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1. Introduction

To quantify the statistical nature of lost information in communication channels
mathematically, Shannon (1948) introduced a concept (known as the Shannon en-
tropy) analogous to the entropy described in statistical thermodynamics. Let X
be a non-negative random variable representing the lifetime of a component with
an absolutely continuous cumulative distribution function (CDF) F (x), probabil-
ity density function (PDF) f(x), survival function (SF) F̄ (x) = 1 − F (x) and
hazard rate (HR) λF (x) = f(x)/F̄ (x). The Shannon entropy of X is given by
S(X) = −

∫∞
0

f(x) ln f(x)dx, which has received considerable popularity in a wide
variety of contexts. For a detailed account of importance and applications of the
notion of entropy in various disciplines one may refer to Cover and Thomas (2006).
The Shannon entropy S(X) can be seen as a negative logarithm moment as it is
expectation of logarithm of the fundamental measure with a negative sign. As
different moments divulge different information on the distribution, it is expected
that other entropies (generalized) may divulge different characteristics of the data
set. Due to this reason, several general families of entropy measures have been
introduced in the literature. In this direction we refer to Renyi (1961); Varma
(1966); Kapur (1967); Tsallis (1988). Note that these generalized measures have
several properties such as smoothness, large dynamic range with respect to certain
conditions that make them useful for specific applications (see for example, Varma,
1966; Renyi, 2012; Tsallis, 1988; Kapur, 1994). Pharwaha and Singh (2009) de-
termined randomness of mammograms based on some non-Shannon measures as
these have higher dynamic range than the Shannon measure over a variety of
scattering conditions and therefore, useful in the problems of estimating scatter
density and regularity (see Smolikovd et al., 2002). For a non-negative random
variable X, the generalized entropy (see Varma, 1966) of order (α, β) is given by

Vα,β(X) =
( 1

β − α

)
ln

∫ ∞

0

fα+β−1(x)dx, 0 ≤ β − 1 < α < β. (1)
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Note that as β equals to 1, (1) reduces to the Renyi entropy of order α (see Renyi,
1961) of a non-negative random variable X.

In the context of reliability and life testing studies when the present age of a
component needs to be incorporated, the measure given in (1) is not appropriate.
In this situation one may be interested in studying the residual lifetime of a com-
ponent which is still working at time t ≥ 0. We denote it by Xt = [X − t|X ≥ t].
Accordingly, the measure Vα,β(X) given in (1) needs to be modified. For some ref-
erences on residual entropy and generalized residual entropy, we refer to Ebrahimi
and Pellerey (1995); Ebrahimi (1996); Ebrahimi and Kirmani (1996); Belzunce
et al. (2004); Abraham and Sankaran (2005); Nanda and Paul (2006); Zarezadeh
and Asadi (2010); Li and Zhang (2011). In analogy to Ebrahimi (1996), a gener-
alized residual entropy (GRE) of order (α, β) of X is given by

Vα,β(X; t) =
( 1

β − α

)
ln

∫ ∞

t

fα+β−1(x)

F̄α+β−1(t)
dx, 0 ≤ β − 1 < α < β, t ≥ 0. (2)

It is noted that when t = 0, Vα,β(X; t) reduces to Vα,β(X). The measure (2) plays
an important role as a measure of complexity and uncertainty in different areas
such as physics, electronics and engineering to describe many chaotic systems. In
actuarial science, GRE given in (2) can be presented as the pre-payment entropy
of claims (losses) with a deductible t. For some results on information measures
based on (1), we refer to Kayal and Vellaisamy (2011); Kumar and Taneja (2011);
Kayal (2015a,b). In this paper, we investigate some properties of GRE of order
statistics. It is noted that order statistics specially deal with the properties and
applications of ordered random variables and their functions. In the study of many
real life problems related to flood, breaking strength, atmospheric temperature,
atmospheric pressure etc., the future possibilities in the recurrence of extreme sit-
uations are of much importance and accordingly, the problem of interest in these
cases reduces to that of the extreme observations. Besides these, the order statis-
tics have been applied in several domains, such as in robust statistical estimation
and detection of outliers, digital image processing, characterization of probability
distributions, entropy estimation, reliability analysis. For detail, one may refer to
David and Nagaraja (2003) and the references therein.

In Section 2, we present some preliminary results. We establish that both
increasing generalized residual entropy (IGRE) and decreasing generalized residual
entropy (DGRE) properties of a stochastically smaller random variable is preserved
by the larger one in Section 3. It is shown that IGRE and DGRE properties are
preserved by the formation of a parallel system, but not under the formation
of a series system. We obtain bounds for GRE of order statistics. Under some
conditions, we establish that the GRE of parallel and series systems are monotone
functions of the number of observations of a sample. Finally, in Section 4, we
present some computational results to verify some of the results derived in Section
3. We also provide estimators in estimating the GRE of exponential distribution.
The maximum likelihood estimator is derived in this purpose.

Throughout the paper, we assume that the random variables are non-negative
and have absolutely continuous CDF. The terms decreasing and increasing are used
for non-increasing and non-decreasing, respectively. We denote γ = α + β − 1,
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where 0 ≤ β − 1 < α < β.

