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1. Introduction

In the statistical literature one can find numerous distributions for modelling life-
time data. Perhaps the oldest and most extensively used life time distribution is
exponential distribution. However, its usefulness is often questioned on the ground
that it is only covering those situations where failure rate is constant. In practical
field, a number of situations arise where can not be constant. For these cases,
models having non constant failure rate are developed and available in the liter-
ature e.g., Gamma, Weibull, exponentiated exponential, etc. These distributions
are generalization of exponential distribution and possess increasing, decreasing
or constant failure rate depending on the value of the shape parameters and re-
duce to exponential distribution for specific choices of the shape parameter. For
example, Gupta and Kundu [14] proposed the use of a generalized exponential
distribution. To get a decreasing failure rate distribution Kus [19] modified the
exponential distribution by finding the distribution of the minimum of n inde-
pendently, identically and exponentially distributed random variables where n is
random following zero truncated poisson distribution. Since the distribution is
obtained through the compounding of poisson and exponential.

Further Barreto-Souza and Cribari-Neto [8] generalized the distribution pro-
posed by Kus [19] by including a power parameter. Louzada-Neto et al. [24]
proposed a new family of PE distribution having increasing failure rate. The
distribution has been obtained by finding the distribution of the maximum of n
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independently, identically and exponentially distributed random variables where
n is random following zero truncated Poisson distribution. The motivation for
this family of distribution can also be traced in the study of complementary risk
(CR) problems in presence of latent risks (see, Louzada-Neto [22]) i.e., for those
situations when only life-time values are observed but no information is available
about the factors responsible for component failures. For other details regarding
CR and related models, the readers may refer Basu and Klein [9], Adamidis and
Loukas [2] and Louzada-Neto [23] etc.

In reliability studies, experimenters wish to observe the failure times of items
(units) placed on test. But due to time and cost constraints or various other
reasons, experimenters are unable to observe life time of all items. This results
to availability of censored data. Type-I and type-II are the most common and
popular censoring schemes discussed in statistical literature. However, in medi-
cal/engineering survival analysis, removal of items may occur at intermediate steps
also, due to various reasons which are beyond the control of the experimenter. For
such a situation, progressive censoring scheme is an appropriate censoring scheme
as it allows the removal of surviving items before the termination point of the
test. For details and its applicability regarding PT-II CBRs see (Singh et al.[32],
Balakrishnan and Aggarwala [4]). If Life test experiment starts with n units. At
the first failure time X1:m:n, r1 (0 ≤ r1 ≤ n−m) units are removed from the sur-
viving units. At second failure time X2:m:n, r2 (0 ≤ r2 ≤ n−m− r1) units from
remaining units are removed, and this process continues; till mth failure time is
observed i.e. at mth failure all the remaining rm = n−m− r1 − r2 · · · rm−1 units
are removed. Note that, m is pre-fixed and r,is are random. Further, for the sake of
simplicity, we assume here that the probability of removal of a unit at every stage is
p for each remaining unit. Thus, the number of units removed at ith failure ri will
follow a binomial distribution (see, Tse et al. [34]) i.e, ri ∼ B(n−m−

∑i−1
l=0 rl, p)

for i = 1, 2, 3, · · ·m−1 and r0 = 0. This censoring scheme is known as progressive
type-II censoring with binomial removals, denoted now onwards as PT-II CBR.
It may be noted that, if r1 = r2 = · · · = rm = 0, PT-II CBR scheme reduces to
complete sampling scheme and if r1 = r2 = · · · = rm−1 = 0 and rm = n − m
this scheme reduce to conventional right type-II censoring scheme. In last few
years, the estimation of parameters of different life time distribution based on
progressive censored samples have been studied by several authors such as Bal-
akrishnan [7], Childs and Balakrishnan []11, Balakrishnan and Kannan [6], Mousa
and Jheen [25], Ng et al. [26] and Krishna and Kumar [18]. The progressive
type-II censoring with binomial removal has been considered by Tse et al. 34 for
Weibull distribution and Wu and Chang [35] for Exponential distribution. Under
the progressive type-II censoring with random removals, Wu and Chang [36] and
Yuen and Tse [37] have developed the estimation procedure for the Pareto distri-
bution and Weibull distribution respectively, when the number of units removed
at each failure time has a discrete uniform distribution. Cramer and Iliopoulos
[12] have proposed an adaptive progressive type-II censoring procedure which cov-
ers the cases of fixed censoring scheme and random censoring according to some
probability distribution.

