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1. Introduction

Many situations and many modern scientific applications are frequently producing data sets
with a matrix-variate instead of a vector structure. These are contexts where p variables
are observed on n subjects in r different situations, such as multivariate panel data or
spatio-temporal data (see, for example, Basford & McLachlan , 1985; Anderlucci & Viroli ,
2015; Genton , 2007). The three dimensions are referred to multivariate or spatial responses,
measured over time on the same individuals. Another example of matrix-variate data comes
from the population-based twin studies, where variability between and within couples of
twins is of interest. The trivariate structure is reflected by considering a sample of twin
couples (i.e. the sampling units), where several responses are collected, separately on each
twin. The aim is to investigate whether observations are function of some covariates.

There are several approaches to study matrix-variate data as function of some covariates
in the statistical literature. In particular, Mitchell et al. (2006) developed a likelihood ratio
test for testing the correct specification of a regression model with time-independent co-
variates and time-varying and variable-varying regression coefficients. Brien & Fitzmaurice
(2005) focused on the comparison between random effect models and a regression model
where covariates have the same dimensionality of the responses and regression coefficients
do not vary between and within variables and replicates. It represents a particular and con-
strained multivariate regression analysis adapted for dealing with three-way data. Viroli
(2012) proposed a more general approach that allows for q predictors that can differently
affect the p observed measurements through a matrix of parameters having dimension p×q.
More recently, Zhou & Li (2014) proposed a class of regularized matrix regression methods
based on spectral regularization to analyze electroencephalography data set of alcoholism,
where a sample of subjects was exposed to a stimulus.

In this work we define a novel matrix-variate regression model that decomposes the
contribution of the different covariates on the responses in a canonical representation thus
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allowing for a better interpretation. It can be viewed as an extension of the general matrix-
variate regression analysis proposed by Viroli (2012), but it resembles in some aspects
the Haseman-Elston regression (see Haseman & Elston , 1972). The extension has been
motivated by population twin-studies where one aspect of interest is to evaluate how the
components of the trait variability of the twins are related to selected covariates.

The paper is organized as follows. In the next section we review the matrix-variate
normal distribution and the general matrix-variate regression model proposed in Viroli
(2012). Then, the extension of the matrix-variate regression model with canonical states and
the inferential properties of the estimators are presented. In Section 3 the real application
is illustrated and the model interpretation is discussed. We conclude this work with a
discussion on the proposed model and on the obtained results.

2. The model

2.1. Preliminaries: the general matrix-variate regression model

Let Yi denote the p × r observed matrix containing the numerical p responses in r states
for each unit (with i = 1, . . . , n). Suppose we observe a set of covariates for each state, so
that Xi is the design matrix that includes covariates and intercept of dimension q × r.

A general matrix-variate regression model for Yi takes the form

Yi = ΘXi + Ui, (i = 1, . . . , n), (1)

where Θ is a matrix of dimension p×q of unknown parameters and Ui is the error term. Since
Ui is a matrix of size p × r, we assume that it is distributed according to a matrix-variate
normal distribution (Gupta & Nagar , 2000), Ui ∼ ϕ(p×r)(0,Φ,Ω), that is

f(Ui) = (2π)−
rp
2 |Φ|−

p
2 |Ω|− r

2 exp

{
−1

2
tr

(
Ω−1UiΦ

−1U⊤
i

)}
, (2)

where Φ is a r × r covariance matrix containing the variances and covariances ‘within’ the
states and Ω is a p× p covariance matrix containing the variance and covariances ‘between’
the p variables.

The matrix normal distribution plays a pivotal role in the family of matrix-variate
distributions (see Gupta & Nagar , 2000) thanks to its mathematical properties and to its
capability to be a reference model for most multiway phenomena according to the central
limit theorem. For these reasons, the matrix-variate Gaussian distribution is receiving a
growing interest in the statistical literature as demonstrated by some recent applications
that include spatio-temporal analysis (Mitchell et al. , 2005), Bayesian graphical models
(Wang & West , 2009) and model-based clustering (Viroli , 2011).

The matrix-variate regression analysis can be viewed as an extended multivariate re-
gression analysis that deals with matrix-variate responses instead of vectors. It is always
possible to stack the columns of the response matrix into a single vector - thus obtaining a
vector response of dimension pr - and to fit a multivariate regression model. However, such
approach would lead to a solution that is different from the one yielded by a matrix-variate
regression analysis, since the identification of the two sources of variability (i.e. ‘within’
and ‘between’ dispersions) would not be possible. In fact, in the matrix-variate regression
model the total variability, say Σ, is separable in the form Σ = Ω ⊗ Φ (where ⊗ is the
Kronecker product). This separability condition leads to a structured covariance matrix,
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which is convenient for our purposes because it combines parsimony and flexibility. In fact,
it allows to estimate the the correlation of the items between and within states by resorting
to a smaller number of parameters, which are r(r+1)/2+p(p+1)/2 instead of pr(pr+1)/2.

