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1. Introduction

Chandler (1952) introduced the study of record values and documented many of
its basic properties. For a detailed discussion on the developments of the theory
and applications of record values, see Arnold et al. (1998). The applications of
order statistics and record values in characterizing univariate distributions are
well known. For detailed discussion on these applications, see Ahsanullah (2004),
Arnold et al. (1998), David and Nagaraja (2003) and Rao and Shanbhag (1998).
It is to be noted that in the bivariate setup, concomitants of record values assume
its importance instead of the well known record values of the univariate case.

The study of record concomitants was initiated by Houchens (1984). Develop-
ments in the theory and applications of concomitants of record values and concomi-
tants of order statistics open the door for analysis of data arising from bivariate
distributions in a new perspective. For a description about the theory of concomi-
tants of record values, see Ahsanullah and Nevzorov (2000). For a recent account
on the use of concomitants of record values in estimation, see Chacko (2007),
Chacko and Thomas (2006, 2008). Veena and Thomas (2008) and Thomas and
Veena (2011) have attempted for the first time to characterize some bivariate dis-
tributions using the properties of concomitants of order statistics. Also in the
available literature it seems Thomas and Veena (2014) is the only paper in which
some results on characterizing a class of bivariate distributions by properties of
concomitants of record values are discussed.

A difficulty that one encounters in dealing with inference problems based on
record values is about the limited occurrence of record data, as the expected
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waiting time of occurrence of every record data after the first is infinite. However
one may observe that generally the k-th record values as introduced by Dziubdziela
and Kopociński (1976) occur more frequently than those of the classical record
values. Suppose {Xn} is a sequence of independent and identically distributed (iid)
random variables with a common distribution function F (x) which is absolutely

continuous. Then for a positive integer k ≥ 1, we define the sequence {Um
(k),m ≥

1} of kth upper record times of {Xn, n ≥ 1} as follows. U1
(k) = 1, Um+1

(k) =

min{j > Um
(k) : Xj:j+k−1 > XUm

(k):Um
(k)+k−1} where we used Xr:n to denote the

rth order statistic of a sample of size n. Then Dziubdziela and Kopociński (1976)
defined the sequence {Xm,k},where Xm,k = XUm

(k):Um
(k)+k−1 as the sequence of

kth record values. The k-th member of the sequence of the classical record values
is also called as k-th record value. This contradicts with the k-th record values
as defined in Dziubdziela and Kopociński (1976). Pointing out this conflict in
the usage of k-th record values and due to the reason that when k = 1 is used,
the k-th record values defined by Dziubdziela and Kopociński (1976) generate the
classical record values, Minimol and Thomas (2013, 2014) have called the k-th
record values as defined in Dziubdziela and Kopociński (1976) as the generalized
record values. Agreeing with the contention of Minimol and Thomas (2013, 2014),
we also call the above defined k-th upper record values as generalized upper (k)
record values (GURVs) all through this paper. In a similar manner, we can also
define generalized lower (k) record values (GLRVs). If {(Xi, Yi); i = 1, 2, . . . }
is a sequence of bivariate random variables, then from the marginal sequence {Xi}
of iid univariate random variables, we can construct the sequence of GURVs. Then
the accompanying values on the variable Y of the ordered pairs with X variable
taking GURVs on the variable X defines the sequence of concomitants of GURVs.
This sequence of concomitants of GURVs may be denoted by {Y[n,k]}. Similarly
one can construct the sequence of concomitants of generalized lower (k) record
values (GLRVs) as well and is denoted by {Y(n,k)}. If we interchange the role
of X and Y in the above definition then it generates the sequences {X[n,k]} and
{X(n,k)} of concomitants of GURVs and GLRVs respectively on the variable X as
well.

Let the sequence {(Xi, Yi)} of iid random variables has the common distri-
bution function F (x, y) with pdf f(x, y). If the common marginal distribution
functions of the sequences {Xi} and {Yi} are denoted by FX(x) and FY (y) re-

spectively, then the pdf of Y[n,k], the concomitant of the nth GURV is given by
(see, Chacko and Mary, 2013)

fY[n,k]
(y) =

kn

Γ(n)

∫
x

{−log[1− FX(x)]}n−1[1− FX(x)]k−1f(x, y) dx. (1)

The pdf of X[n,k], the concomitant of the nth GURV with respect to the variable
X is then given by

fX[n,k]
(x) =

kn

Γ(n)

∫
y

{−log[1− FY (y)]}n−1[1− FY (y)]
k−1f(x, y) dy. (2)

In a similar manner the pdf’s fY(n,k)
(y) and fX(n,k)