2. Background

Here, we present some preliminaries which will be required to obtain some results
in the rest of the paper. Let X1, X2, . . . , Xr, . . . , Xn be n independent copies of
a random variable X with absolutely continuous CDF F (x) and PDF f(x). The
order statistics of {X1, X2, . . . , Xr, . . . , Xn} are defined as an arrangement of the
observations in increasing order. We denote X1:n ≤ X2:n ≤ . . . ≤ Xr:n ≤ . . . ≤
Xn:n, where Xr:n represents the r-th order statistic. Order statistics have various
applications. For example, a policy for a couple pays out when the first of the
spouses dies. Here one’s interest may be on studing the distribution of X1:n, which
is the random variable defined to be the minimum of two lifespans of the couple.
Also, let an insurance company hold 500 policies of which somebody has cash-at-
hand to pay 250. In this set up, one may be interested to know the distribution
of the variable X250:500, the 250th occurrence of a pay-out. The PDF and SF of
Xr:n are respectively given by

fr:n(x) =
1

B(r, n− r + 1)
F r−1(x)F̄n−r(x)f(x) (3)

and

F̄r:n(x) =
r−1∑
i=0

(
n

i

)
F i(x)F̄n−i(x) =

BF (x)(r, n− r + 1)

B(r, n− r + 1)
, (4)

where B(a, b) =
∫ 1

0
ua−1(1−u)b−1du, a > 0, b > 0 and BF (x)(a, b) =

∫ 1

F (x)
ua−1(1−

u)b−1du, a > 0, b > 0. Here, B(a, b) and BF (x)(a, b) are known as beta function
and incomplete beta function, respectively. For a > 0 and b > 0, we denote
the truncated beta distribution as Bt(a, b). Let Y be a random variable following
Bt(a, b) distribution (denoted by Y ∼ Bt(a, b)), then the PDF of Y is

fY (x) =
xa−1(1− x)b−1

Bt(a, b)
, t < x < 1, a > 0, b > 0. (5)

The HR of Xr:n can be written as

λFr:n(x) =
n!

(r − 1)!(n− r)!
∑r−1

i=0

(
n
i

)
(F (x)/F̄ (x))i−(r−1)

λF (x). (6)

Let X be a random variable following uniform distribution with PDF

f(x|a, b) = 1

b− a
, 0 < a < x < b.

For convenience, we denote X ∼ U(a, b).
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Lemma 1. (Thapliyal and Taneja, 2012) Let Ur:n be the r-th order statistic of
a random sample of size n from U(0, 1). Then

Vα,β(Ur:n; t) =
( 1

β − α

)
lnBt(γ(r − 1) + 1, γ(n− r) + 1)

−
( γ

β − α

)
lnBt(r, n− r + 1). (7)

Lemma 2. (Thapliyal and Taneja, 2012) Let X be a random variable with CDF
F (x) and PDF f(x). Then GRE of the r-th order statistic can be represented in
terms of that of the r-th order statistic from U(0, 1) as

Vα,β(Xr:n; t) = Vα,β(Ur:n;F (t)) +
( 1

β − α

)
lnE[fγ−1(F−1(Yr))], (8)

where Yr ∼ BF (t)(γ(r − 1) + 1, γ(n− r) + 1).

Let X and Y denote the random variables with respective CDFs F (x) and
G(x), PDFs f(x) and g(x), SFs F̄ (x) and Ḡ(x) and HRs λF (x) and λG(x).

Definition 3. A random variable X has decreasing (increasing) generalized
residual entropy of order (α, β), abbreviated by DGRE (IGRE) if Vα,β(X; t) is
decreasing (increasing) in t ≥ 0.

Definition 4. A random variable X is said to be stochastically less than or

equal to Y, abbreviated by X
st
≤Y, if F (t) ≤ G(t), for all t ≥ 0.

Definition 5. A random variable X is said to be less than or equal to Y in

likelihood ratio ordering, abbreviated by X
lr
≤Y, if f(t)/g(t) is decreasing in t ≥ 0.

Note that when the supports of X and Y have a common left end point, we
have the following result between the stochastic order and the likelihood ratio
order described in Definition 4 and Definition 5, respectively.

X
lr
≤Y ⇒ X

st
≤Y.

One may refer to Shaked and Shanthikumar (2007) for more results on usual
stochastic orderings.

3. Main Results

We begin with the following lemma which will be used in obtaining new results in
this section.

Lemma 6. The GRE of a random variable X with CDF F (x) and PDF f(x)
can be expressed as

Vα,β(X; t) =
( 1− γ

β − α

)
ln F̄ (t) +

( 1

β − α

)
lnE[fγ−1(X)|X ≥ t]

= −
( ln γ

β − α

)
+
( 1

β − α

)
lnE[λγ−1

F (Xγ)|Xγ ≥ t],
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where λF (x) = f(x)/F̄ (x) is the hazard rate function of X and Xγ has the survival
function F̄ γ(x).

Proof. From (2) we have

Vα,β(X; t) = ln F̄ (t) +
( 1

β − α

)
ln

∫ ∞

t

[ fγ(x)

F̄ 2β−1(t)

]
dx

=
( 1− γ

β − α

)
ln F̄ (t) +

( 1

β − α

)
ln

∫ ∞

t

fγ−1(x)
f(x)

F̄ (t)
dx

=
( 1− γ

β − α

)
ln F̄ (t) +

( 1

β − α

)
lnE[fγ−1(X)|X ≥ t],

since the distribution of [X|X ≥ t] is f(x)/F̄ (t). To prove the second part, again
from (2)

Vα,β(X; t) = −
( ln γ

β − α

)
+
( 1

β − α

)
ln

∫ ∞

t

fγ−1(xγ)

F̄ γ−1(xγ)
f(xγ |xγ ≥ t)dxγ

= −
( ln γ

β − α

)
+
( 1

β − α

)
lnE[λγ−1

F (Xγ)|Xγ ≥ t].

