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1. Introduction

Seasonal diseases can be referred to as the diseases which are caused due to the
effects of the seasons or due to the allergy of the weather. Seasonal change in
the incidence of infectious diseases is a regular phenomenon in temperate and
tropical climate (Grassly and Fraser, 2006). The study area we have chosen is
the Kamrup (rural) district of Assam. With the “Tropical Monsoon Rainforest
Climate”, Assam is temperate (summer max. at 95−100oF or 35−38oC and winter
min. at 43− 46oF or 6− 8oC) and experiences heavy rainfall and high humidity
(Singh, 1993). In the Statistics (2011-12), it had been reported that in Assam,
92.9% of persons had symptoms of chronic illness and sought medical care whereas
87.8% of persons had symptoms of acute illness and took treatment for the same.
It had been seen that seasonal diseases constituted most of these diseases. For
instance, 1386 per 1, 00, 000 persons suffered from Diarrhoea/Dysentery; 2732 per
1, 00, 000 persons suffered from Hypertension; 356 per 1, 00, 000 persons suffered
from Tuberculosis and 680 per 1, 00, 000 persons suffered from Asthma. Most of
these diseases are seasonal in nature and the number of people suffering from these
diseases has increased with time (Statistics, 2012-13).

Although seasonal variation encompasses cyclic change in disease occurrence,
cyclic variation is often neglected in health services research (Christiansen et al.,
2012). The studies on seasonal diseases that have been undertaken for Assam have
primarily reported the months (seasons) during which the prevalence of such dis-
eases is the highest (Baruah et al., 2007). No further results indicating the average
or median time period and the probablistic pattern of occurrence of diseases have
been reported so far. This paper primarily aims to incorporate these factors in
studying the occurrence of seasonal diseases by taking into account their cyclical
variation.
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The seasonal diseases tend to recur in some fixed month (season) every year
and so, the period of the cycle is a year. This is a property possessed by circular
random variable (r.v), which repeats itself after an interval 2π and is represented
as a point in the circumference of a unit circle. It is usually reported in degree
and converted into radians for computational convenience. The main advantage of
modeling the occurrence of seasonal disease as a circular r.v lies in the fact it will
not only give us an idea about the modal time period of occurrence, but also let
us assess the mean and median time period. Furthermore, the circular descriptive
statistical tools provide us with certain measures using which we can have an
insight into the underlying distribution of the sample and detect the presence of
seasonality in the data. These cannot be assessed with the aid of linear statistical
tools.

The primary data collected for the purpose of the study will contain infor-
mation on individuals who are suffering from non-seasonal diseases or from no
disease at all. Since we are interested only in analyzing the occurrence of seasonal
diseases, it becomes necessary on our part to consider only those individuals who
are suffering from seasonal diseases. We, thus, end up with the Censored Sample,
it being censored in the sense that only the observations of interest are included in
the sample. The analysis pertaining to the censored circular sample require some
special circular descriptive statistical techniques, which has not yet been devised
in the literature.
Identification of the effect of seasons (months) in the occurrence of seasonal dis-
eases will require some specialized tests. Apart from the Pearson χ2 test for het-
erogeneity, another early work in detection of seasonality in epidemiological data
using circular statistical tools can be attributed to Edwards (1961) who devised a
test based on weights placed around a unit circle. But the Edwards method has
the drawback of performing poorly in small samples. David and Newell (1965)
proposed a test based on the maximum difference in the number of occurrences
in all possible pairs of 6-month divisions of the year. None of the above authors
have worked towards identifying the presence of seasonality in the censored circu-
lar sample in their respective study. Therefore, there remains a need to develop a
test of detection of seasonality for the censored circular sample.

In the circular statistics literature, linear-circular regression has been proposed
where the response variable is linear and continuous whereas the predictor is cir-
cular (see Mardia and Jupp, 2000, p.257). Here, we may be interested in modeling
the occurrence of seasonal diseases w.r.t. the months (seasons) which are circular
r.v’s, in which case, the response variable will be dichotomous in nature. No such
method dealing with binary response and circular predictor has been proposed in
literature till date.

It can thus be seen that an efficient and detailed account on the occurrence of
seasonal disease will require an analysis of a censored circular sample, detection of
presence of seasonal effects in it and finally, the development of a binary-circular
regression model. This will eventually help the health officials of Assam in under-
standing the proper underlying pattern of occurrence of seasonal diseases. This
in turn will envisage a better health scenario, ensuring an overall improvement of
the place. Keeping these things in mind, we have set our objectives as
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• developing Circular Descriptive Statistics for the censored circular sample
and drawing inference about the overall pattern of occurrence of seasonal
diseases - both month-wise and season-wise;

• devising a new test of detection of seasonality for the censored circular sam-
ple for detecting month-wise and season-wise variation in the occurrence of
seasonal diseases; and finally,

• proposing a regression model for analyzing binary response from a circular
predictor and apply it to the dataset under consideration in the study.

2. Study area and Data

The data has been taken from the project entitled “Statistical Modeling in Circular
Statistics: An Application to Health Science” sponsored by University Grants
Commission (UGC), New Delhi, India. The study area has been chosen to be
Kamrup (rural) district of Assam, India, where 3508 individuals were surveyed for
attaining the concerned objective. The period of the study is from the year 2013
to 2014.