The problem of point estimation for the parameter of the PED has been dis-
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cussed by a number of authors, but most of these have confined themselves to
maximum likelihood estimation (MLE) or Bayes estimation under symmetric and
asymmetric loss functions respectively, see Louzada-Neto et al. [24], Singh et
al.[31]-[32] etc. But none has discussed the methods of estimation, namely MLE
and least square methods are used to estimate two parameters and comparison
between these methods are calculated under PT-II CBR. Thus, our aim is to ob-
tain the MLEs based on asymptotic normal approximations and the least square
estimation of the parameters of PED under PT-II CBR.

The organization of rest of the paper is as follows. Section 2 provides a brief
description of PED model, the likelihood function under PT-II CBR . In section
3 deals with MLEs and least square estimation of the parameters of PED. A
numerical study is performed to compare the effects of variation of effective sample
sizes on these estimates under PT-II CBR censoring schemes in Section 4. A real
data examples are given to illustrate the use of PED as a lifetime model and its
reliability estimation with PT-II CBR in Section 5. Finally Conclusions are given
in last Section.

2. The Model

The Cumulative density function (cdf) of PED (λ, θ) is

F (x) = 1−

[
1− e−θe−λx

1− e−θ

]
, x > 0, λ > 0, θ > 0,

and the probability density function (pdf) is given as,

f(x) =
θλe−λx−θe−λx

1− e−θ
, x > 0, λ > 0, θ > 0. (1)

Figure 1 – The pdf plot of PED for different combinations of λ and θ.

The parameters λ and θ are the scale and shape parameters respectively of the
distribution. Figure 1 shows pdfs of PED for different values of θ and λ. Its pdf is
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decreasing if 0 < θ < 1 and unimodal for θ ≥ 1. The modal value λe−1 is obtained
at x = 1

λ log
(
θ
λ

)
.

A general expression for the rth raw moment can be given as

µ
′

r = E ⌈Xr⌉

=

∫
xrf(x)dx (2)

=

∫
xr θλe

−λx−θe−λx

1− e−θ
dx. (3)

The above expression can not be solved in usual form; however it can be
represented in the form of special function. Following [13], it can be expressed as
follows:

µ
′

r =
θΓ(r + 1)

λr ⌈1− e−θ⌉
Fr+1,r+1 (⌈1, · · · , 1⌉ , ⌈2, · · · , 2⌉ ,−θ) , (4)

where, Fp,q(a, b, θ) is the generalized hypergeometric function defined below:

Fp,q (a, b, θ) =
∞∑
j=0

⌈
θj
∏p

i=1 Γ(ai + j)Γ(ai)
−1
⌉

⌈Γ(j + 1)
∏q

i=1 Γ(bi + j)Γ(bi)−1⌉
, (5)

where, a = ⌈a1, · · · , ap⌉; p is the number of terms of a and b = ⌈b1, · · · , bq⌉; q is
the terms of b. The proof of the Equation (4) is obtained by direct integration;
see Louzada-Neto et al. [13]. It can also be noted from Louzada-Neto et al. [13]
that the mean and variance of the distribution can be obtained as