This completes the proof. 2

In the following we obtain expressions of Vα,β(X; t), Vα,β(X1:n; t) and Vα,β(Xn:n; t)
for exponential and Pareto distributions.

Example 1. Exponential distribution has prominent applications in various
real life problems. For example, service times, inter-arrival times, etc. are usually
observed to be exponentially distributed. Let X be a random variable following
exponential distribution with CDF F (x|σ) = 1 − exp(−σx), x > 0, σ > 0. It
is easy to obtain that Vα,β(X; t) = −( 1

β−α ) ln γ + ( γ−1
β−α ) lnσ. Now, to compute

Vα,β(Xr:n; t), we have f(F−1(x)) = σ(1−x) and E[fγ−1(F−1(Y1))] = (((n−1)γ+
1)σγ−1/nγ) exp(−σt(γ − 1)). Again Vα,β(X1:n; t) = −( 1

β−α ) ln γ + ( γ−1
β−α ) ln(nσ).

For r = n, from Lemma 2, we obtain Vα,β(Xn:n; t) = ( γ−1
β−α ) lnσ− ( γ

β−α ) log(
1
n (1−

(F (t|σ))n)) + ( 1
β−α ) log

∫ 1

F (t|σ) x
γ(n−1)(1− x)γ−1dx.

Example 2. Pareto distribution plays a central role in various applications.
It is used in the investigation of city population, occurrence of natural resources,
insurance risk and business failures. It has been an important model in many
socio-economic studies. Let X be a random variable following Pareto distribu-
tion with CDF F (x|θ, δ) = 1 − (δ/x)θ, x ≥ δ > 0, θ > 0. Now, it is easy to

obtain that f(F−1(x)) = θ(1 − x)1+
1
θ /β and E[fγ−1(F−1(Y1))] = [(γ(n − 1) +

1)/(γ(nθ + 1) − 1)](δ/t)(θ+1)(γ−1)θγδ1−γ . We obtain Vα,β(X; t) = −( γ−1
β−α ) ln t +

( γ
β−α ) ln θ− ( 1

β−α ) ln[γ(θ+1)− 1], provided γ > (θ+1)−1. Again, Vα,β(X1:n; t) =

−( γ−1
β−α ) ln t+( γ

β−α ) ln(nθ)−( 1
β−α ) ln[γ(nθ+1)−1], provided γ > (nθ+1)−1. Also,

from Lemma 2, Vα,β(Xn:n; t) = −( γ−1
β−α ) ln(θ/δ)−( γ

β−α ) ln((1−(1−(δ/t)θ)n)/n)+

( 1
β−α ) ln

∫ 1

1−(δ/t)θ
(1− x)

(θ+1)(γ−1)
θ xγ(n−1)dx.
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Now, we present some results on GRE in terms of ordering properties of distri-
butions. Several aging properties can be characterized in reliability theory using
stochastic comparison between total and its residual lifetime. For example, new

better than used property holds if and only if Xt

st
≤X, for all t ≥ 0. In the following

theorem we prove a similar characterization of DGRE distributions.

Theorem 7. A random variable X with PDF f(x) and SF F̄ (x) is DGRE if
and only if Vα,β(Xs; t) ≤ Vα,β(X; t), for all s, t ≥ 0.

Proof. A random variableX is DGRE if and only if Vα,β(X; s+t) ≤ Vα,β(X; t),
for all s, t ≥ 0.Moreover, the PDF and SF ofXs are given as fs(x) = f(s+x)/F̄ (s)
and F̄s(x) = F̄ (s+ x)/F̄ (s), respectively. Therefore, for all s, t ≥ 0,

Vα,β(Xs; t) =
( 1

β − α

)
ln

∫ ∞

t

fγ
s (x)

F̄ γ
s (t)

dx =
( 1

β − α

)
ln

∫ ∞

s+t

fγ(x)

F̄ γ(s+ t)
dx

= Vα,β(X; s+ t).

This completes the proof. 2

2 3 4 5

-4

-3

-2

-1

1

2

3

(a)

Figure 1 – Plot of Vα,β(X; s + t) (bottom curve) and Vα,β(X; t) (top curve) versus t
(along horizontal axis) for Pareto distribution as described in Example 2. Here we assume
α = 1.2, β = 1.5, θ = 2 and s = 1.

From Fig. 1, it is easy to see that the Pareto random variable is DGRE for
α = 1.2, β = 1.5 and θ = 2. Here, it should be mentioned that we observe similar
behaviour of Pareto distribution for any θ > 0 and α + β > 2. Our next theorem
is a key result to obtain some subsequent results.

Theorem 8. Let X and Y be two random variables with CDFs F (x) and G(x),
PDFs f(x) and g(x), SFs F̄ (x) and Ḡ(x) and HRs λF (x) and λG(x), respectively.