2.2. A Matrix-Variate Regression Model with Canonical States

Let xi be a vector of dimension q × 1 that includes the set of stacked covariates and an
additional element equal to 1 with the aim of incorporating the intercept in the model.
Now, we decompose the systematic part of the general model (1) by introducing a set of
canonical vectors e1, e2, . . . , er defined as e1 = (1, 0, . . . , 0)⊤, e2 = (0, 1, 0, . . . , 0)⊤, . . . , er =
(0, . . . , 0, 1)⊤. We define the following regression model for Yi

Yi = Γ1xie
⊤
1 + Γ2xie

⊤
2 + . . .+ Γrxie

⊤
r + Ui (i = 1, . . . , n) (3)

where Γ1, Γ2, . . . ,Γr are r unknown p × q matrices of parameters. From one hand, the
inclusion of the canonical vectors helps the interpretability of the model parameters, since
it allows to decompose the effect of the covariates on the different states. On the other hand,
is also simplifies the estimation problem as it will be explained in the next subsection.

2.3. Inference

The maximum likelihood estimation for the model parameters is not generally achievable
in closed-form if no constraint is imposed on the matrices Φ and Ω of the matrix-normal
distribution. In fact, suppose Θ̂ is the maximum likelihood estimate of Θ in model (1). It
is easy to show that the maximum likelihood estimators of Φ and Ω can be obtained by
evaluating and differentiating the residual log-likelihood

logL(Φ,Ω|Y1, . . . , Yn) = − rpn

2
log(2π)− pn

2
log |Φ| − rn

2
log |Ω|

− 1

2

n∑
i=1

tr
(
Ω−1ỸiΦ

−1Ỹ ⊤
i

)
where Ỹi = Yi − Θ̂Xi. The maximization problem leads to a system of coupled equations{

Φ̂ =
∑n

i=1 Ỹ ⊤
i Ω̂−1Ỹi

pn
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∑n

i=1 ỸiΦ̂
−1Ỹ ⊤

i

rn

,

that implies that there is not a closed-form analytic solution for estimating the two co-
variance matrices. Their values must be computed in an iterative way (see, for instance,
Dutilleul , 1999) and the solution is unique up to a multiplicative constant, say a ̸= 0, since
Φ⊗ Ω = aΦ⊗ 1

aΩ.
A way to solve this problem could be to assume that the covariates describe all the

correlation between the states, so that Φ is diagonal. Moreover, without loss of generality,
let us suppose that the state variances in Φ are equal to one. The advantage of these
choices is twofold. First, it solves the identifiability problem Φ ⊗ Ω = aΦ ⊗ 1

aΩ for a ̸= 0
and it allows to develop finite sample inference on the model estimators; secondly, as we
will show in our illustrative example, in some cases it may help the interpretation of the
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results. Under these assumptions, Ui ∼ ϕ(p×r)(0, Ir,Ω) and Yi|Mi ∼ ϕ(p×r)(Mi, Ir,Ω) where
Mi = Γ1xie

⊤
1 + . . .+ Γrxie

⊤
r .

Parameter estimators and related properties can be obtained by rephrasing the model (3)
in a vectorized form. Introducing the vec operator such that yi = vec(Yi) and ui = vec(Ui)
are vectors of length rp, we can express (3) as

yi =
(
e1x

⊤
i ⊗ Ip

)
γ1 +

(
e2x

⊤
i ⊗ Ip

)
γ2 + · · ·+

(
erx

⊤
i ⊗ Ip

)
γr + ui, (i = 1, . . . , n), (4)

where Ip is the identity matrix of order p and γr = vec(Γr). Setting y⊤ = (y⊤
1 , . . . ,y

⊤
n ),

u⊤ = (u⊤
1 , . . . ,u

⊤
n ) and X = (x1, . . . ,xn), the model (4) can be formulated as

y =
{
(In ⊗ e1)X

⊤ ⊗ Ip
}
γ1 +

{
(In ⊗ e2)X

⊤ ⊗ Ip
}
γ2 + · · ·+

{
(In ⊗ er)X

⊤ ⊗ Ip
}
γr + u. (5)

Under the above assumptions, the maximum likelihood estimator of the generic γr

coincides with the generalized least squares estimator of γr given by

γ̂r =
{(

XX⊤)−1
X(In ⊗ e⊤r )⊗ Ip

}
y (6)

with

Γ̂r = Y
{
X⊤ (

XX⊤)−1 ⊗ er

}
(7)

being the maximum likelihood estimator of Γr, where Y = (Y1, . . . , Yn) is a matrix of
dimension p × rn. To derive expression (6) we can define the known matrix of dimension
rpn × rpq, W =