E ⌈X⌉ =
θ

λ ⌈1− e−θ⌉
F2,2 (⌈1, 1⌉ , ⌈2, 2⌉ ,−θ) and

V ar ⌈X⌉ =
θ

λ2 ⌈1− e−θ⌉
[F3,3 (⌈1, 1, 1⌉ , ⌈2, 2, 2⌉ ,−θ)

− θ

⌈1− e−θ⌉
F2,2 (⌈1, 1⌉ , ⌈2, 2⌉ ,−θ)

2

]
respectively. It is interesting to note here that the skewness and kurtosis are
independent of scale parameter λ and depend on shape parameter θ. It is observed
that skewness and kurtosis both are decreasing function of the shape parameter
θ; see Tomazella et al. [33].

2.1. Reliability characteristics

(i) Since mean does not take a very nice closed form, we shall consider here the
median time to system failure (MdTSF) which is given by

MdTSF =
log(θ − log(−log(0.5 + 0.5e−θ)))

λ
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(ii) The corresponding reliability function is given by

R(x) =

[
1− e−θe−λx

1− e−θ

]
, x > 0, λ > 0, θ > 0.

(iii) The associated hazard function can easily be obtained as

h(x) =
θλe−λx−θe−λx

1− e−θe−λx , x > 0, λ > 0, θ > 0.

It may be noted that the initial and long term failure values are finite and
are given as

h(0) = lim
x→0

λθe−θx

(1− e−θ)
=

λθ

(eθ − 1)

and

h(∞) = lim
x→∞

θλe−λx

eθe−λx − 1
= lim

x→∞

θλ

θ + θ2e−λx + · · ·
= λ

respectively.

It can be seen from Figure 2, that the failure function is increasing. For
other details about PE distribution see Ristic and Nadarajah [27].

Figure 2 – The failure rate plot of PED for different combinations of λ and θ.

2.2. Data collection

Let us suppose that n items, the life time of which follow PED, are put on life test.
Further assume that R1 items after first failure X1:m:n and R2 items after failure
X2:m:n, · · · , Rm items after mth failure Xm:m:n are randomly removed from the
test. Let the sample obtained in this way is denoted by (X1:m:n, R1), (X2:m:n, R2),
(X3:m:n, R3), · · · , (Xm:m:n, Rm). Where X1:m:n < X2:m:n < X3:m:n, · · · < Xm:m:n.
It may be noted here that the number of items removed at ith stage, Ri is random
variable following binomial distribution (as explained in section 1). If the number
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of removals, say R1 = r1, R2 = r2, R3 = r3, · · · , Rm = rm, are assumed to be fixed,
the conditional likelihood function can be written as (see Cohen [10], Kamps and
Cramer [17], Balakrishnan et al. [5]):

L(α, θ;x|R = r) = f(X1:m:n,··· ,Xm:m:n)(x1, · · · , xm)

= c
m∏
i=1

f (xi) [1− F (xi)]
ri , −∞ < x1 < · · · < xm < ∞,

(6)

Where n = m+
∑m

i=1 ri, n,m ∈ N, ri ∈ N0, 1 ≤ i ≤ m, ri ∼ B(n−m−
∑i−1

l=0 rl, p)
for i = 1, 2, 3, · · ·m − 1 and r0 = 0 and c =

∏m
i=1 γi with γi =

∑m
j=i(rj + 1) and

for γ1 = n.
Substituting (1) and (3.1) into (3.1), we get

L(α, λ;x|R = r) = c
m∏
i=1

θλe−λxi−θe−λxi

1− e−θ

{
1− e−θe−λxi

1− e−θ

}ri

. (7)

As mentioned earlier also, the number of items removed are random and inde-
pendent of each other with probability p for each unit at every stage. Thus, the
number of the units Ri removed at ith failure Xi:m:n; i = 1, 2, · · · (m− 1), follows

a binomial distribution with parameters
(
n−m−

∑i−1
l=1 ri, p

)
. Therefore,

P (R1 = r1; p) =

(
n−m

r1

)
pr1(1− p)

n−m−r1 , (8)

and for i = 2, 3, · · · ,m− 1,

P (Ri; p) = P (Ri = ri|Ri−1 = ri−1, · · ·R1 = r1)