Also let X
lr
≤Y ; and λG(t)/λF (t) be an increasing function in t ≥ 0. If X is IGRE

(DGRE), then Y is also IGRE (DGRE).



A Generalized Residual Entropy 389

Proof. Assume ξ(t) = λG(t)/λF (t). Then from Lemma 6, the GRE of Y can
be written as

Vα,β(Y ; t) = −
( ln γ

β − α

)
+

( 1

β − α

)
lnE[λγ−1

F (Yγ)ξ
γ−1(Yγ)|Yγ ≥ t]. (9)

Under the given assumption, it is required to show that η(t) = E[λγ−1
F (Yγ)ξ

γ−1(Yγ)
|Yγ ≥ t] is increasing (decreasing) in t ≥ 0, that is, η′(t) = γλG(t)[η(t) −
λγ−1
F (t)ξγ−1(t)] ≥ (≤)0, where ′ denote the derivative. The PDF of [Yγ |Yγ ≥ t]

can be obtained as

f(yγ |yγ ≥ t) =
γḠγ−1(yγ)g(yγ)

Ḡγ(t)
, yγ ≥ t.

Moreover,

η(t)− λγ−1
F (t)ξγ−1(t) =

∫ ∞

t

f(yγ |yγ ≥ t)[λγ−1
F (yγ)ξ

γ−1(yγ)− λγ−1
F (t)ξγ−1(t)]dyγ

=

∫ ∞

t

f(yγ |yγ ≥ t)ξγ−1(yγ)[λ
γ−1
F (yγ)− λγ−1

F (t)]dyγ

+

∫ ∞

t

f(yγ |yγ ≥ t)λγ−1
F (t)[ξγ−1(yγ)− ξγ−1(t)]dyγ

= I1 + I2,

where I1 =
∫∞
t

f(yγ |yγ ≥ t)ξγ−1(yγ)[λ
γ−1
F (yγ)−λγ−1

F (t)]dyγ and I2 =
∫∞
t

f(yγ |yγ ≥
t)λγ−1

F (t)[ξγ−1(yγ)− ξγ−1(t)]dyγ . Let X be IGRE (DGRE), implies Vα,β(X; t) be

an increasing (decreasing) function in t ≥ 0. Thus, h(t) = E[λγ−1
F (Xγ)|Xγ ≥ t] is

also an increasing (decreasing) function in t ≥ 0. Therefore, we have h(t) ≥ (≤
)λγ−1

F (t), which implies that∫ ∞

t

γf(xγ)F̄
γ−1(xγ)[λ

γ−1
F (xγ)− λγ−1

F (t)]dxγ ≥ (≤)0, (10)

for all t ≥ 0. Again under the assumption X
lr
≤Y, and using Lemma 7.1(a) of

Barlow and Proschan (1981), it can be shown that

I1 =
1

Ḡγ(t)

∫ ∞

t

gγ(yγ)

fγ(yγ)
γF̄ γ−1(yγ)f(yγ)[λ

γ−1
F (yγ)− λγ−1

F (t)]dyγ ≥ (≤)0.

Moreover, as ξ(t) is an increasing function in t ≥ 0, therefore it can also be shown
that I2 ≥ (≤)0. This completes the proof. 2

In recent years, researchers in reliability theory have shown considerable at-
tention in the study of stochastic and reliability properties of various technical
systems. The (n − r + 1)-out-of-n system structure is a very popular type of
redundancy. This system functions if and only if at least (n − r + 1) out of n
components are operating (r ≤ n). In particular, when r = 1 and r = n, it corre-
sponds to series and parallel system, respectively. The GRE of Xr:n measures the
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entropy of the residual lifetime of a (n − r + 1)-out-of-n working system at time
t ≥ 0. Hence, it can be important for system designers to get information about
the entropy of used (n − r + 1)-out-of-n systems at any time t ≥ 0. Asadi and
Ebrahimi (2000) established that decreasing uncertainty residual life is preserved
under the formation of parallel system. Recently, Mahmoudi and Asadi (2010) and
Li and Zhang (2011) showed that decreasing Renyi entropy residual life property
is preserved under the formation of the same system. It is not difficult to show
that fn:n(x)/f(x) and

λFn:n(x)

λF (x)
=

n
n−1∑
i=0

(
n

i

)(F (x)

F̄ (x)

)i−(n−1)

are increasing in x ≥ 0. Hence, as a consequence of Theorem 8, we get the following
corollary which shows that IGRE and DGRE properties of the life distributions
are preserved under the formation of parallel system.

Corollary 9. Let X be a random variable as described in Theorem 8. Then
the n-th order statistic Xn:n is IGRE (DGRE) if X is.

As an application of Corollary 9, we consider the example presented in Fig.
2 which shows that IGRE and DGRE properties of Pareto distributions are pre-
served under the formation of parallel system.

2 3 4 5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

(a)

2 3 4 5

2.2

2.4

2.6

2.8

(b)

Figure 2 – (a) Plot of Vα,β(Xn:n; t) (bottom curve) and Vα,β(X; t) (top curve) versus
t (along horizontal axis) for Pareto distribution as described in Example 2. Here we
assume α = 1.2, β = 1.5, θ = 2, δ = 0.2 and n = 5. (b) Plot of Vα,β(Xn:n; t) (top curve)
and Vα,β(X; t) (bottom curve) versus t (horizontal axis) for Pareto distribution. Assume
α = 0.2, β = 1.2, θ = 2, δ = 0.2 and n = 5.

