amount of the survey cost.

From Table 2 it is observed that
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TABLE 1
Optimum value of µ1 and PREs of T1(d) with respect to (ȳn) and ( ˆ̄Y )

f ρyz ρyx 0.4 0.5 0.6 0.7 0.8 0.9
0.6 µ1 0.2755 0.2222 ∗ ∗ 0.7945 0.7481

E1 116.34 121.44 ∗∗ ∗∗ 161.07 182.20
E2 110.95 112.40 ∗∗ ∗∗ 125.28 125.10

0.1 0.7 µ1 0.3282 0.3277 0.3049 0.1142 0.9315 0.7162
E1 139.79 147.38 156.51 166.16 196.31 222.28
E2 133.31 136.41 139.12 139.78 152.69 152.62

0.8 µ1 0.3282 0.3429 0.3578 0.3657 0.2498 0.6884
E1 179.94 190.82 204.47 222.38 246.53 297.06
E2 171.60 176.62 181.75 187.07 191.74 203.96

0.9 µ1 0.2786 0.2963 0.3185 0.3474 0.3865 0.3782
E1 275.62 294.37 318.32 350.69 398.77 484.55
E2 262.84 272.46 282.95 295.00 310.15 332.69

0.6 µ1 0.3215 0.3077 0.2492 ∗ 0.9656 0.7660
E1 109.14 114.75 121.13 ∗∗ 156.32 174.86
E2 103.44 105.14 105.98 ∗∗ 117.24 113.21

0.2 0.7 µ1 0.3449 0.3532 0.3545 0.3173 ∗ 0.7432
E1 130.06 137.58 146.86 158.56 ∗∗ 212.49
E2 123.28 126.06 128.51 130.23 ∗∗ 137.57

0.8 µ1 0.3334 0.3500 0.3689 0.3881 0.3815 0.7790
E1 166.32 176.82 190.07 207.69 232.94 283.10
E2 157.64 162.01 166.31 170.59 174.70 183.294

0.9 µ1 0.2796 0.2976 0.3202 0.3500 0.3920 0.4423
E1 252.54 270.29 293.07 324.06 370.52 455.39
E2 239.37 247.66 256.43 266.16 277.89 294.83

0.6 µ1 0.3504 0.3529 0.3421 0.2642 ∗ 0.8004
E1 101.50 106.49 113.41 121.65 ∗∗ 166.60
E2 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 101.47

0.3 0.7 µ1 0.3571 0.3703 0.3827 0.3849 0.2741 0.8103
E1 119.31 126.61 135.76 147.72 163.57 201.86
E2 112.20 114.50 116.36 117.56 116.83 120.52

0.8 µ1 0.3377 0.3556 0.3769 0.4021 0.4254 ∗
E1 151.55 161.55 174.26 191.32 216.31 ∗∗
E2 142.51 146.09 149.36 152.25 154.51 ∗∗

0.9 µ1 0.2805 0.2986 0.3216 0.3521 0.3959 0.4637
E1 228.00 244.57 265.94 295.23 339.58 422.13
E2 214.40 221.16 227.95 234.95 242.56 252.04

Note: ∗ indicate µ1 do not exist and ∗ ∗ indicate no gain.
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TABLE 2
Optimum value of µ2 and PREs of T2(d) with respect to (ȳn) and ( ˆ̄Y )

f ρyz ρyx 0.4 0.5 0.6 0.7 0.8 0.9
0.6 µ2 0.4221 0.4444 0.4721 0.5081 0.5585 0.6414

E1 123.96 130.93 139.62 151.00 167.16 194.30
E2 118.21 121.19 124.11 127.02 130.01 133.41

0.1 0.7 µ2 0.3946 0.4166 0.4440 0.4797 0.5303 0.6149
E1 144.92 153.44 164.12 178.20 198.41 232.85
E2 138.20 142.02 145.88 149.90 154.32 159.88

0.8 µ2 0.3539 0.3750 0.4015 0.4365 0.4868 0.5729
E1 183.10 194.57 209.06 228.36 256.47 305.51
E2 174.61 180.09 185.83 192.09 199.47 209.76