{
(In ⊗ e1)X

⊤ ⊗ Ip, . . . , (In ⊗ er)X
⊤ ⊗ Ip

}
and the unknown vector γ of

length rpq that contains γ1, . . . ,γr. Then model (5) can be rephrased as y = Wγ+u from

which γ̂ =
(
W⊤W

)−1
W⊤y. Result follows by observing that W⊤W is a diagonal block

matrix because the canonical vectors are orthogonal. Note that the least square estimator
is also equal to the maximum likelihood estimator as a consequence of the matrix-normal
properties. More specifically, if Ui ∼ ϕ(p×r)(0, Ir,Ω) then ui = vec(Ui) is distributed
according to a multivariate normal, that is ui ∼ ϕ(pr)(0, Ir⊗Ω). Therefore u ∼ ϕ(rpn)(0, In⊗
Ir ⊗ Ω). This also implies that, the regression coefficient estimates are always the same
regardless the structure imposed on the covariance matrix of the errors.

Maximum likelihood estimator of Ω is given by SΩ/rn where SΩ is the residual sum of
squares matrix

SΩ =
n∑

i=1

(
Yi − M̂i

)(
Yi − M̂i

)⊤
. (8)

In the next theorems we derive the distributional form of the two estimators for Ω and Γ.
Proofs are given in the Appendix.

Theorem 1. Under the constraint p < r(n − q), the residual sum of squares matrix
SΩ is distributed as a Wishart with parameter Ω and degrees of freedom r(n − q), SΩ ∼
Wp(r(n− q),Ω).

Corollary 2. The unbiased estimator of Ω is Ω̂ = SΩ

r(n−q) .



A Matrix-Variate Regression Model with Canonical States 371

The next theorem establishes some inferential properties of the estimator Γ̂ = [Γ̂1, . . . , Γ̂r]
for Γ = [Γ1, . . . ,Γr] where Γ̂ and Γ have dimension p× rq.

Lemma 3. Let Γ̂ = [Γ̂1, , . . . , Γ̂r] be the estimator defined in (7). Γ̂ is a linear and
unbiased estimator of Γ with covariance matrix

var
(
Γ̂
)
=

(
XX⊤)−1 ⊗ Ir ⊗ Ω.

Theorem 4. Let Γ̂ = [Γ̂1, . . . , Γ̂r] be the estimator defined in (7) and SΩ the residual

sum of squares matrix in (8). Then S
− 1

2

Ω Γ̂ has a matrix-variate T distribution

S
− 1

2

Ω Γ̂ ∼ Trq,p
(
r(n− q)− p− 1, S

− 1
2

Ω Γ, (XX⊤)−1 ⊗ Ir, Ip

)
where r(n− q)− p− 1 are the degrees of freedom.

Theorem 2 allows to test the null hypothesis of linear independence of the responses
from the covariates, H0 : Γ = 0 through the statistics

T = S
− 1

2

Ω Γ̂ ∼ Trq,p
(
r(n− q)− p− 1, 0, (XX⊤)−1 ⊗ Ir, Ip

)
.

Since the matrix-variate T distribution is closed under linear transformation and partitions,
we could also test the null hypothesis about the single regression coefficient, H0 : Γjh = 0,
with j = 1, . . . , p and h = 1, . . . , rq via

Tjh ∼ tr(n−q)−p−1

(
{(XX⊤)−1 ⊗ Ir}hh

)
.

This would employ a battery of tests, with the possible consequence of an inflation of the
true significance level. A generalized strategy for simultaneous testing has been considered
in Viroli (2012) and can be adapted here as follows. Consider the general linear hypothesis
in the form H0 : MΓC⊤ = 0, where M is a matrix of dimension c× p with rank c ≤ p, and
C is a g× rq matrix with rank g ≤ rq. Now, under the null hypothesis, the transformation
δ̂ = vec(M Γ̂C⊤) = (C ⊗M)γ̂ has distribution

δ̂ ∼ ϕ(cg)
(
0, C(XX⊤ ⊗ Ir)

−1C⊤ ⊗MΩM⊤) .
Moreover, the matrixH = M Γ̂C⊤ (

C(XX⊤ ⊗ Ir)
−1C⊤)−1

CΓ̂M⊤ is distributed as Wishart,
H ∼ Wc(g,MΩM⊤) independently fromG = MSΩM

⊤, which isG ∼ Wc(r(n−q),MΩM⊤).
Tests onH0 : MΓC⊤ = 0 can be carried out based on the characteristic roots ofG(H+G)−1.
More specifically,

λ̃ = |G|/|H +G| =
c∏

i=1

(1 + λi)
−1

has a Wilks’ lambda distribution with parameters c, r(n − q) and g (see Mardia et al. ,
2003), where λi (i = 1, . . . , c) are the eigenvalues of HG−1.