The following example shows that DGRE and IGRE properties do not hold
under the formation of a series system.
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Example 3. Suppose a random variable X has the SF

F̄ (x) =


1− x2

2
, 0 ≤ x < 1,

2

3
− x2

6
, 1 ≤ x < 2,

1, x ≥ 2.

(11)

The GRE of X and the first order statistic X1:n can be obtained as

Vα,β(X; t) =



( 1

β − α

)
ln

[( 2

2− t2

)γ(1− tγ+1

γ + 1
+

2γ+1 − 1

(γ + 1)3γ

)]
,

if 0 ≤ t < 1,( 1

β − α

)
ln

[( 2

4− t2

)γ(2γ+1 − tγ+1

γ + 1

)]
,

if 1 ≤ t < 2,

(12)

and

Vα,β(X1:n; t) =



( 1

β − α

)
ln
[ (2n)γ

(2− t2)nγ

∫ 1

t

(
x(2− x2)n− 1

)γ
dx

+
(3n)γ

(3(2− t2))nγ

∫ 2

1

(
x(4− x2)n− 1

)γ
dx

]
,

if 0 ≤ t < 1,( 1

β − α

)
ln
[ (2n)γ

(4− t2)nγ

∫ 2

t

(
x(4− x2)n− 1

)γ
dx

]
,

if 1 ≤ t < 2,

(13)

respectively.

0.0 0.5 1.0 1.5 2.0
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0.0
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t

(a)

0.0 0.2 0.4 0.6 0.8 1.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

t

(b)

Figure 3 – (a) V0.4,1.2(X; t) Vs t, (b) V0.4,1.2(X1:n; t) Vs t when n = 10.

From Fig. 3(a), it is clear that Vα,β(X; t) given in (12) is decreasing in t, for
α = 0.4 and β = 1.2, that is, X is DGRE, but Vα,β(X1:n; t) (see Fig. 3(b)) is
not monotone in 0 ≤ t < 1, for the same values of α and β, when n = 10. Hence,
we conclude that X1:n is not DGRE. Also Fig. 4(a) shows that Vα,β(X; t) is
increasing in t for α = 1.1 and β = 1.2, that is, X is IGRE, whereas Vα,β(X1:n; t)
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Figure 4 – (a) V1.1,1.2(X; t) Vs t, (b) V1.1,1.2(X1:n; t) Vs t when n = 10.

is not monotone in 0 ≤ t < 1, for the same values of α, β and n = 10 (see Fig.
4(b)).

Asadi and Ebrahimi (2000) proved that if Xr:n is decreasing uncertainty resid-
ual life, thenXr+1:n, Xr:n−1 andXr+1:n+1 are also decreasing uncertainty residual
life. Li and Zhang (2011) proved it for the Renyi entropy. In the following corol-
lary, we establish a similar result for GRE given in (2).

Corollary 10. Let X be a random variable as described in Theorem 8. Then
the order statistics Xr+1:n, Xr:n−1 and Xr+1:n+1 are IGRE (DGRE) if Xr:n is.

Proof. Using the results of Nagaraja (1990) and the Theorem 8, the proof
follows. 2

In the following we obtain bounds for the GRE of the r-th order statistic in
terms of the GRE of each components and that of the r-th order statistic from
U(0, 1). Note that the bounds are useful when the GRE of order statistics does not
have a closed form expression, or the expectation in Lemma 2 can not be easily
evaluated.

Theorem 11. Let X be a random variable as described in Theorem 8. Also let
Vα,β(X; t) and Vα,β(Xr:n; t) denote the GREs of X and Xr:n, respectively. Then
the following results hold.
(a) Let Vα,β(X; t) be finite. If Mr = max{F (t), r−1

n−1}, then

Vα,β(Xr:n; t) ≤ Vα,β(X; t) +
( γ

β − α

)
ln F̄ (t) +Ar(t), (14)

where Ar(t) =
(

γ
β−α

)
[(r − 1) lnMr + (n− r) ln(1−Mr)− lnBF (t)(r, n− r + 1)].

(b) Let M = f(m) be finite, where m = sup{x : f(x) ≤ M} is mode of the
distribution. Then

Vα,β(Xr:n; t) ≤ (≥)Vα,β(Ur:n;F (t)) +
( γ − 1

β − α

)
lnM, for α+ β > (<)2. (15)
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Proof. (a): From (8) we have

Vα,β(Xr:n; t) = Vα,β(Ur:n;F (t))

+
( 1

β − α

)
ln

∫ 1

F (t)

yγ(r−1)(1− y)γ(n−r)fγ−1(F−1(y))

BF (t)(γ(r − 1) + 1, γ(n− r) + 1)
dy

≤ Vα,β(Ur:n;F (t)) +
( 1

β − α

)
ln
(
Mr

∫ 1

F (t)

fγ−1(F−1(y))dy
)

= Vα,β(Ur:n;F (t)) +
( 1

β − α

)
ln

∫ 1

t

fγ(v)dv +
( 1

β − α

)
lnMr

= Vα,β(Ur:n;F (t)) + Vα,β(X; t) +
( 1

β − α

)
ln(F̄ γ(t)Mr)

= Vα,β(X; t) +
( γ

β − α

)
ln F̄ (t) +Ar(t).

