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Assumptions that a finite moment of the first, second, fourth or another or-
der exists appear in many theorems in econometrics and statistics. And so it is
worthwhile to check if these assumptions are satisfied. One recent method was
proposed by Fedotenkov (2013), who suggests applying bootstrap to this problem,
and proves consistency of the suggested method. The method employs the idea
of Derman and Robbins (1955): if a sample is drawn from a distribution with an
infinite mean - under certain general assumptions when the number of observa-
tions grows, the arithmetic mean of the sample grows faster than the arithmetic
means of the subsamples of a smaller size. This method allows the researcher to
test the assumption of the existence of the finite mean, skipping the step of the
estimation of a tail index. One could think to use this test as a tail index or mo-
ment estimator so as to increase sequentially a power to which the observations
are raised until the test starts to reject the hypothesis that the corresponding fi-
nite moment exists. The smallest power at which the test starts to reject the null
hypothesis gives an inference about the tail index. Although this method of tail
index estimation sounds logical and intuitive, our paper holds that it may lead
to misleading results. One misunderstanding can already be seen at this stage:
if this method skips the calculation of the tail index, why should it be used for
tail index estimation? There are many methods designed intentionally for this
purpose, several of which are discussed below.

Hypotheses about the existence of finite moments are usually checked assum-
ing that the tail of the distribution P (X > x) behaves as x−γ , γ > 0, for large
x, estimating the tail index γ. The moments of an order larger or equal to the
tail index are infinite. The most popular method for employing this idea is the
Hill estimator (Hill 1975), which estimates 1/γ. Deheuvels et al. (1988) presented
conditions for consistency of the Hill estimator in the case of independent observa-
tions. Resnick and Stărică (1998) proved its consistency for dependent stationary
sequences. A common problem of the Hill estimator is that it is not always clear
how many observations should be used for the tail index estimation. To improve
the method, a number of modifications and improvements were suggested, includ-
ing Hill plots - where the estimates of the tail index are plotted over the number of
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observations treated as a tail, trusting that the region of stability of the plot would
give an inference about the tail index. Once again, to improve this method, Hill
plots with a logarithmic axis (Resnick and Stărică (1997), Drees, Resnick, and de
Haan (2000)) were developed, and many other methods were proposed. Another
weakness of the Hill estimator is that when applied to a sample drawn from a
light-tailed distribution with infinitely many finite moments, it provides mislead-
ing results. In such cases a more general moment estimator, such as DEdH shall
be applied (Dekkers, Einmahl and de Haan (1989)). As we show in this paper, the
use of bootstrap for testing the finiteness of higher-order moments if samples are
drawn from distributions with infinitely many finite moments may also produce
unreliable results.

The rest of this paper is organized as follows: In the next section possible
misapplications of the test are described; section 2 presents examples based on
Monte-Carlo simulations; section 3 concludes.

1. The test and its possible misapplications

Denote (X1, ..., Xn) a sample of size n drawn from a distribution F , Xi > 0, i =
1, ..., n. (X∗

1 , ..., X
∗
m) is a bootstrap subsample with replacement of size m, m →

∞, m = o(n) as n → ∞, randomly and independently drawn from (X1, ..., Xn).
The method introduced by Fedotenkov (2013) for testing the null hypothesis that
the first moment of the distribution F is finite, with an alternative that it is
infinite, works as follows: First a significance level α is chosen. Next, p-value is
calculated:

pn =
1

B

B∑
j=1

I

( m∑
s=1

X∗
j,s/m > ξ

n∑
i=1

Xi/n

)
. (1)

where I is a unity indicator function, B is the number of bootstrap subsamples
and ξ is a constant 0 < ξ < 1 (close to 1). H0 is accepted if pn > α otherwise it
is rejected.

As mentioned in Fedotenkov’s paper, if a researcher wants to test the existence
of a finite k-th order moment, k > 0, he/she should raise the observations to the
power k. Formally, the hypothesis can be reformulated in the following way:

1. H0: Distribution F has a finite k-th moment.

2. H1: Distribution F does not have a finite k-th moment.

Then, the p-value is calculated as

pn =
1

B

B∑
j=1

I

( m∑
s=1

X∗k
j,s/m > ξ

n∑
i=1

Xk
i /n

)
, (2)

the rest of the testing procedure remaining the same. The proof of consistency
of such a test easily reduces to the proof used by Fedotenkov (2013) for the first
moments.