Remark 5. From this theory, it is clear that the constraint Φ = Ir is necessary to obtain
the finite sample properties of the estimators. This constrain can be relaxed by allowing a
full matrix Φ in order to better describe the variability between and within states. In this
scenario, theorems 1 and 2 can be easily extended, but the distributional results only hold
asymptotically.
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3. Illustration

3.1. Data description

We illustrate the model properties on data coming from the Longitudinal Study of Aging
Danish Twins (LSADT) that has been conducted every two years between 1995 and 2005
(see Christensen & Vaupel , 2009) with the aim of investigating the causes of variation
in survival, health, diseases, loss of abilities, and cognitive functions among the elderly
Danish twins aged 75 years and older. The information collected during the interviews
cover health, physical functioning, cognitive functioning, depression symptomatology, social
factors, lifestyle characteristics, and quality of life. Previous studies on these data (e.g.
McGue & Christensen , 2007; Christensen et al. , 1999) investigated the relative influence
of genetic and environmental factors on the overall level of physical and cognitive functioning
and found that some determinants, like the social activity, were significantly correlated with
the mental health status.

In this study we have considered information on n = 362 couples of respondents of the
first wave in 1995 (the remaining 18 alive twins have been discarded because of missing data).
We considered p = 3 responses measuring the cognitive functioning. The first variable is
given by the total score obtained in the battery of tests of orientation, registration, attention
and calculation. It summarizes the ‘mental status’. The second variable is a measure of the
‘episodic memory’ because it summarizes the scores obtained in the word recall, delayed
word recall and language tests. The third variable is the total score obtained in the Lawton’s
IADL questionnaire that measures the capability of self-maintaining and performing the
main activities of daily living, like shopping, housekeeping and food preparation (see, for
major details, Lawton & Brody , 1969). Since the cognitive functioning may be measured
by the range of all the described variables, it is important to consider all the three responses
simultaneously. The cognitive functioning may be affected by some determinants and the
interest is in investigating the association of the overall cognitive functioning with some
covariates, including age, gender, education and indicators of prior or existing major health
conditions such as cancer, heart disease, stroke, diabetes or psychiatric disorders (see Table
1).

3.2. The analysis

The direct application of model (1) to multivariate twin data may have a drawback related
to the exchangeability of the twin members, that is, for each couple i we do not know which
subject should come first (i.e. information about the birth order is not always available,
in this sense twin members can be arbitrarily exchanged). Thus the model is not fully
identified because the diagonal elements of Φ are not distinguishable and interpretation of
Θ may be not clear.

In order to overcome this limitation, we introduce an invertible transformation on the
original measurements. In some sense, the idea is similar to the Haseman-Elston regression
analysis (Haseman & Elston , 1972) and its subsequent revisited models (Elston et al. ,
2000; Zhang et al. , 2008), developed to detect genetic linkage between quantitative traits
and genetic markers. Basically, the Haseman-Elston regression analysis considers pairs of
siblings and regresses the squared differences in their trait values on the proportion of
alleles shared at a given locus with the aim of detecting if the locus is linked to the trait.
Alternatively, the squared trait sum or the mean-corrected trait product have been used
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TABLE 1
Description of covariates

Question Type
Do you think that your health is generally? 1. Excellent; . . .; 5. Very poor
Are you happy and satisfied with your life at present? 1. Yes, always; . . .; 5. No, never
Did a doctor ever tell you that you had diabetes? Dummy: 1. Yes; 0. No
Did a doctor ever tell you that you had rheumatoid arthritis? Dummy: 1. Yes; 0. No
Did a doctor ever tell you that you had Parkinson’s disease? Dummy: 1. Yes; 0. No
Did a doctor ever tell you that you had epilepsy? Dummy: 1. Yes; 0. No
Did a doctor ever tell you that you had cancer? Dummy: 1. Yes; 0. No
Did a doctor ever tell you that you had stroke? Dummy: 1. Yes; 0. No
Did a doctor ever tell you that you had heart attack? Dummy: 1. Yes; 0. No
Have you ever suffered from a depression? Dummy: 1. Yes; 0. No
What is your body weight? Kg
How tall are you? Cm
For how many years did you and your twin live together? Years
Do you live alone? Dummy: 1. Yes; 0. No
What type of school education did you receive? Years of school
Are you or have you been married? (reference: Married) Dummy: 1. Never married; 0. Other
Are you or have you been married? (reference: Married) Dummy: 1. Divorced/separated; 0. Other
Are you or have you been married? (reference: Married) Dummy: 1. Widower/widow; 0. Other
Do you smoke? Dummy: 1. Yes; 0. No
How much do you drink alcohol per week? Number of drinks
Age Years
Sex Dummy: 1. Male; 0. Female
Zygosity 1. Monozygotic; 0; Dizygotic
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(see, for example, Wright , 1997; Drigalenko , 1998).
Let yij1 and yij2 be the two observed values of the jth variable in the ith couple of twins