(x) of the concomitants of the
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GLRVs Y(n,k) and X(n,k) respectively are given by

fY(n,k)
(y) =

kn

Γ(n)

∫
x

{−log[FX(x)]}n−1[FX(x)]k−1f(x, y) dx (3)

and

fX(n,k)
(x) =

kn

Γ(n)

∫
y

{−log[FY (y)]}n−1[FY (y)]
k−1f(x, y) dy. (4)

Throughout this paper we will assume that the cdf F (x, y) of the bivariate random
variable (X,Y ) is absolutely continuous with pdf f(x, y). We will assume that

f(x, y) admits the partial derivatives ∂
∂xf,

∂
∂yf,

∂2

∂x2 f,
∂2

∂y2 f. We write fX(x) to

denote the pdf of the marginal random variable X with cdf FX(x). We define
α = inf{x : fX(x) > 0} and β = sup{x : fX(x) > 0} so that fX(x) is non-
vanishing in the set (α, β) and Lebesgue integrable. Similarly if we write the cdf
and pdf of the marginal random variable Y as FY (y) and fY (y) respectively and
define γ = inf{y : fY (y) > 0}, δ = sup{y : fY (y) > 0}, then fY (y) is non-
vanishing in the set (γ, δ) and Lebesgue integrable. We will also assume in this
section that the marginal densities fX(x) and fY (y) admit the first two derivatives.
If we consider the family F of distributions with the pdf f(x, y) as defined above
has a form for f(x, y) given by

f(x, y) = fX(x)fY (y) +

t∑
i=1

αi{FX(x)[1− FX(x)]}mi [1− 2FX(x)]fX(x)

× {FY (y)[1− FY (y)]}pi [1− 2FY (y)]fY (y), (5)

where t is a positive integer, mi, pi, i = 1, 2, . . . , t are non-negative reals and αi’s
are constants constrained to lie in suitable intervals about zero, so that the support
set of (X,Y ) is (α, β) × (γ, δ), then F is known as the generalized Morgenstern
family of bivariate distributions (GMFBD). For more details regarding this family
F of distributions, see Veena and Thomas (2008) and Thomas and Veena (2011).

If we put t = 1, α1 = α,m1 = p1 = 0, then the form of the pdf of the case
reduces to

h(x, y) = fX(x)fY (y) + α[1− 2FX(x)]fX(x)[1− 2FY (y)]fY (y). (6)

The sub-family M of distributions (M ⊂ F) with pdf as given above is called the
Morgenstern family of bivariate distributions.

In section 2, we prove a theorem characterizing GMFBD with pdf given by (5)
and this theorem provides the extension of the results given in Thomas and Veena
(2014) relating to the concomitants of record values to the concomitants of gener-
alized record values case. The immediate application of the results of the theorem
in modeling a bivariate distribution based on bivariate data sets available from
a distribution has been also pointed out in section 2. In section 3, we establish
the role of concomitants of GURVs in the unique determination of the parent bi-
variate distribution. In this section, we have demonstrated how the concomitants
of GURVs arising from the Morgenstern family of bivariate distributions and the
concomitants of classical record values arising from GMFBD determine the re-
spective parent bivariate distributions uniquely. Section 4 deals with the role of
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concomitants of GLRVs in the unique determination of the parent bivariate dis-
tribution. In this section we have illustrated how the concomitants of GLRVs
arising from Morgenstern family of bivariate distributions and the concomitants
of classical record values arising from GMFBD determine the respective parent
bivariate distributions uniquely. Sections 3 and 4 describe additional new results
which provide certain conditions associated with GURVs and GLRVs which de-
termine uniquely the parent bivariate distribution. Some illustrations also have
been provided in these sections.

2. Characterization of the generalized Morgenstern family of bi-
variate distributions

We establish now the following theorem describing certain properties of concomi-
tants of generalized record values which characterize the generalized Morgenstern
family F of bivariate distributions.

Theorem 1. For any positive integer n ≥ 2, fY[n,k]
(y) + fY(n,k)

(y)
= 2fY (y), ∀y ∈ (γ, δ) and fX[n,k]

(x)+fX(n,k)
(x) = 2fX(x), ∀x ∈ (α, β) if and only

if the parent bivariate distribution belongs to the generalized Morgenstern family
F of bivariate distributions with pdf (5).

Proof. Suppose the parent bivariate distribution is defined by the pdf f(x, y)
as given in (5). Then from (1) and (3) we have

fY[n,k]
(y) + fY(n,k)

(y) =

∫
x

{k
n[−logFX(x)]n−1[FX(x)]k−1

(n− 1)!

+
kn[−log(1− FX(x))]n−1[1− FX(x)]k−1

(n− 1)!
}f(x, y)dx.