What are the possible applications of such a test? First, if a researcher wants
to calculate descriptive statistics, such as mean, variance or skewness, the test
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helps to ascertain if such statistics are meaningful. Second, if a researcher wants
to use statistical or econometric techniques which require the assumption of the
existence of a finite moment of a specific order, this hypothesis can also be tested.
However, raising the given sample to an ever larger power until the test starts to
reject H0 so as to estimate the tail index or a number of finite moments is not
recommended. The null-hypothesis is usually supposed to be more important than
the alternative; the inequality of hypotheses leading to a bias in such an estimation.
Furthermore, even if the sample is drawn from a distribution with infinitely many
finite moments, at some power k the test starts to reject the hypothesis that the
k-th order moment is finite. This is shown in the following statement.

Denote the r-th order statistics of (X1, ..., Xn) as X(r), i.e. X(1) ≤ X(2) ≤ ... ≤
X(n).

Proposition 1. Suppose that F is a continuous distribution with a positive
support, so that 0 < X(1) < X(2) < ... < X(n). Furthermore, suppose that the
sample size n is large enough that m/n < α with the fixed significance level α, and
the number of bootstrap subsamples B is sufficiently large. Then k0 exists, k0 < ∞
such that for k > k0 the test rejects the hypothesis that the k-th order moment is
finite with probability 1.

As it is assumed that the sample is drawn from a continuous distribution, the case
X(j) = X(j−1) for any j occurs with probability equal to 0, and does not affect
the analysis.

Proof. Denote F̂(X) =
∑n

i=1 I(Xi < X)/n, and the probability measure

corresponding to the empirical distribution function F̂ as Pr∗:

Pr∗
(

1

m
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X∗k
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ξ

n
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Xk
i

)
≤ Pr∗
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n

mξ

m∑
s=1

X∗k
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(n)

)
= (3)
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(
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(n)

∣∣∣X(n) ∈ {X∗
1 , ..., X

∗
m}

)
+
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X∗k
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(n)
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∗
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)
.

First, consider the case when X(n) (the largest element in the sample) is not
in the subsample (X∗

1 , ..., X
∗
m). In this case X∗

i ≤ X(n−1), i = 1...m,

Pr∗
(

n

mξ

m∑
s=1

X∗k
s > Xk

(n)

∣∣∣X(n) /∈ {X∗
1 , ..., X

∗
m}

)
≤

Pr∗
(
n

ξ
Xk

(n−1) > Xk
(n)

∣∣∣X(n) /∈ {X∗
1 , ..., X

∗
m}

)
= 0

if k > log (nξ−1)/ log (X(n)X
−1
(n−1)) =: k0. Thus, for k > k0 the second term in the

right side of equation (3) is equal to zero.
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Consider the first term in the right side of the equation (3). Using Bernoulli’s
inequality, the probability that the largest element of the sample would be drawn
into a subsample, can be evaluated as: Pr∗(X(n) ∈ {X∗

1 , ..., X
∗
m}) = 1 − (1 −

n−1)m ≤ m/n < α. If the number of bootstrap subsamples B grows, pn, defined
in equation (2), converges almost surely to the probability defined on the left
side of equation (3) according to the Glivenko-Cantelli lemma; thus, if B is large
enough, the test rejects the hypothesis that the moment of order k is finite, k > k0,
with probability 1.

It follows from proposition 1 that even if the sample of size n is drawn from a
distribution with infinitely many finite moments, a power k0 can be found so that
the hypothesis that the k0-th (or higher) moment is finite is rejected. According to
the definition of k0, k0 is itself a random variable, but for a fixed sample this value
is fixed and finite. Definitely, if H1 is valid, when n grows, k0 also increases, and
we may expect that the probability of making the first-order mistake decreases.
But with a fixed-sample-size, increase of k may yield misleading results.

Similarly, if the sample is drawn from a distribution with super-heavy tails,
such as a log-Pareto or log-Cauchy distribution, with tail indexes equal to zero,
(such distributions do not have finite positive moments), misleading results can
be achieved. Raising the given sample to an ever-smaller power k until the test
starts to accept H0 in order to estimate the tail index is not a wise strategy either.
For distributions with super-heavy tails such an approach would overestimate
the tail index. This property is formally formulated and proved in the following
proposition.

Proposition 2. Suppose that F is a continuous distribution with a positive
support, so that 0 < X(1) < X(2) < ... < X(n). Furthermore, suppose that the
number of bootstrap subsamples B is sufficiently large. Then such k1 exists, k1 > 0
that for k, 0 < k < k1 the test accepts the hypothesis that the k-th order moment
is finite with probability one.

Proof. Recall that ξ is a constant 0 < ξ < 1.