so that r = 2. Here, for each variable j (j = 1, . . . , p), we consider the midpoint and the
range of the two measurements of each couple of twins, instead of their observed values:{

yij1 =
yij1+yij2

2
yij2 = |yij1 − yij2|

Therefore the transformed Yi is still a matrix of dimension p × 2, but the order of its
two columns is univocally determined.

A similar transformation is applied on the covariates. More precisely, if a covariate
assumes individual-varying numerical values within each couple, midpoint and range are
computed so that it is split into two new variables. Please note that, by considering the
range, we lose the individual twin-specific connection between covariates and outcomes.
But, what is really important in this application is to measure the effect of a big or a
small covariate range on the observed range of an outcome, as a measure of the genetic link
between the couple of twins. The positive or negative direction of the effect of a covariate
on the responses is captured by regressing the corresponding midpoints.

If a covariate is numerical but it assumes the same value within the couples of twins
(for instance, the age) the range is steadily zero and it may be dropped from the analysis.
Qualitative predictors can be treated in a different manner. An individual-varying dummy
(for instance, the individual smokes or does not smoke) is split into two dummies that
are: ‘both individuals in the couple have that modality’ (both smoke) and ‘only one has
that modality’ (only one smokes). The case ‘none has that modality’ (i.e. none smokes) is
incorporated in the intercept. A non-individual-varying dummy (for instance, the twins are
homozygous) remains unaltered. In case of categorical variables, each level can be split in
the same way.

All the obtained and transformed covariates are stacked in the q-dimensional vector xi

and model (3) reduces to

Yi = Γ1xie
⊤
1 + Γ2xie

⊤
2 + Ui (i = 1, . . . , n). (9)

In this manner, we measure the effect of the covariates on the response midpoints and
response ranges separately. This is evident from the two sets of parameters in Γ1 and Γ2

that also imply that the model is characterized by two vectors of intercepts of length p.
The interpretation of the first set of parameters, Γ1, is straightforward. A significant

covariate coefficient for a given response midpoint measures the change in the expected value
of the response midpoint of the individuals (without considering the genetic link between
them) when the corresponding covariate is varied, while all other independent variables are
held constant.

Of major interest is the interpretation of the second set of parameters, Γ2. Suppose a
regression coefficient of a covariate for a given response range is significant and positive.
The covariate can be expressed as midpoint or range, and this yields two different scenarios.
In the first situation we could say that, as the midpoint of the covariate increases, the
range of the outcome increases as well because of the positive coefficient. This implies
that the correlation between the twin members for a given response decreases, being the
range inversely related to the correlation between twin members. Therefore the covariate
could partly explain the variation due to the genetic link. On the contrary, a significant
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TABLE 2
Estimation results of different models. The proposed matrix-variate regression analysis is

compared with multivariate regression analysis, the structural equation models by Mx with ACE
components and multivariate mixed effect model with random slopes. The statistics are:

log-likelihood, the Akaike’s Information Criterion and the Bayesian Information Criterion.

Model logL AIC BIC
Matrix-variate regression -6358.31 13040.61 13131.12
Multivariate regression -6452.97 13259.93 13358.83
Mx SEM with ACE -6736.37 13646.74 13695.35
Multivariate mixed effect model -6750.39 13668.78 13715.72

and negative coefficient means that, if the corresponding covariate midpoint increases, the
response range decreases, and therefore the twins will tend to assume more similar values
and their correlation will be stronger. In the second scenario, for a positive coefficient we
have that as the covariate range increases the response range increases as well and viceversa.
Or, in other terms, big differences between covariate values imply big differences between
twin responses, regardless their order. This means that the covariate has a relevant effect
in explaining the variability between the twin members. In this perspective, a test of the
null hypothesis of the second set of model intercepts becomes particularly important: an
intercept not significantly different from zero implies that there is no expected variation
between twins, given the covariate effect. On the contrary, if the null hypothesis is rejected
we can conclude that there is an expected variability between the twins responses, not fully
explained by the covariates.