Here∫
x

kn[−logFX(x)]n−1[FX(x)]k−1

(n− 1)!
fX(x)fY (y)dx

=

∫
x

kn[−log(1− FX(x))]n−1[1− FX(x)]k−1

(n− 1)!
fX(x)fY (y)dx

= fY (y)
and

t∑
i=1

αi{FY (y)[1− FY (y)]}pi [1− 2FY (y)]fY (y)

×
∫
x

{
kn[−logFX(x)]n−1[FX(x)]k−1

(n− 1)!

+
kn[−log(1− FX(x))]n−1[1− FX(x)]k−1

(n− 1)!

}
{FX(x)[1− FX(x)]}mi

× [1− 2FX(x)]fX(x)dx = 0,

as

∫
x

{kn [−log(1− FX(x))]n−1[1− FX(x)]k−1

(n− 1)!
}{FX(x)[1− FX(x)]}mi
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× [1− 2FX(x)]fX(x)dx

=

∫ ∞

0

knun−1

(n− 1)!
(1− e−u)mi(e−u)mi+k[e−u − (1− e−u)]du

and

∫
x

{k
n[−logFX(x)]n−1[FX(x)]k−1

(n− 1)!
}{FX(x)[1− FX(x)]}mi

× [1− 2FX(x)]fX(x)dx

=

∫ ∞

0

knun−1

(n− 1)!
(1− e−u)mi(e−u)mi+k[(1− e−u)− e−u]du.

Thus, for any n ≥ 2, we obtain

fY[n,k]
(y) + fY(n,k)

(y) = 2fY (y), ∀y ∈ (γ, δ).

Similarly, using (2) and (4) we obtain for any n ≥ 2,

fX[n,k]
(x) + fX(n,k)

(x) = 2fX(x), ∀x ∈ (α, β).

Conversely, assume that for n ≥ 2,

fY[n,k]
(y) + fY(n,k)

(y) = 2fY (y), ∀y ∈ (γ, δ) and

fX[n,k]
(x) + fX(n,k)

(x) = 2fX(x), ∀x ∈ (α, β).

Then from the first equation we have∫
x

{
kn[−logFX(x)]n−1[FX(x)]k−1

(n− 1)!

+
kn[−log(1− FX(x))]n−1[1− FX(x)]k−1

(n− 1)!

}
f(x, y)dx = 2fY (y).

That is,

∫
x

{
kn[−logFX(x)]n−1[FX(x)]k−1

(n− 1)!

+
kn[−log(1− FX(x))]n−1[1− FX(x)]k−1

(n− 1)!

}
a(x, y)dx = 0, (7)

where a(x, y) = f(x, y)−fX(x)fY (y). Clearly (7) explains that the function within
the integral of its left side is integrable and when integrated it gives a value equal
to zero. We know that

−logFX(x) =
∞∑
j=1

[1− FX(x)]j

j
and −log(1 − FX(x)) =

∞∑
j=1

[FX(x)]j

j
. It follows

that [−logFX(x)]n−1[FX(x)]k−1 and [−log(1− FX(x))]n−1 ×[1− FX(x)]k−1 have
similar power series expressions with arguments 1 − FX(x) and FX(x) respec-

tively. Also since [1− FX(x)]
i
+ [FX(x)]i can be written further as a polynomial

in FX(x)[1− FX(x)] (Thomas and Veena, 2011,see), we can represent (7) by the
following: ∫

x

∞∑
i=1

ci{FX(x)[1− FX(x)]}ia(x, y)dx = 0,∀y ∈ (γ, δ), (8)
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where ci’s are constants and each term in the integrand is integrable as a(x, y) =
f(x, y)− fX(x)fY (y). Now on integrating by parts the integral on the left side of
(8) we get

[
a(x, y)

[1− 2FX(x)]fX(x)

∞∑
i=1

ci
{FX(x)[1− FX(x)]}i+1

i+ 1

]β

α

−
∫ β

α

∂

∂x

{
a(x, y)

[1− 2FX(x)]fX(x)

} ∞∑
i=1

ci
{FX(x)[1− FX(x)]}i+1

i+ 1
dx = 0

(9)

where the first term of the above expression is clearly equal to zero and the second
term should be integrable as (9) is derived from the integrable function given in (8).
Clearly for all choices of a(x, y) at the neighbourhood of the median of the marginal

random variable X and for given y the function ∂
∂x

[
a(x,y)

[1−2FX(x)]fX(x)

]
may not be

bounded as a function of x. However if we substitute K1(x, y)[1− 2FX(x)]fX(x)
for a(x, y), where for given y, ∂

∂xK1(x, y) is bounded for all x ∈ (α, β), then it

makes ∂
∂x

[
a(x,y)