=

(
n−m−

∑i−1
l=0 rl

ri

)
pri(1− p)

n−m−
∑i−1

l=0 rl .
(9)

We further assume that Ris are independent ofXi:m:n for all i. Then full likelihood
function takes the following form

L (θ, λ, p;x) = L (θ, λ;x|R = r)P (R = r; p) , (10)

where

P (R = r; p) = P (R1 = r1)P (R2 = r2|R1 = r1)P (R3 = r3|R2 = r2, R1 = r1)

· · ·P (Rm−1 = rm−1|Rm−2 = rm−2, · · ·R1 = r1) .

(11)

Substituting (8) and (9) into (11), we get

P (R = r; p) =
(n−m)!p

∑m−1
i=1 ri (1− p)

(m−1)(n−m)−
∑m−1

i=1 (m−i)ri(
n−m−

∑i−1
l=1 ri

)
!
∏m−1

i=1 ri!
. (12)



Reliability Estimation for poisson-exponential model etc. 9

Now, using (7),(10) and (12), we can write the full likelihood function in the
following form

L (λ, θ, p;x) = AL1 (λ, θ)L2 (p) , (13)

where

A = c(n−m)!

(n−m−
∑i−1

l=1 ri)!
∏m−1

i=1 ri!
,

L1(θ;λ) =

m∏
i=1

θλe−λxi−θe−λxi

1− e−θ

{
1− e−θe−λxi

1− e−θ

}ri

, (14)

and

L2 (p) = p
∑m−1

i=1 ri (1− p)
(m−1)(n−m)−

∑m−1
i=1 (m−i)ri . (15)

3. Parameter estimation of λ, θ and reliability characteristics

For this PED(λ, θ) we use two known methods for estimating the parameter λ and
θ, namely ML method and LS method. It is noted that the estimate can not be
expresses in nice closed form when both of the parameters are unknown in either
two methods.

3.1. Maximum likelihood estimators

In this section, we have obtained the MLEs of the parameters λ, θ and p based
on PT-II CBRs. We observe from (13), (14) and (15) that likelihood function is
multiplication of three terms, namely, A, L1 and L2. Out of these A does not
dependent on the parameters θ, λ and p, thus, it behaves as constant for given
data set. L1 does not involved p and can be treated as function of θ and λ only,
where as L2 involves p only. Therefore, the MLEs of θ and λ can be derived by
maximizing L1. Similarly the MLE of p can be obtained by maximizing L2.
Taking log of both sides of (14), we have

lnL1(λ; θ) = m ln (λ) +m ln (θ)− λ

m∑
i=1

xi − θ

m∑
i=1

e−λxi

+

m∑
i=1

ri ln(1− e−θe−λxi
)− n ln(1− e−θ).

(16)

The normal equations can be obtained by differentiating (16) with respect to
θ and λ and equating these to zero. Thus, MLEs of θ and λ can be obtained by
simultaneously solving the following normal equations :

m

θ
−

m∑
i=1

e−λxi +
m∑
i=1

rie
−λxi−θe−λxi

1− e−θe−λxi
− ne−θ

1− e−θ
= 0 (17)
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and
m

λ
−

m∑
i=1

xi + θ

m∑
i=1

xie
−λxi − θ

m∑
i=1

rixie
−λxi−θe−λxi

1− e−θe−λxi
= 0. (18)

It may be noted that (17) and (18) can not be solved simultaneously to provide a
nice closed form for the estimators. Therefore, we propose the use of fixed point
iteration method for solving these equations. For further details see Jain et al.
[15], Rao [28] and Singh et al. [30]. Hence, the MLEs of MdTSF, R(t) and h(t)
can be evaluated using invariance property of MLEs as

M̂dTSF =
log(θ̂ − log(−log(0.5 + 0.5e−θ̂)))

λ̂

R̂(t) =

[
1− e−θ̂e−λ̂t

1− e−θ̂

]
, t > 0

ĥ(t) =
θ̂λ̂e−λ̂t−θ̂e−λ̂t

1− e−θ̂e−λ̂t
, t > 0.