This completes the proof of Part (a). The proof of Part (b) follows as fγ−1(F−1(y)) ≤
(≥)Mγ−1, for α+ β > (<)2. 2

In the following we obtain bounds of GRE of the r-th order statistic for Pareto
and generalized exponential distributions.

Example 4. (a) Let X be a random variable with PDF f(x|θ, δ) = θδθ

xθ+1 , x ≥
δ > 0, θ > 0. Then Vα,β(Xr:t; t) ≤ Ar(t) + ( 1

β−α ) ln[
(θδθ)γ

(γ(θ+1)−1)tγ(θ+1)−1 ] and

Vα,β(Xr:t; t) ≤ (≥)Vα,β(Ur:n;F (t)) + ( γ−1
β−α ) ln(

θ
δ ), for α+ β > (<)2.

(b) For a random variable with PDF f(x|θ) = θe−x(1− e−x)θ−1, x > 0, θ > 0, we
have Vα,β(Xr:t; t) ≤ Ar(t)+( 1

β−α ) ln[θ
γB̄1−e−t(γ(θ−1)+1, γ)] and Vα,β(Xr:t; t) ≤

(≥)Vα,β(Ur:n;F (t)) + ( γ−1
β−α ) ln(1−

1
θ )

θ−1, θ > 1, for α+ β > (<)2.

In this part of the paper we obtain some monotone properties of GRE of parallel
and series systems. First we present the following theorem, which will be helpful
to obtain further results.

Theorem 12. Let u(x) and vλ(x), λ > 0 be non-negative functions, where
u(x) is increasing. Assume that 0 ≤ t < c ≤ ∞ and Wλ has a density function
fWλ

(w), where

fWλ
(w) =

upλ(w)vλ(w)∫ c

t
upλ(x)vλ(x)dx

, t < w < c, p ∈ R. (16)

For p ∈ R, we define a function hγ(.) as

hγ(p) =
( 1

β − α

)
ln

∫ c

t
upγ(x)vγ(x)dx( ∫ c

t
up(x)v1(x)dx

)γ . (17)

Then for Wγ

st
≤ (

st
≥ )W1, hγ(p) is a decreasing (increasing) function of p.
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Proof. Assume that hγ(p) is differentiable. Therefore we have

∂hγ(p)

∂p
=

γ
( ∫ c

t
up(x)v1(x)dx

)−(γ+1)

(β − α)gγ(p)

[ ∫ c

t

lnu(x)upγ(x)vγ(x)dx

∫ c

t

up(x)v1(x)dx

−
∫ c

t

lnu(x)up(x)v1(x)dx

∫ c

t

upγ(x)vγ(x)dx
]
, (18)

where gγ(p) =
∫ c

t
upγ(x)vγ(x)dx/

( ∫ c

t
up(x)v1(x)dx

)γ

.Using the fact thatWγ

st
≤ (

st
≥ )W1

and ln is increasing function we get (see Shaked and Shanthikumar, 2007)

E[lnu(Wγ)] ≤ (≥)E[lnu(W1)], (19)

which implies that (18) is non-positive (non-negative). Hence hγ(p) is a decreasing
(increasing) function of p. This completes the proof. 2

Theorem 13. Under the assumptions of Theorem 12, if u(x) is decreasing,

then for Wγ

st
≤ (

st
≥ )W1, hγ(p) is an increasing (decreasing) function of p.

Proof. The proof is similar to that of the Theorem 12, hence omitted. 2

In consequence of the Theorem 12 and Theorem 13, we have the following
corollary.

Corollary 14. Consider a parallel (series) system consists of n components
from U(0, 1). Then the GRE of the system lifetime (Un:n(U1:n)) is increasing (de-
creasing) function of the number of components for α+ β > (<)2.

Proof. From (7), we have Vα,β(Un:n; t) = ( 1
β−α ) ln(

∫ 1

t
xγ(n−1)dx/(

∫ 1

t
xn−1dx)γ),

which can be written in the form of (17), where u(x) = x and vγ(x) = x−γ . With-
out loss of generality, one may assume that n ≥ 1 is a continuous variable. Also,

it can be showed that the ratio
∫ 1

t
xγ(n−1)dx/

∫ 1

t
xn−1dx is increasing (decreasing)

for α + β > (<)2. Thus, for the chosen functions u(x) = x and vγ(x) = x−γ , it

is easy to prove that Wγ

st
≥ (

st
≤ )W1, for α+ β > (<)2, where the density function

of Wλ is given in (16). Therefore, from Theorem 12, the proof follows for parallel
system. The proof for a series system follows similarly. This completes the proof.

2

Corollary 15. Let Ur:n denote the r-th order statistic of U(0, 1). If r1 ≤
r2 ≤ n are integers then for t ≥ r2−1

n−1 , Vα,β(Ur1:n; t) ≤ Vα,β(Ur2:n; t).