[1−2FX(x)]fX(x)

]
bounded as a function of x over (α, β). Also

a(x, y) = K1(x, y)[1− 2FX(x)fX(x) (10)

makes the second term of (9) integrable. Hence any possible solution of a(x, y) in
(8) is of the form given by (10). Now using a(x, y) = K1(x, y)[1 − 2FX(x)]fX(x)
within the integral of (9), applying integration by parts once again and simplifying
we obtain∫ β

α

∂

∂x

{
∂
∂x [K1(x, y)]

[1− 2FX(x)]fX(x)

} ∞∑
i=1

di{FX(x)[1− FX(x)]}i+2 dx = 0, (11)

where di =
ci

(i+1)(i+2) , i = 1, 2, . . . , . Once again following similar arguments as put

forwarded already, we can say that ∂
∂x [K1(x, y)] can have a representation given

by K2(x, y)[1−2FX(x)]fX(x), where for given y, K2(x, y) is bounded as a function
of x,∀x ∈ (α, β). Clearly if we put

K1(x, y) = M1(y){FX(x)[1− FX(x)]}m, (12)

where M1(y) is a function of y alone and m is a non-negative real number, then

∂

∂x
[K1(x, y)] = K2(x, y)[1− 2FX(x)]fX(x), (13)

where K2(x, y) = mM1(y){FX(x)[1− FX(x)]}m−1. Suppose we take either
K0(x, y){FX(x)[1 − FX(x)]}m1 as the value of K1(x, y) or assume that it en-
ters in K1(x, y) as one of the terms but ceases to be expressed in the form
M2(y){FX(x)[1 − FX(x)]}m1 , such that M2(y) is a function of y alone and m1
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is a non-negative real number, then

∂

∂x
{K0(x, y){FX(x)[1− FX(x)]}m1}

=
∂

∂x
{K0(x, y)}{FX(x)[1− FX(x)]}m1

+K0(x, y)m1{FX(x)[1− FX(x)]}m1−1[1− 2FX(x)]fX(x).

Clearly the right side of the above equation does not generally lead one to have
a representation of the type (13) and this contradicts the integrability of the left
side of (11), as in this case [1 − 2FX(x)] remains in the denominator as such in
one of the terms and hence it takes a value 0, when x takes the median value of
the random variable X.

This proves that any form of K1(x, y) other than that given by (12) ceases to
be a solution of K1(x, y) in (11). In general a linear form of functions of the type
Mi(y){FX(x)[1 − FX(x)]}mi , for i=1,2,... could be taken as a general solution
to K1(x, y) without affecting the boundedness of the functions involved and the
integrability of the integrand in the left side of (9). Hence there exists a positive
integer t such that the most general representation of a(x, y) as a solution to (8)
takes the form

a(x, y) =
t∑

i=1

αiMi(y){FX(x)[1− FX(x)]}mi [1− 2FX(x)]fX(x), (14)

where αi’s are constants constrained to lie in suitable intervals about zero, mi’s
are non-negative real numbers and Mi(y)’s are functions of y alone. Similarly,
from the condition
fX[n,k]

(x) + fX(n,k)
(x) = 2fX(x), ∀x ∈ (α, β), we get

a(x, y) =
t∑

i=1

αiPi(x){FY (y)[1− FY (y)]}pi [1− 2FY (y)]fY (y), (15)

where pi’s are non-negative real numbers and Pi(x)’s are functions of x alone.
Since (14) and (15) represents the same function the number of terms in them

and the αi’s involved are identically same in both representations. Also as (14)
and (15) should be identically equal, we have

a(x, y) =

t∑
i=1

αi{FX(x)[1− FX(x)]}mi [1− 2FX(x)]fX(x)

×{FY (y)[1− FY (y)]}pi [1− 2FY (y)]fY (y).

This proves that the parent distribution has a pdf f(x, y) given by (5). 2

As an immediate consequence of Theorem 1, we have the following corollary.

Corollary 2. Let FY[2,k]
(y), FY(2,k)

(y), FX[2,k]
(x), FX(2,k)

(x) denote the cumu-
lative distribution functions of Y[2,k], Y(2,k), X[2,k], X(2,k) respectively.