3.3. Model estimation

The proposed matrix-variate regression model has been estimated on the re-coded responses
and covariates, according to the transformation previously outlined. We started from the
complete model with all the covariates. On the basis of the methodology presented in the last
section, we have checked the association between the covariates on all the response variables.
By choosing M = Ip and C = [1, 0, 0, . . . , 0], C = [0, 1, 0, . . . , 0], . . ., C = [0, 0, 0, . . . , 1] all
the null hypotheses have been checked. In a backward strategy, only those covariates that
were significant at each fit have been retained in the model.

The estimation details of the fitted model, including log-likelihood and information
criteria, are reported in Table 2. For comparison purposes, we have also fitted a structural
equation model using the Mx software (Neale et al. , 2006; Neale , 2003) with the so called
ACE components, that are random effects describing the additive genetic factor (A), the
shared environment (C), and the specific environment (E). We also estimated a multivariate
mixed effect model using all the covariates previously described. Models with random
intercepts and a multivariate mixed model with random intercepts and slopes have been
fitted using the function lme in R. The estimation of the model with random effects both
on intercepts and slopes does not converge and it crashes after some hours. This is mainly
due to the complex estimation task deriving by a high number of covariates (i.e. 25) and
to the multivariate nature of the problem (p=3).

Among all the considered approaches, the matrix-variate regression model is preferable,
according to the information criteria AIC and BIC.

Table 3 reports the estimated coefficients of the final matrix-variate regression model. In
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brackets the p-values associated to the significance test of each single coefficient are reported.
These values have been obtained by testing the general hypothesis H0 : MΓC⊤ = 0 with C
set as before, and M a row vector of dimension p with value one in correspondence of the
covariate position (and zero elsewhere).

The obtained values indicate that, as the perceived health increases (the correspondent
covariate decreases), the mid-value of the three responses increases. Therefore the perceived
health status and the cognitive functioning are positively strictly associated. The same
positive effect can be observed for the level of education, as expectable. In general, females
obtain higher scores in the episodic memory and Lawton’s IADL tests than males, and as
age increases, the cognitive functioning worsens. Surprisingly enough, the dummies ‘one
had cancer’ and ‘one had depression’ have positive significant effects on Mental Status and
Episodic Memory with respect to the status ‘none had cancer (or depression)’ incorporated
in the intercept.

In regard to the second set of coefficients, it is important to observe that the intercepts
are not significantly different from zero, meaning that the range within twins is fully ex-
plained by the set of covariates. The midpoint and the range of the perceived health status
have a significant impact on the correlations between the mental status scores of the twins.
More precisely, as the health status worsens and its variability increases, the correlation
decreases. The mental status correlation is also positively affected by the level of happiness
and satisfaction, that is, happier individuals tend to have more similar values of mental
status of their twin. Other predictors are significantly associated with the responses, as the
civil status with the modality ‘never married’, the sex and the age. Of particular impor-
tance is the role of the zygosity, that is significant for all the three responses, denoting that
it explains a large part of correlation (the coefficients of the monozygotic dummy are all
negative).

4. Conclusions

In this work a matrix-variate regression model with canonical states has been proposed and
discussed. The proposed model has the merit to offer an interesting tool for evaluating
the role of the covariates in explaining the variation of a set of quantitative responses. As
a result of the particular parameterization of model (3) we can separate the effect of the
covariates on the two sources of variability within and between the twins. Moreover, the
separability of the total covariance matrix into the two covariance matrices Ω and Φ can
be thought of as a separability condition on the two sources of correlations typical of twin
studies that arise mostly by genetic factors (the within variability between the couples)
and mostly by non-familiar factors (the midpoint of the couples) thus improving the model
interpretation.

Compared with classical genetic multivariate models for twin and family studies (such as
the structural equation modeling or the mixed effect models), it can aid the understanding
of the contribution of covariates to the observed variation. On the contrary, if the interest
is mainly focused on the genetic decomposition of the observed variation into genetic and
environmental components, classical approaches should be preferable. For this reason, the
presented approach should not be considered as an alternative to the classical approaches
but as a complementary tool that could provide further interesting insight.

The model could be extended in several ways. Random effects could be incorporated in
a matrix-variate perspective in order to reflect the genetic theory decomposition. In this
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TABLE 3
Estimated regression coefficients of the matrix-variate regression model. In brackets the p-values associated to the null hypothesis of each

single coefficient are reported. In the table Y1 refers to the ‘mental status’, Y2 is the ‘episodic memory’ and Y3 refers to the ‘Lawton’s IADL’.