Proof. From (7), Vα,β(Ur:n; t) can be written as

Vα,β(Ur:n; t) =
( 1

β − α

)
ln

(∫ 1

t

urγ(x)vγ(x)dx
/[∫ 1

t

ur(x)v1(x)dx
]γ)

, (20)

where u(x) = x/(1 − x) and vγ(x) = (1 − x)rγ/xγ . Again, for α + β > (<)2 and

t ≥ r−1
n−1 , it is not hard to see that Wγ

st
≥ (

st
≤ )W1. Therefore, for r1 ≤ r2 ≤ n and

t ≥ r2−1
n−1 , we have Vα,β(Ur1:n; t) ≤ Vα,β(Ur2:n; t). This completes the proof. 2
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In the following we obtain some results for the random variables having mono-
tone density functions. Note that the class of CDFs with decreasing PDF contains
exponential, Pareto, mixture of exponential and Pareto distributions, etc. There
are also CDFs with increasing PDF. For example the power distribution with PDF
f(x|a) = axa−1, 0 < x < 1, a > 0 has increasing density function.

Theorem 16. Consider a parallel (series) system consists of n components
with CDF F (x) and PDF f(x). Further, assume that f(x) is increasing (decreas-
ing) in its support. Then the GRE of a system lifetime is increasing (decreasing)
in n for α+ β > (<)2.

Proof. First we prove the result for parallel system. The other part follows
analogously. Assume Yn ∼ BF (t)(γ(n − 1) + 1, 1). Then it can be easily shown

that Yn

st
≤Yn+1. Also, for α + β > (<)2, fγ−1(F−1(x)) is increasing (decreasing)

in x. Hence for α+ β > (< 2),( 1

β − α

)
ln

E(fγ−1(F−1(Yn+1)))

E(fγ−1(F−1(Yn)))
≥ (≤)0. (21)

Moreover, from Lemma 2 we have

Vα,β(Xn+1:n+1; t)− Vα,β(Xn:n; t) = δα,β(n; t)−
( 1

β − α

)
ln
[ E[fγ−1(F−1(Yn))]

E[fγ−1(F−1(Yn+1))]

]
,

where δα,β(n; t) = Vα,β(Un+1:n+1;F (t)) − Vα,β(Un:n;F (t)). Now using Corollary
14 and the inequality (21) the proof follows. This completes the proof. 2
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Figure 5 – Fig. (a) and (b) represent plot of Vα,β(Xn:n; t) of exponential distribution
with mean 1 and 0.5, respectively. Assume α = 1.2 and β = 1.5. Curves corresponds to
sample sizes 5, 10, 15, 20, 30 are from bottom to top.

4. Computation Results

In this section, we show that some of the results derived in the earlier sections of
this paper are consistent with the numerical study. We present the estimated value
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of Vα,β(X; t), Vα,β(X1:n; t) and Vα,β(Xn:n; t) of an exponential distribution with
mean 1/σ, σ > 0. It should be mentioned that the statistical data are generated
based on the Monte-Carlo simulation. The estimated values are computed based
on 5000 samples with different sample sizes and different values of the parameters.
The generalized residual entropy of exponential distribution with mean 1/σ can
be obtained as

Vα,β(X; t) =
( 1

β − α

)
ln(σγ−1/γ). (22)

To estimate Vα,β(X; t) given in (22) from simulated exponential data, we use
the maximum likelihood estimator (MLE) of σ. Let X1, X2, . . . , Xn be a random
sample drawn from exponential distribution with mean 1/σ. Then the maximum
likelihood estimator of σ is given by σ̂ml = n/

∑n
i=1 Xi = 1/X̄. As MLE is in-

variant, therefore for exponential distribution, Vα,β(X; t) can be estimated via the
MLE which is given by

V̂α,β(X; t) =
( 1

β − α

)
ln
( (1/X̄)γ−1

γ

)
. (23)

The generalized residual entropy of X1:n and Xn:n of exponential distribution can
be obtained as

Vα,β(X1:n; t) =
( 1

β − α

)
ln

( (nσ)γ−1

γ

)
(24)

and

Vα,β(Xn:n; t) =
( γ − 1

β − α

)
lnσ −

( γ

β − α

)
log

( 1

n

(
1− (F (t))n

))
+

( 1

β − α

)
log

∫ 1

F (t)

xγ(n−1)(1− x)γ−1dx, (25)

respectively, where F (t) = 1 − exp(−σt). The estimators of Vα,β(X1:n; t) and
Vα,β(Xn:n; t) given in (23) and (24), are given by

V̂α,β(X1:n; t) =
( 1

β − α

)
ln
( (n/X̄)γ−1

γ

)
(26)

and

V̂α,β(Xn:n; t) =
( γ − 1

β − α

)
ln(1/X̄)−

( γ

β − α

)
log

( 1

n

(
1− (F̂ (t))n

))
+

( 1

β − α

)
log

∫ 1

F̂ (t)

xγ(n−1)(1− x)γ−1dx, (27)

respectively, where F̂ (t) = 1 − exp(−t/X̄). For the sake of the space, we only
present few values. However, similar trends have been observed for other values of
the parameters and sample sizes. In the following we consider an example dealing
with the real data-set.
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TABLE 1
α = 1.2, β = 1.5.

σ n V̂α,β(X; t) Vα,β(X; t) σ n V̂α,β(X; t) Vα,β(X; t)

1 5 −1.7246 −1.7687 2 5 −0.1072 −0.1514
10 −1.7394 −1.7687 10 −0.1221 −0.1514
15 −1.6021 −1.7687 15 −0.1052 −0.1514
20 −1.7103 −1.7687 20 −0.0929 −0.1514
30 −1.7303 −1.7687 30 −0.1131 −0.1514

TABLE 2
α = 0.2, β = 1.2.