Then 1
2 [FY[2,k]

(y)+FY(2,k)
(y)] = FY (y), ∀y and 1

2 [FX[2,k]
(x)+FX(2,k)

(x)] = FX(x),
∀x if and only if the parent distribution belongs to generalized Morgenstern family
of distributions with pdf f(x, y) as given in (5).
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Remark 3. Suppose we are searching for a suitable bivariate distribution to
model a population distribution from which several samples are available. Then,
one may observe Y[2,k], Y(2,k), X[2,k], X(2,k) for each sample and construct the

empirical cumulative distribution functions F̂Y[2,k]
, F̂Y(2,k)

, F̂X[2,k]
and F̂X(2,k)

from

the repeatedly observed bivariate samples. Let F̂X and F̂Y denote the empirical
distributions of the marginal X observations and marginal Y observations respec-
tively. If the graph of 1

2{F̂Y[2,k]
+ F̂Y(2,k)

} is seen identical with that of F̂Y and the

graph of 1
2{F̂X[2,k]

+ F̂X(2,k)
} is seen identical with that of F̂X , then as a result of

Corollary 2, we can limit our search for a distribution from the generalized Mor-
genstern family of bivariate distributions defined with pdf (5) for constructing an
appropriate model to the data.

Remark 4. If sufficient number of X[n,k], X(n,k), Y[n,k] and Y(n,k), for any
n > 2 are observable from the repeated samples drawn from the parent bivari-
ate population, then for that n also we can construct the empirical distribution
functions F̂X[n,k]

, F̂X(n,k)
, F̂Y[n,k]

and F̂Y(n,k)
and ascertain the identical nature of

graphs for 1
2{F̂X[n,k]

+ F̂X(n,k)
} and F̂X together with the identical nature of graphs

for 1
2{F̂Y[2,k]

+ F̂Y(2,k)
} and F̂Y to suggest the model (5) to the distribution of the

population.

Remark 5. When compared with classical record values, the occurrence of both
GURVs and GLRVs are generally more in number and this makes the applica-
tions of the above remarks more versatile than the corresponding result available
in Thomas and Veena (2014) for concomitants of classical record values.

3. Role of Concomitants of GURVs in the Unique Determination of
a Bivariate Distribution

We observe from Arnold et al. (1998) that the pdf of record values determines
uniquely the parent distribution. In this section we obtain similar results on
concomitants of generalized (k) record values in the unique determination of a
parent bivariate distribution. To establish the results we now define the following.

Definition 6. Associated with the pdf of Y[n,k] given by

fY[n,k]
(y) =

kn

Γ(n)

∫
x

{−log[1− FX(x)]}n−1[1− FX(x)]k−1f(x, y) dx (16)

we define a family of functions given by

fYA[ω,k]
(y) =

kω

Γ(ω)

∫
x

{−log[1− FX(x)]}ω−1[1− FX(x)]k−1f(x, y) dx (17)

for ω > 0. Clearly fYA[ω,k]
(y) is a pdf for every ω > 0 and is defined as the

auxiliary density function determined by fY[n,k]
(y). Similarly the auxiliary density

function determined by fX[n,k]
(x) is given by

fXA[ω,k]
(x) =

kω

Γ(ω)

∫
y

{−log[1− FY (y)]}ω−1[1− FY (y)]
k−1f(x, y) dy, (18)
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for ω > 0.

Note 3.1. Clearly if the parameter ω in the auxiliary density functions in (17)
and (18) is replaced by n, then they are the pdf’s of concomitants Y[n,k] and X[n,k]

respectively.

Theorem 7. Let h(x, y) be the pdf of a continuous bivariate distribution with
marginal pdf’s fX(x) and fY (y) and corresponding marginal distribution functions
FX(x) and FY (y) respectively. Let the pdf of the concomitant of the nth GURV
be fY[n,k]

(y). Then the pdf’s fX(x) and fYA[ω,k]
(y) together determine uniquely the

bivariate distribution h(x, y).

Proof. Clearly the auxiliary density function determined by fY[n,k]
(y)

is fYA[ω,k]
(y), ω > 0.

fYA[ω,k]
(y) =

kω

Γ(ω)

∫
x

{−log[1− FX(x)]}ω−1[1− FX(x)]k−1f(x, y) dx. (19)

=

∫
x

kω{−log[1− FX(x)]}ω−1[1− FX(x)]k−1

(ω − 1)!
fY (y)fX|Y (x|y)dx

=
fY (y)k

ω

Γ(ω)

∫
x

{−log[1− FX(x)]}ω−1[1− FX(x)]k−1fX|Y (x|y)dx

=
fY (y)k

ω

Γ(ω)
E{[−log[1− FX(X)]]ω−1[1− FX(x)]k−1|y}

=
fY (y)k

ω

Γ(ω)
E{Uω−1[exp(−U)]k−1|y},

where U = −log[1− FX(X)] and the the support set of U is (0,∞). Hence

fYA[ω,k](y) =
fY (y)kω

Γ(ω)

∫ ∞

0

uω−1[e−u]k−1fU |Y (u|y)du.