The MLE of parameter p can be obtained by maximizing (15). Thus we find
immediately,

p̂mle =

∑m−1
i=1 ri

(m− 1) (n−m)−
∑m−1

i=1 ri (m− i− 1)
.

3.2. Least square estimation

In this section, we drive The least squares estimators (LSEs) of the two parameters
of PED, with modifications necessary to make for PT-II CBR sample. The LSEs
were originally proposed by Swain et al. [29] for Beta distribution.

Let X1:m:n, X2:m:n, · · · , Xm:m:n be a PT-II CBR sample with sample size n,
failure information m and censoring scheme with random R = (R1, R2, · · · , Rm)
from a population with cdf F (.). Then, for i = 1, 2, · · · ,m see (Balakrishnan and
Aggarwala [4][pp. 22-23], Balakrishnan et al. [5]).

E (F (Xi:m:n)) = 1−
m∏

j=m−i+1

αj

where

αj =
ai

(1+ai)
and ai = i+

m∑
j=m−i+1

rj

Now, the LSE of the parameters can be obtained by minimising

Q =
m∑
i=1

[F (Xi:m:n)− E (F (Xi:m:n))]
2

(19)
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with respect to the parameters.

In the case of PED, the LSEs of (λ, θ) can be obtained by minimizing,

Q (λ, θ) =
m∑
i=1

 m∏
j=m−i+1

αj −

{
1− e−θe−λxi

1− e−θ

}2

(20)

with respect to the parameters λ and θ. Thus, the LSEs of (λ, θ) are the solutions
of the following simultaneous equations:

∂Q (λ, θ)

∂λ
=

m∑
i=1

 m∏
j=m−i+1

αj −

{
1− e−θe−λxi

1− e−θ

} θxi

{
e−(θe

−λxi+λxi)

1− e−θ

} = 0,

(21)

∂Q (λ, θ)

∂θ
=

m∑
i=1


 m∏
j=m−i+1

αj −


1 − e−θe−λxi

1 − e−θ


 e−θ(1 − e−θe−λxi

) − (1 − e−θ)e
−

(
θe−λxi+λxi

)
(1 − e−θ)2

 = 0.

(22)

The solutions of the simultaneous Equations (21) and (22) can be evaluated
numerically by some suitable iterative procedure such as Newton-Raphson method,
for given the values of (n,m,R,Xi:m:n) for i = 1, 2, 3, · · · ,m.

3.3. Asymptotic confidence intervals

The first derivatives of the log likelihood of PED with respect to λ and θ are given
by equation (17) and (18) and hence the second derivatives are

∂2 lnL1(λ; θ)

∂θ2
= −

m∑
i=1

rie
−θe−λxi−λxi

{
e−λxi

(
e−θe−λxi − 1

)
− e−θe−λxi

}
(
1− e−θe−λxi

)2
−m

θ2
+

n

(1− e−θ)
2

(23)

∂2 lnL1(λ; θ)

∂λ2
= −θ

m∑
i=1

rixie
−λxi−θe−λxi

{(
1− e−θe−λxi

)
(θxie

−λxi − xi) +
(
θxie

−λxi−θe−λxi
)}

(
1− e−θe−λxi

)2

−m

λ2
−

m∑
i=1

x2
i e

−λxi

(24)

∂2 lnL1(λ; θ)

∂λ∂θ
=

∂2 lnL1(λ; θ)