Γ1 Γ2

Y1 Y2 Y3 Y1 Y2 Y3

Intercept 23.57 (0.00) 74.53 (0.00) 65.51 (0.00) -2.33 (0.49) 15.88 (0.18) -7.62 (0.09)
Mid.Rate.health -0.72 (0.00) -4.09 (0.00) -1.79 (0.00) 0.62 (0.02) 0.43 (0.64) 1.02 (0.00)
Range.Rate.health -0.11 (0.55) -0.25 (0.71) 0.37 (0.15) 0.43 (0.02) 0.42 (0.53) 0.36 (0.16)
Mid.Happy -0.64 (0.07) -2.27 (0.07) -0.57 (0.23) 0.82 (0.02) -1.45 (0.24) 0.04 (0.94)
Range.Happy -0.14 (0.54) 0.61 (0.46) -0.31 (0.32) 0.28 (0.24) 1.45 (0.08) 0.81 (0.01)
Both.Cancer -1.19 (0.44) -7.60 (0.16) 0.81 (0.69) 0.22 (0.89) -1.76 (0.74) -1.86 (0.37)
One.Cancer 0.96 (0.03) 3.99 (0.01) 0.18 (0.77) -0.74 (0.10) -1.71 (0.28) -0.49 (0.42)
One.Stroke -0.77 (0.12) -0.35 (0.84) -1.46 (0.03) 1.11 (0.02) -0.29 (0.87) 2.19 (0.00)
Both.Live.alone 0.72 (0.35) 3.95 (0.15) 4.73 (0.00) -1.15 (0.14) 4.89 (0.07) -2.30 (0.03)
One.Live.alone 0.49 (0.41) 2.12 (0.30) 2.38 (0.00) -0.22 (0.71) 6.18 (0.00) -0.24 (0.76)
Mid.Education 0.31 (0.00) 0.62 (0.04) 0.07 (0.55) -0.09 (0.29) 0.45 (0.15) 0.20 (0.09)
Range.Education 0.10 (0.29) 0.97 (0.00) 0.25 (0.04) -0.03 (0.76) 0.14 (0.65) -0.44 (0.00)
Both.Never.married -1.57 (0.10) -5.73 (0.09) -0.11 (0.93) 1.97 (0.04) -5.62 (0.10) -0.33 (0.80)
One.Never.married -0.69 (0.27) -3.89 (0.07) -0.51 (0.54) 1.28 (0.04) -1.92 (0.38) -0.18 (0.83)
Both.Divorced -1.01 (0.65) -3.64 (0.64) 1.61 (0.59) -0.75 (0.74) 7.63 (0.33) -3.08 (0.30)
One.Divorced -0.06 (0.93) 1.47 (0.55) -0.07 (0.94) 0.29 (0.68) 0.55 (0.82) 1.19 (0.20)
Both.Widow -0.76 (0.39) -5.72 (0.06) -1.41 (0.23) 0.97 (0.27) -3.53 (0.25) 1.00 (0.40)
One.Widow -0.94 (0.12) -6.18 (0.00) -0.49 (0.55) 0.47 (0.44) -3.02 (0.16) 0.03 (0.97)
Both.Depression 0.77 (0.40) -1.74 (0.59) -0.01 (0.99) -2.59 (0.00) -6.47 (0.05) -0.07 (0.96)
One.Depression 1.04 (0.01) 3.65 (0.01) 0.01 (0.98) -1.51 (0.00) -2.16 (0.15) 0.15 (0.79)
Mid.Alcohol 0.07 (0.78) -0.58 (0.49) 0.10 (0.75) 0.35 (0.14) 0.02 (0.98) -0.37 (0.26)
Range.Alcohol 0.01 (0.97) 0.36 (0.62) 0.38 (0.17) 0.01 (0.98) 0.11 (0.88) -0.82 (0.00)
Age -0.07 (0.10) -0.44 (0.00) -0.36 (0.00) 0.04 (0.38) -0.08 (0.60) 0.12 (0.03)
Both.Male 0.24 (0.58) -5.60 (0.00) -4.37 (0.00) -0.90 (0.04) -0.18 (0.91) 1.78 (0.00)
One.Male -1.00 (0.22) -6.70 (0.02) -2.36 (0.03) 0.26 (0.75) 0.02 (0.99) 0.26 (0.81)
Monozygotic 0.00 (0.99) -0.72 (0.54) 1.32 (0.00) -0.61 (0.04) -3.16 (0.01) -1.35 (0.00)
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way, a matrix-variate variant of the classical variance component model could be obtained.
A further generalization of the method could consider mixture models (McLachlan & Peel
, 2000; Ng & McLachlan , 2014) to deal with potential unobserved heterogeneity among
couples of twins.
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A. Proofs of Theorems

Without loss of generality, let us assume that r = 2. Extension to r > 2 is straightforward.
Proof of Theorem 1