Thus if we write ∫ ∞

0

uω−1[e−u]k−1fU |Y (u|y)du = My,k(ω), (20)

then for any given y and k, My,k(ω) is a Mellin transform. Hence by unique-
ness property of Mellin transform, we can determine [e−u]k−1fU |Y (u|y)fY (y) =

[e−u]k−1hU,Y (u, y) by inversion and thereby determine hU,Y (u, y).
But u = −log[1 − FX(x)] is a monotone function. By transformation of variable
we can then determine h(x, y) uniquely. Hence the theorem. 2

Corollary 8. Let h(x, y) be the pdf of a continuous bivariate distribution
with marginal pdf’s fX(x) and fY (y) and corresponding marginal distribution
functions FX(x) and FY (y) respectively. Let the pdf of the concomitant of the
nth GURV be fX[n,k]

(x). Then the pdf’s fY (y) and fXA[ω,k]
(x) together determine

uniquely the bivariate distribution h(x, y).
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The proof of the above corollary is omitted as it is just similar to the proof of
Theorem 7.

3.1. Inversion technique of determining the parent bivariate distribution using
the distribution of concomitant of the GURV

Example 3.1. Suppose fX(x) is the pdf of the first marginal random variable
X of a bivariate random vector (X,Y ). If

fY[n,k]
(y) = fY (y) + ρ[1− 2FY (y)]fY (y)(

2kn

(k + 1)n
− 1),−1 < ρ < 1

represents the pdf of Y[n,k], the concomitant of the GURV arising from the given
parent bivariate distribution with pdf fY (y) and cdf FY (y) on the other marginal
random variable Y , then the pdf h(x, y) of the parent bivariate distribution is

h(x, y) = fX(x)fY (y){1 + ρ[1− 2FX(x)][1− 2FY (y)]} (21)

Proof. Since fY[n,k]
(y) is the pdf of the concomitant Y[n,k] we write

fYA[ω,k]
(y) = fY (y) + ρ[1− 2FY (y)]fY (y)(

2kω

(k+1)ω − 1).

From the proof of theorem 7, it is clear that

fYA[ω,k]
(y) =

kω

Γ(ω)
fY (y)

∫ ∞

0

vω−1(e−v)k−1fV |Y (v|y)dv, (22)

where v = −log[1 − FX(x)] and

∫ ∞

0

vω−1(e−v)k−1fV |Y (v|y)dv = My,k(ω) is the

Mellin transform of (e−v)k−1fV |Y (v|y). Also from (22) we have

My,k(ω) =
Γ(ω)fYA[ω,k]

(y)

kωfY (y) = Γ(ω)
kω + ρ[1− 2FY (y)](

2Γ(ω)
(k+1)ω − Γ(ω)

kω ).

From Bateman (1954), we have

(e−v)k−1fV |Y (v|y) = (e−v)k + β[1− 2FY (y)][2(e
−v)k+1 − (e−v)k].

Hence

fV |Y (v|y) = e−v + β[1− 2FY (y)][2(e
−v)2 − e−v].

As v = −log[1 − FX(x)] is a monotone function, by applying transformation of
variables we get

fX|Y (x|y) = fX(x) + ρ[1− 2FY (y)]fX(x)[1− 2FX(x)].

We then have

h(x, y) = fX(x)fY (y){1 + ρ[1− 2FX(x)][1− 2FY (y)]}. (23)

2
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Clearly h(x, y) as given in (23) is the well known Morgenstern bivariate distri-
bution determined by the marginal distribution functions FX(x) and FY (y).

It is to be noted that theorem 7 is true for every positive integer k. Hence
when we put k = 1 in the theorem, it becomes the statement of the unique de-
termination of parent bivariate distribution based on the concomitants of classical
record values. The following example illustrates the application of theorem 7 in
this case.

Example 3.2. Suppose fX(x) is the pdf of the first marginal random variable
of a bivariate random vector (X,Y ). If for mi > 0, qi > 0 and suitable αi for
i = 1, 2, . . . , t are such that
fY[n]

(y) = fY (y) +
∑t

i=1 αi[FY (y)]
qi [1− FY (y)]

qi [1− 2FY (y)]fY (y)

×
∑mi−1

r=0

(
mi − 1

r

)
(−1)r( 2

(mi+r+2)n − 1
(mi+r+1)n )

represents the pdf of concomitant of the nth upper record value arising from the
given parent bivariate distribution where fY (y) and FY (y) are the pdf and cdf
of an arbitrary random variable Y , then the pdf h(x, y) of the parent bivariate
distribution is

h(x, y) = fX(x)fY (y) + fX(x)fY (y)
t∑

i=1

αi[FX(x)]mi [1− FX(x)]mi

×[1− 2FX(x)][FY (y)]
qi [1− FY (y)]

qi [1− 2FY (y)]. (24)

Proof. Since fY[n]
(y) is the pdf of the concomitant Y[n] we write

fYA[ω]
(y) = fY (y) +

∑t
i=1 αi[FY (y)]

qi [1− FY (y)]
qi [1− 2FY (y)]fY (y)

×
∑mi−1

r=0

(
mi − 1

r

)
(−1)r( 2

(mi+r+2)ω − 1
(mi+r+1)ω ).