∂θ∂λ
=

m∑
i=1

xie
−λxi+

θ

m∑
i=1

rie
−λxi−θe−λxi

{(
1− e−θe−λxi

)
(θxie

−λxi − xi) +
(
θxie

−λxi−θe−λxi
)}

(
1− e−θe−λxi

)2

(25)
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If we denote the MLE of ζ = (λ, θ) by (λ̂ML, θ̂ML), the observed information matrix is
then given by

I(δ) =

[
∂2lnL1(λ;θ)

∂λ2
∂2lnL1(λ;θ)

∂λ∂θ
∂2lnL1(λ;θ)

∂θ∂λ
∂2lnL1(λ;θ)

∂θ2

]
λ=λ̂ML,θ=θ̂ML

(26)

And hence the variance covariance matrix would be I−1(δ). The approximate (1−α)100%

confidence intervals (CIs) for the parameters λ and θ are λ̂ML ± ζα/2

√
V (λ̂ML) and

θ̂ML±ζα/2

√
V (θ̂ML), respectively where V (λ̂ML) and V (θ̂ML) are variances of λ̂ML and

θ̂ML, which are given by the first and the second, diagonal element of I−1(δ), and ζα/2

is the upper (α/2) percentile of standard normal distribution.

4. Numerical study

The estimators λ̂ML and θ̂ML denote the MLEs of the parameters λ and θ respectively
while λ̂LS and θ̂LS are corresponding LSEs. Also ((λLc λUc) and (θLc θUc)) represent
average CI. We have obtained the estimates and reliability characteristics from MLEs and
estimates from LSEs. The comparisons are based on MSE through the simulated sample
of estimates. It may be mentioned here that the exact expressions for the estimates can
not be expressed in closed form. Therefore, the estimates are estimated on the basis
of Monte-Carlo simulation study of 10000 samples. We have taken (λ = 2, θ = 5) and
(λ = 2, θ = 6) for three different sample sizes (i) small sample size n = 20, (ii) moderate
sample size n = 30, and (iii) large sample size n = 50. Also, each sample size has 4
censoring schemes. For the arbitrary chosen value of this parameter (λ = 2, θ = 5) has
been all ready studied in bayesian paradigm under PT-II CBR by Singh et al. [32]. So,
We study this values in classical frame under MLE and LSE. The study contains the
following steps:

(a) Take the values of the parameters λ, θ and mission time t.

(b) Compute the actual values of MdTSF, R(t) and h(t).

(c) Generate a PT-II CBR sample of size n with m failures using the algorithm given
by Balakrishnan and Shandhu [3].

(d) For each value of (n = 20, 30, 50), four values of m are considered, so that, the
percentage of failure information (m/n)× 100 is 40, 50, 80 and 100%.

(e) Compute the MLEs of λ, θ,MdTSF,R(t) and h(t) according to Subsection 3.1. Also,
compute CI for both λ and θ (using normal approximation) and corresponding
compute LSEs of λ and θ according to Subsection 3.2.

(f) Repeat steps (c)−(d), N = 10, 000 times for chosen values of (λ = 2, θ = 5, t =
1.8, p = 0.5) and (λ = 2, θ = 6, t = 1.8, p = 0.5) with each of 12 censoring
schemes. Compute the expected value (EV), mean square error (MSE) of the es-

timates obtained in step (d) using the following formulae EV = 1
N

N∑
i=1

ϕ̂ (δ) and

MSE= 1
N

N∑
i=1

(
ϕ̂ (δ)− ϕ (δ)

)2

, where δ = (λ, θ), ϕ (.) is function of the set of model

parameter, while ϕ̂ (δ) is an estimate of ϕ (δ).
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4.1. Comparison of simulation study

The simulation study was performed for various values of effective sample m for both
parameters are unknown. Briefly, we are giving here the simulation (Tables 1−3), for
both parameters are unknown with (λ = 2, θ = 5) and (λ = 2, θ = 6) under different
percentage of failure information. The conclusions for these studies are given below.