σ n V̂α,β(X; t) Vα,β(X; t) σ n V̂α,β(X; t) Vα,β(X; t)

1 5 0.9049 0.9163 2 5 0.4890 0.5004
10 0.9087 0.9163 10 0.4928 0.5004
15 0.8734 0.9163 15 0.4575 0.5004
20 0.9012 0.9163 20 0.4853 0.5004
30 0.9064 0.9163 30 0.4905 0.5004

TABLE 3
α = 1.2, β = 1.5.

σ n V̂α,β(X1:n; t) Vα,β(X1:n; t) σ n V̂α,β(X1:n; t) Vα,β(X1:n; t)

1 5 2.0307 1.9865 2 5 3.6481 3.6039
10 3.6332 3.6039 10 5.2506 5.2213
15 4.7166 4.5500 15 6.3339 6.1673
20 5.2797 5.2212 20 6.8971 6.8386
30 6.2057 6.1673 30 7.8231 7.7847

TABLE 4
α = 0.2, β = 1.2.

σ n V̂α,β(X1:n; t) Vα,β(X1:n; t) σ n V̂α,β(X1:n; t) Vα,β(X1:n; t)

1 5 −0.0607 −0.0493 2 5 −0.4766 −0.4653
10 −0.4727 −0.4652 10 −0.8887 −0.8811
15 −0.7514 −0.7085 15 −1.1673 −1.1244
20 −0.8962 −0.8811 20 −1.3121 −1.2971
30 −1.1343 −1.1244 30 −1.5502 −1.5403
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TABLE 5
α = 1.2, β = 1.5

n σ t Vα,β(Xn:n; t) V̂α,β(Xn:n; t) n σ t Vα,β(Xn:n; t) V̂α,β(Xn:n; t)

5 1 0.2 -3.0801 -3.0359 5 2 0.2 -1.4441 -1.3984
0.5 -3.0361 -3.0047 0.5 -1.1324 -1.0940
1.0 -2.7497 -2.5301 1.0 -0.5492 -0.3285
1.5 -2.4115 -2.3307 1.5 -0.2982 -0.2291
2.0 -2.1665 -2.1154 2.0 -0.2053 -0.1635

10 1 0.2 -3.2067 -3.1626 10 2 0.2 -1.5893 -1.5451
0.5 -3.2062 -3.1769 0.5 -1.5395 -1.5067
1.0 -3.1568 -2.9678 1.0 -0.9517 -0.6914
1.5 -2.9122 -2.8284 1.5 -0.4723 -0.3912
2.0 -2.5690 -2.5090 2.0 -0.2716 -0.2256

TABLE 6
α = 0.2, β = 1.2

n σ t Vα,β(Xn:n; t) V̂α,β(Xn:n; t) n σ t Vα,β(Xn:n; t) V̂α,β(Xn:n; t)

5 1 0.2 1.1017 1.0902 5 2 0.2 0.6742 0.6623
0.5 1.0817 1.0736 0.5 0.6160 0.6072
1.0 1.0319 0.9820 1.0 0.5460 0.5170
1.5 0.9901 0.9724 1.5 0.5174 0.5011
2.0 0.9619 0.9505 2.0 0.5067 0.4964

10 1 0.2 1.1334 1.1221 10 2 0.2 0.7163 0.7048
0.5 1.1304 1.1228 0.5 0.6875 0.6789
1.0 1.1034 1.0541 1.0 0.5936 0.5394
1.5 1.0552 1.0364 1.5 0.5374 0.5198
2.0 1.0094 0.9969 2.0 0.5143 0.5036
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TABLE 7
Annual wage data (in multiplies of 10, 000 U.S. dollars).

1.12 1.54 1.19 1.08 1.12 1.56 1.23 1.03 1.15 1.07
1.25 1.19 1.28 1.32 1.07 1.51 1.03 1.04 1.16 1.40
1.08 1.05 1.58 1.04 1.19 1.11 1.01 1.57 1.12 1.15

Example 5. Consider annual wage data (in multiplies of 10, 000 U.S. dollars)
of a random sample of 30 production-line workers in a large industrial firm due
to Dyer (1981). The data are presented in Table 7. He verified that Pareto dis-
tribution provids a good fit for the data. Here based on this data the maximum
likelihood estimates of the scale parameter δ and shape parameter θ are computed
as δ̂ml = 1.01 and θ̂ml = 5.92. Hence for α = 1.2, β = 1.5, n = 5 and t = 2, we
obtain V̂α,β(X; t) = 0.54, V̂α,β(X1:n; t) = 4.47 and V̂α,β(Xn:n; t) = 0.48.
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SUMMARY

Some Results on a Generalized Residual Entropy based on Order Statistics

In the present paper, we discuss some monotone properties of the GRE of order (α, β)
in order statistics under various assumptions. It is shown that monotone properties are
preserved under the formation of a parallel system but not under the formation of a
series system. A counter example is presented. Bounds of the GRE of order statistics
are obtained. The GRE of parallel and series systems are shown to be monotone function
of the number of observations of a given sample. Numerical simulation is carried out for
verification of the theoretical results. Maximum likelihood estimators of GRE of X, X1:n

and Xn:n are obtained when independent data are drawn from exponential distribution.

Keywords: generalized residual entropy; order statistics; parallel and series systems;
maximum likelihood estimator.