Pr∗
(

1

m

m∑
s=1

X∗k
s >

ξ

n

n∑
i=1

Xk
i

)
= Pr∗

(
X∗k/Xk > ξ

)
≥ (4)

Pr∗
((

X(1)/X(n)

)k
> ξ

)
= 1,

if

k <
log(ξ)

log(X(1)/X(2))
= k1 > 0. (5)

Analogous to proposition 1, if the number of bootstrap subsamples B grows,
pn, defined in equation (2), converges almost surely to the probability defined in
the left side of the equation (4) according to the Glivenko-Cantelli lemma; thus,
if B is large enough, the test accepts the hypothesis that the moment of order k,
0 < k < k1, is finite with probability 1.
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Figure 1 – The smallest moments for which H0 is rejected (lognormal distribution).

2. Monte-Carlo example

In this section two Monte-Carlo examples are presented to illustrate the perfor-
mance of the test in case of distributions with infinitely large number of moments,
and no finite positive moments at all. This Monte-Carlo experiment gives some
insight about the range of moments for which the test performs well, and also gives
indications when the test makes too many mistakes. The first example illustrates
test performance for a sample drawn from the standard lognormal distribution of
size n = 200, when k increases. Lognormal distribution has infinitely many finite
moments, thus H0 is true for each k, k > 0. The bootstrap subsample size is set
to m = 5(≈ log n), parameter ξ is equalized to 0.9. 10,000 samples were drawn,
from each of them 5,000 bootstrap subsamples with replacements were randomly
selected.

Figure 1 is a histogram of the smallest integer moments for which the test
rejects the hypothesis that k-th finite moment exists. 1% of the largest values
are not included in the histogram; the inclusion of values near 350 would have
made the histogram unreadable. As seen in the figure, sometimes the numbers
of estimated moments in the samples are not large, indicating that the effects
discussed in the paper hold not only for very large moments. The test committed
no mistakes for k = 1. For higher moments the test did not perform so well.
Namely, for k = 2 the test was in error in 0.2% of cases. For k = 3 the test
rejected the null hypothesis in 2.43% of cases, and for k = 4 the rate of rejections
exceeded the 5% level (6.47%). Therefore, the conclusion can be drawn that, in
this case, the test makes a reasonable number of mistakes for k ≤ 3, and it is
better not to use it for higher moments.
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Figure 2 – The largest moments for which H0 is accepted (log-Pareto distribution).

The second example illustrates test performance in the case of super-heavy
tails. Namely, samples were drawn from a log-Pareto distribution with shape and
scale parameters equal to 1. k was then gradually reduced from k = 1 till k = 0
by 0.01 steps till the test accepted the hypothesis that the corresponding moment
was finite with the significance level 0.05. The remainder of the experimental
design (sample-sizes, number of bootstrap subsamples, etc.) was unchanged from
the previous example. The results of this experiment are presented in Figure 2.

In 1.52% of cases, the test accepted the hypothesis that the first moment is
finite; 5% error level was achieved checking the finiteness of the k > 0.67. In
31.54% of cases, the test accepted the hypothesis of the finiteness of k > 0.05
moments; in 32.62% of cases, the test rejected the hypothesis that the k = 0.01
moment is finite and made no mistakes. Again it could be concluded that the test
performed rather well for testing the finiteness of moments, which are close to 1.

The R code, which was used for simulations, can be found in the online ap-
pendix on the author’s personal web page.

3. Conclusions

This short note advises caution in using the test for the existence of finite moments,
developed by Fedotenkov (2013) to estimate tail indexes or numbers of moments.
We found that the test may perform poorly with the hypothesis that high order
moments are finite, and even if a sample is drawn from a distribution with infinitely
many finite moments, such a k0 exists that the test rejects the hypothesis about
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the k-th k ≥ k0 order finite moment existence. As Monte-Carlo simulations show,
the test performs well when it is applied for testing the finiteness of the first three
moments, with the best results for the testing if the first moment exists. Similarly,
a reduction of k, with k > 0, may overestimate the tail index if the sample is taken
from a distribution with super-heavy tails with the tail indexes equal to zero. But
the test performs rather well when it is used for testing if the finite moments of
an order close to unity exist.
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Summary

This paper discusses a bootstrap-based test, which checks if finite moments ex-
ist, and indicates cases of possible misapplication. It notes, that a procedure for
finding the smallest power to which observations need to be raised, such that the
test rejects a hypothesis that the corresponding moment is finite, works poorly as
an estimator of the tail index or moment estimator. This is the case especially
for very low- and high-order moments. Several examples of correct usage of the
test are also shown. The main result is derived analytically, and a Monte-Carlo
experiment is presented.
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