Model (5) may be rewritten in a matrix-variate form as

Y = Γ1

(
X ⊗ e⊤1

)
+ Γ2

(
X ⊗ e⊤2

)
+ U

= [Γ1,Γ2]

[
X ⊗ e⊤1
X ⊗ e⊤2

]
+ U = [Γ1,Γ2] (X ⊗ I2) + U

from which Ŷ = [Γ̂1, Γ̂2] (X ⊗ I2). Substituting (7) in the previous expression we obtain

Ŷ = Y
{
X⊤ (

XX⊤)−1
X ⊗ I2

}
. (10)

Now, we have SΩ = Ỹ Ỹ ⊤ with Ỹ = Y − Ŷ a matrix of dimension p× 2n. Putting (10) into
the previous expression we obtain

Ỹ = Y
{
I2n −X⊤ (

XX⊤)−1
X ⊗ I2

}
where H = I2n − X⊤ (

XX⊤)−1
X ⊗ I2 is the hat matrix, that is symmetric idempotent

with rank 2(n− q). Then
SΩ = Y HY ⊤ = UHU⊤

because (X ⊗ I2)H = 0. Now we use Theorem 3.2.5 in Gupta & Nagar (2000) that
establishes that if U ∼ ϕ(p×rn)(0, Irn,Ω) and H (rn × rn) is a symmetric idempotent
matrix with rank r(n− q) > p then UHU⊤ ∼ Wp(r(n− q),Ω).

Proof of Lemma 1
From (7) we have

Γ̂ = Y
{
X⊤ (

XX⊤)−1 ⊗ I2

}
.

Similarly, model (5) may be rewritten in a matrix-variate form as

Y = Γ1

(
X ⊗ e⊤1

)
+ Γ2

(
X ⊗ e⊤2

)
+ U

= [Γ1,Γ2]

[
X ⊗ e⊤1
X ⊗ e⊤2

]
+ U = Γ (X ⊗ I2) + U (11)
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Therefore

E(Γ̂) = E(Y )
{
X⊤ (

XX⊤)−1 ⊗ I2

}
= Γ (X ⊗ I2)

{
X⊤ (

XX⊤)−1 ⊗ I2

}
= Γ

and

var(Γ̂) =
{(

XX⊤)−1
X ⊗ I2

}
var(Y )

{
X⊤ (

XX⊤)−1 ⊗ I2

}
=

(
XX⊤)−1 ⊗ I2 ⊗ Ω

since var(Y ) = I2n ⊗ Ω.
Proof of Theorem 2

From Lemma 1 we have

Γ̂ ∼ ϕ(p×2q)
(
Γ, (XX⊤)−1 ⊗ I2,Ω

)
since Γ̂ is a linear combination of Y . This also implies that

Ω− 1
2 Γ̂ ∼ ϕ(p×2q)

(
Ω− 1

2Γ, (XX⊤)−1, Ip

)
since matrix normal distributions are closed under linear transformations (see, for major
details, Theorem 2.3.10 in Gupta & Nagar , 2000). Note that Γ̂ and SΩ are independent.

This is true because Γ̂ is independent from Ỹ where Γ̂ = Y A with A = X⊤ (
XX⊤)−1 ⊗ I2,

Ỹ = Y H and A⊤H = 0. Then observe

Ω− 1
2SΩ

(
Ω− 1

2

)⊤
∼ Wp (2(n− q), Ip) .

Now let X1 = Ω− 1
2 Γ̂ and X2 = Ω− 1

2SΩ

(
Ω− 1

2

)⊤
. Then using result given in Dickey (1967)

the transformation(
X

− 1
2

2

)⊤
X1 = S

− 1
2

Ω Γ̂ ∼ T2q,p
(
2(n− q)− p− 1, S

− 1
2

Ω Γ, (XX⊤)−1 ⊗ I2, Ip

)
.
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SUMMARY

A Matrix-Variate Regression Model with Canonical States: An Application to Elderly Danish
Twins

In many situations we observe a set of variables in different states (e.g. times, replicates, locations)
and the interest can be to regress the matrix-variate observed data on a set of covariates. We
define a novel matrix-variate regression model characterized by canonical components with the aim
of analyzing the effect of covariates in describing the variability within and between the different
states. Despite the seeming complexity, inference can be easily performed through maximum
likelihood. We derive the inferential properties of the model estimators and a general approach for
hypothesis testing. Finally, the proposed method is applied to data coming from the Longitudinal
Study of Aging Danish Twins (LSADT), so to investigate the causes of variation in cognitive
functioning.

Keywords: Linear Regression; Matrix-variate normal distribution; Maximum Likelihood; Struc-
tural equation modeling; Twin data.