(a) Tables 1 shows the LSE of λ and θ and the corresponding reliability characteristics
respectively. From Tables 1, one can note that the MSE and bais decrease as the
effective sample size(m) get near to n.

(b) The MLEs are presented in Tables (1-2). It is also observed similar pattern as
Tables 1.

(c) One can see, based on Tables 1 and Tables 2, the LSEs of λ, θ perform better as
compare to MLE in terms of bais and MSE.

(d) In Tables 2-4, 6 and 5, 7, ((λLc λUc) and (θLc θUc)) are presented an average limit
of lower and upper limit of λ and θ respectively. It can be seen from these tables
that as m increases the average length of the intervals decreases.

5. Real data analysis

In this section, we consider two types of real data example. First data set is a result of a
test on endurance of deep groove ball bearings and was originally discussed by Lieblein
and Zelen [21] and also given in Lawless [20]. Second data set in this example was
extracted from Ed Fuller of the NICT Ceramics Division. It contains polished window
strength data. A paper by Pepi [16] describes the all-glass airplane window design. Since
the data were used in a case of study is a form of reliability analysis Under PT-II CBRs.
The second data sets are as follows: 18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5,
25.52, 25.8, 26.69, 26.77, 26.78, 27.05, 27.67, 29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76,
35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381. In order to have an idea about
the associated failure rate for both example, we considered, a graphical method based on
TTT (Total Time on Test) plot as a crude indicator see Aarset [1]. The empirical TTT
is given as

T ( r
n
) =

∑r
i=1 x(i)+(n−r)x(r)∑n

i=1 x(i)
,

where r = 1, 2, · · · , n and x(r) is the order statistics of the sample. Figure (5,8) shows
the TTT plot, which is concave indicating that data relates to an increasing failure
rate. Thus, It can be properly accommodated by a PED. The fitting of PED was
checked using CDF-plot and PP-plot given in Figure (3-4), Figure (6-7) and Kolmogorov-
Smirnov(KS) test. Value of the test statistics 0.115023 < 0.275(KS(Tabulated)) and
0.1052121 < 0.2903226(KS(Tabulated)), which shows that PED provides a satisfactory
fit to the considered two data sets respectively. On the basis of these data set the MLEs,
LSEs, intervals of λ and θ are presented in Table 5 and Table 7 respectively. But for the
purpose of illustrating the method discussed in this paper, a PT-II CBR is generated
from these data sets under different schemes. The number of removals are shown in
Table 4 Table 6 under different schemes. Using the formulae given in section (3) under
different degree of censoring, the LSEs and MLEs of λ and θ are presented in Table 5
and Table 7 respectively.
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6. Conclusion

In this paper, we have considered the problem of classical estimation of parameters of
PED under PT-II CBR sample. We have found that in most of the considered method
of estimations, LSEs provides the precise estimate with smaller MSE as well as bais.
Finally, we may conclude that the LSEs discussed in this article can be recommended
for use of PED parameter estimation under PT-II CBRs sample.
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Appendix

Figure 3 – CDF plots for endurance of deep groove ball bearings data.
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Figure 4 – PP plot for endurance of deep groove ball bearings data.

Figure 5 – TTT plot for endurance of deep groove ball bearings data.

Figure 6 – CDF plots for glass airplane window data.
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Figure 7 – PP plot for glass airplane window data.

Figure 8 – TTT plot for glass airplane window data.
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Summary

In this paper, a poissoin-exponential distribution(PED) is considered as a lifetime model.
Its statistical characteristics and important distributional properties are discussed by
Louzada-Neto et al. [13]. The method of Maximum likelihood estimation and least square
estimation of parameters involved along with reliability and failure rate functions is also
studied here. In view of cost and time constraints, Progressive type-II censored data
with binomial removals (PT-II CBRs) have been used. Finally, two real data examples
are given to show the practical applications of the paper.