From the proof of theorem 7, it is clear that

fYA[ω]
(y) =

fY (y)

Γ(ω)

∫ ∞

0

vω−1(e−v)k−1fV |Y (v|y)dv, (25)

where v = −log[1 − F (x)] and

∫ ∞

0

vω−1(e−v)k−1fV |Y (v|y)dv = My,k(ω) is the

Mellin transform of (e−v)k−1fV |Y (v|y). Also from (25) we have

My,k(ω) =
Γ(ω)fYA[ω]

(y)

fY (y)

= Γ(ω) +
∑t

i=1 αi[FY (y)]
qi [1− FY (y)]

qi [1− 2FY (y)]

×
∑mi−1

r=0

(
mi − 1

r

)
(−1)r( 2Γ(ω)

(mi+r+2)ω − Γ(ω)
(mi+r+1)ω ).

From Bateman (1954), we have

(e−v)k−1fV |Y (v|y) = (e−v)k + ρ
t∑

i=1

αi[FY (y)]
qi [1− FY (y)]

qi
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×[1− 2FY (y)]

mi−1∑
r=0

(
mi − 1

r

)
(−1)r[2(e−v)mi+r+2 − (e−v)mi+r+1].

= (e−v)k +

t∑
i=1

αi[FY (y)]
qi [1− FY (y)]

qi [1− 2FY (y)]

× (e−v)mi(1− e−v)mi [2(e−v)k+1 − (e−v)k].

Hence

fV |Y (v|y) = e−v +

t∑
i=1

αi[FY (y)]
qi [1− FY (y)]

qi [1− 2FY (y)]

× (e−v)mi(1− e−v)mi [2(e−v)− 1].

As v = −log[1 − FX(x)] is a monotone function, by applying transformation of
variables we get

fX|Y (x|y) = fX(x) +
t∑

i=1

αi[FX(x)]mi [1− FX(x)]mi [1− 2FX(x)]fX(x)

× [FY (y)]
qi [1− FY (y)]

qi [1− 2FY (y)].
We then have

h(x, y) = fX(x)fY (y) + fX(x)fY (y)

t∑
i=1

αi[FX(x)]mi [1− FX(x)]mi

×[1− 2FX(x)][FY (y)]
qi [1− FY (y)]

qi [1− 2FY (y)]. (26)

2

It is to be noted that (26) is the well known generalized Morgenstern bivariate
distribution as defined in (5).

4. Role of Concomitants of GLRVs in the Unique Determination of
a Bivariate Distribution

We observe from Arnold et al. (1998) that the pdf of record values determines
uniquely the parent distribution. In this section we obtain similar results on con-
comitants of GLRVs in the unique determination of a parent bivariate distribution.
To establish the results we now define the following.

Definition 9. Associated with the pdf of Y(n,k) given by

fY(n,k)
(y) =

kn

Γ(n)

∫
x

{−log[FX(x)]}n−1[FX(x)]k−1f(x, y) dx (27)

we define a family of functions given by

fYA(ω,k)
(y) =

kω

Γ(ω)

∫
x

{−log[FX(x)]}ω−1[FX(x)]k−1f(x, y) dx (28)
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for ω > 0. Clearly fYA(ω,k)
(y) is a pdf for every ω > 0 and is defined as the

auxiliary density function determined by fY(n,k)
(y). Similarly the auxiliary density

function determined by fX(n,k)
(x) is given by

fXA(ω,k)
(x) =

kω

Γ(ω)

∫
y

{−log[FY (y)]}ω−1[FY (y)]
k−1f(x, y) dy, ω > 0. (29)

Note 4.1. Clearly if the parameter ω in the auxiliary density functions in (28)
and (29) is replaced by n, then they are the pdf’s of concomitants Y(n,k) and X(n,k)

respectively.

Theorem 10. Let h(x, y) be the pdf of a continuous bivariate distribution with
marginal pdf’s fX(x) and fY (y) and corresponding marginal distribution functions
FX(x) and FY (y) respectively. Let the pdf of the concomitant of the nth GLRV be
fY(n,k)

(y). Then the pdf’s fX(x) and fYA(ω,k)
(y) together determine uniquely the

bivariate distribution h(x, y).