0.9 µ2 0.2846 0.3036 0.3277 0.3601 0.4080 0.4936
E1 276.54 295.64 320.11 353.31 402.89 493.14
E2 263.71 273.64 284.54 297.20 313.36 338.59

0.6 µ2 0.4221 0.4444 0.4721 0.5081 0.5585 0.6414
E1 115.36 122.46 131.41 143.33 160.66 190.93
E2 109.34 112.20 114.98 117.72 120.50 123.61

0.2 0.7 µ2 0.3946 0.4166 0.4440 0.4797 0.5303 0.6149
E1 134.07 142.63 153.48 168.02 189.36 227.15
E2 127.07 130.68 134.29 138.00 142.02 147.06

0.8 µ2 0.3539 0.3750 0.4015 0.4365 0.4868 0.5729
E1 167.96 179.26 193.69 213.20 242.21 294.73
E2 159.20 164.25 169.48 175.11 181.66 190.81

0.9 µ2 0.2846 0.3036 0.3277 0.3601 0.4080 0.4936
E1 250.23 268.49 292.09 324.50 373.80 466.48
E2 237.18 246.01 255.58 266.53 280.35 302.01

0.6 µ2 0.4221 0.4444 0.4721 0.5081 0.5585 0.6414
E1 105.99 113.35 122.83 135.79 155.41 192.15
E2 101.56 102.50 105.28 108.06 111.00 114.73

0.3 0.7 µ2 0.3946 0.4166 0.4440 0.4797 0.5303 0.6149
E1 122.10 130.80 142.04 157.48 181.00 225.54
E2 114.82 118.28 121.75 125.32 129.28 134.66

0.8 µ2 0.3539 0.3750 0.4015 0.4365 0.4868 0.5729
E1 151.12 162.29 176.78 196.81 227.62 286.91
E2 142.11 146.76 151.52 156.62 162.58 171.30

0.9 µ2 0.2846 0.3036 0.3277 0.3601 0.4080 0.4936
E1 221.00 238.28 260.89 292.50 341.86 439.49
E2 207.82 215.48 223.62 232.77 244.18 262.40



428 G. N. Singh and A. K. Singh

(a) For fixed value of ρyz and different values of f, the values of µ2, E1 and
E2 are increasing with increasing value of . This behaviour is in agreement with
Sukhatme et al. (1984), results which explain that more the value of ρyx, more
the fraction of fresh sample required at the current occasion.

(b) For fixed value of ρyx , the values of E1 and E2 are increasing while the
values of µ2 are decreasing with the increasing values of ρyz . This behaviour is
highly desirable in terms of percent relative efficiencies as well as the cost of the
survey. It concludes that if the information on highly correlated auxiliary variable
is available, its use at estimation stage not only pay in terms of enhance precision
of estimates but also reduces the cost of the survey as well.

(c) Minimum value of µ2 is observed as 0.2846, which indicates that the fraction
to be replaced at the current occasion is as low as about 28 percent of the total
sample size, which leads to reduction in cost to an appreciable amount.

(d) For fixed values of ρyx and ρyz , the values of µ2 are equal for different
values of f.

7. Conclusions

It is clear from the above interpretation the use of an auxiliary character is highly
rewarding in terms of the proposed classes of estimators. It is also clear that if
a highly correlated auxiliary variable is used, relatively, only a smaller fraction of
the sample on the current (second) occasion is required to be replaced by a fresh
sample, which is reducing the cost of the survey. If one has to make choice between
T1(d) and T2(d) it is visible from empirical results that for same combination of
correlation, the PRE of T2(d) is more than the PRE of T1(d) , which produces more
reliable estimates than T1(d) , hence it may be preferred for practical application.
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Summary

The goal of this paper is to consider the problem of estimation of the population
mean on current (second) occasion in two-occasion successive sampling. Some
classes of estimators have been proposed and their detailed behaviours are exam-
ined. The dominance of the suggested classes of estimators has been established
over sample mean estimator when there is no matching from the previous occasion
and the natural successive sampling estimator. Optimum replacement strategies
have been discussed. Empirical studies are carried out to study the performances of
the proposed classes of estimator and suitable recommendations have been made.

Keywords: Successive sampling; Auxiliary information; Bias; Mean square error,
Optimum replacement policy.