Proof. Clearly the auxiliary density function determined by fY(n,k)
(y)

is fYA(ω,k)
(y), ω > 0.

fYA(ω,k)
(y) =

kω

Γ(ω)

∫
x

{−log[FX(x)]}ω−1[FX(x)]k−1f(x, y) dx. (30)

=

∫
x

kω{−log[FX(x)]}ω−1[FX(x)]k−1

(ω − 1)!
fY (y)fX|Y (x|y)dx

=
fY (y)k

ω

Γ(ω)

∫
x

{−log[FX(x)]}ω−1[FX(x)]k−1fX|Y (x|y)dx

=
fY (y)k

ω

Γ(ω)
E{[−log[FX(X)]]ω−1[FX(x)]k−1|y}

=
fY (y)k

ω

Γ(ω)
E{Uω−1[exp(−U)]k−1|y},

where U = −log[FX(X)] and the the support set of U is (0,∞). Hence

fYA(ω,k)(y) =
fY (y)kω

Γ(ω)

∫ ∞

0

uω−1[e−u]k−1fU |Y (u|y)du.

Thus if we write ∫ ∞

0

uω−1[e−u]k−1fU |Y (u|y)du = My,k(ω), (31)

then for any given y and k, My,k(ω) is a Mellin transform. Hence by unique-
ness property of Mellin transform, we can determine [e−u]k−1fU |Y (u|y)fY (y) =

[e−u]k−1hU,Y (u, y) by inversion and thereby determine hU,Y (u, y).
But u = −log[FX(x)] is a monotone function. By transformation of variable we
can then determine h(x, y) uniquely. Hence the theorem. 2
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Corollary 11. Let h(x, y) be the pdf of a continuous bivariate distribution
with marginal pdf’s fX(x) and fY (y) and corresponding marginal distribution func-
tions FX(x) and FY (y) respectively. Let the pdf of the concomitant of the nth

GLRV be fX(n,k)
(x). Then the pdf’s fY (y) and fXA(ω,k)

(x) together determine
uniquely the bivariate distribution h(x, y).

The proof of the above corollary is omitted as it is just similar to the proof of
Theorem 10.

4.1. Inversion technique of determining the parent bivariate distribution using
the distribution of concomitant of the GLRV

Example 4.1. Suppose fX(x) is the pdf of the first marginal random variable
X of a bivariate random vector (X,Y ). If

fY(n,k)
(y) = fY (y) + ρ[1− 2FY (y)]fY (y)(1−

2kn

(k + 1)n
),−1 < ρ < 1

represents the pdf of Y(n,k), the concomitant of the GLRV arising from the given
parent bivariate distribution with pdf fY (y) and cdf FY (y) on the other marginal
random variable Y , then the pdf h(x, y) of the parent bivariate distribution is

h(x, y) = fX(x)fY (y){1 + ρ[1− 2FX(x)][1− 2FY (y)]} (32)

The proof follows similarly as in the case of Example 3.1.
It is to be noted that theorem 10 is true for every positive integer k. Hence when

we put k = 1 in the theorem, it becomes the statement of the unique determination
of parent bivariate distribution based on the concomitants of classical lower record
values. The following example illustrates the application of theorem 10 in this case.

Example 4.2. Suppose fX(x) is the pdf of the first marginal random variable
of a bivariate random vector (X,Y ). If for mi > 0, qi > 0 and suitable αi for
i = 1, 2, . . . , t are such that
fY(n)

(y) = fY (y) +
∑t

i=1 αi[FY (y)]
qi [1− FY (y)]

qi [1− 2FY (y)]fY (y)

×
∑mi−1

r=0

(
mi − 1

r

)
(−1)r( 1

(mi+r+1)n − 2
(mi+r+2)n )

represents the pdf of concomitant of the nth lower record value arising from the
given parent bivariate distribution where fY (y) and FY (y) are the pdf and cdf
of an arbitrary random variable Y , then the pdf h(x, y) of the parent bivariate
distribution is

h(x, y) = fX(x)fY (y) + fX(x)fY (y)
t∑

i=1

αi[FX(x)]mi [1− FX(x)]mi

×[1− 2FX(x)][FY (y)]
qi [1− FY (y)]

qi [1− 2FY (y)]. (33)

The proof follows similarly as in the case of Example 3.2.
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Summary

In this paper we have derived some properties of concomitants of generalized (k)
record values which characterize the generalized Morgenstern family of bivariate
distributions. The role of concomitants of generalized (k) record values in the
unique determination of the parent bivariate distribution has been established.
We have also illustrated how the concomitants of generalized (k) record values
characterize the Morgenstern family of bivariate distributions.
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