Out of a wide range of diseases that were reported to have occurred during
the study period, we have neglected those with probability of occurrence almost
nearing 0. We were, thus, left with the following diseases - Hypertension, Dia-
betes, Asthma, Typhoid, Malaria, Poisoning, Heart problem, COPD, Diarhhoea,
Dysentery, Pneumonia, Cancer, Jaundice, Skin disease, Gynecological problem,
Tuberculosis, Mental illness, Sexually Transmitted Disease (STD), Urinary tract
infection. Of these, only the five diseases viz., Diabetes, Poisoning, Cancer, Gyne-
cological problem and Mental illness are non-seasonal diseases. We have, therefore,
considered the data only on the seasonal diseases. A total of 2700 cases of seasonal
diseases has been reported.

In the present study, the classification of the seasons has been done as Win-
ter (January-February), Pre-monsoon/Summer (March-May), Monsoon (June-
September) and Post-monsoon (October-December). For studying the variation
in occurrence month-wise, data are presented in form of a 12-series monthly totals,
where it consists of the number of individuals affected with a seasonal disease in a
given month of a year. Similarly, for studying the variation in occurrence season-
wise, data are presented in form of a 4-series seasonal totals, where it comprises
of the number of individuals affected with a seasonal disease during a particular
season of a year. Since the lengths of some of the months are equal with each
other, whereas some differ by only a day or two, it is appropriate only to adjust
the number of cases (frequencies) so that they correspond to “months” of equal
length, without significantly affecting the actual frequencies corresponding to ev-
ery month. Thus, we group the data for this case by attributing the class interval
(0o, 30o) to the month of January, and so on (Mardia and Jupp, 2000).

But in case of season-wise analysis, the seasons differ by a significant length
and so, adjusting the number of cases (frequencies) so that they correspond to
“seasons” of equal length will highly distort the actual frequencies and eventually
give misleading results. That is why we opt for grouping the cases in unequal
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intervals, the width of the intervals being proportional to the length of the seasons.
Thus, we group the data for this case by attributing the class interval (0o, 58o) to
the season “Winter”, (58o, 149o) to the season “Pre-monsoon”, (149o, 269o) to the
season “Monsoon” and (269o, 360o) to the season “Post-monsoon”.

3. Circular Descriptive Statistics for censored circular sample

The sample data has been restricted to the one containing only the observations
of interest and the remaining observations are not of interest. So, the sample
data has been described as being dichotomous in nature. In the present study,
circular descriptive statistics and tests have been developed considering only the
observations of interest. We, therefore, term this sample as censored circular
sample. To fulfil the objectives of the paper, we define the Circular Descriptive
Statistics for censored circular sample, which are as follows:

Often, circular data that arises in terms of angles come in a grouped form.
Analogous to the linear case, we make the assumption that all the observations
in an interval are concentrated at the mid-point of that interval. Therefore, if
the original n observations are grouped into k classes with the ith class having
a mid-point of αi and frequency fi, then a typical observation can be denoted

by αij , i = 1, 2, . . . , k; j = 1, 2, . . . , fi;
(∑k

i=1 fi = n
)
. The polar to rectangular

transformation for each observation transforms them to the following form:

(cosαij , sinαij) i = 1, 2, . . . , k; j = 1, 2, . . . , fi (1)

The angular observations αij ’s, measured in radians, are treated as unit vectors
and their resultant is defined as follows:

Definition 1. The Censored Sample Resultant Vector of these n unit
vectors is obtained by adding them over all the components and is given by: k∑

i=1

fi∑
j=1

(cosβcij) ,
k∑

i=1

fi∑
j=1

(sinβsij)

 = (Cc, Sc) (2)

where

βcij =


{
π/2⌈αij⌉, if ⌈αij⌉ is odd

π/2⌊αij⌋, if ⌊αij⌋ is odd
if the observation is not of interest

αij if the observation is of interest

(3)

⌈x⌉ and ⌊x⌋ denoting the ceiling and floor function of x respectively and

βsij = Isαij (4)

Here, βcij and βsij are measured in radians and Is is the sine indicator variable
defined as

Is =

{
0, if the observation is not of interest,

1, if the observation is of interest,
(5)
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We denote by Rc, the length of the censored resultant vector given by

Rc =
(
C2

c + S2
c

) 1
2

Rc lies in the interval (0, n). A particular case of the above definition is the sample
resultant vector (see Mardia and Jupp, 2000, p.15), when there is complete absence
of observation of no interest.

It can be seen that the usual linear techniques fail to give a unique measure for
the mean direction of a set of angular observations, because it will depend upon
the choice of zero direction and the sense of rotation (clockwise or anti-clockwise)
(Rao and SenGupta, 2001). Consequently, the direction of the resultant vector
of the censored sample is considered as a measure of the mean direction of the
sample and is defined as follows:

Definition 2. The Censored Sample Circular Mean Direction, denoted
by ᾱc0, is defined as the quadrant specific inverse of the tangent of the ratio of Sc

to Cc and is given by

ᾱc0 = arctan∗
(
Sc

Cc

)
where

ᾱc0 =



arctan
(

Sc

Cc

)
, if Cc > 0, Sc ≥ 0,

π

2
, if Cc = 0, Sc > 0,

arctan
(

Sc

Cc

)
+ π, if Cc < 0,

arctan
(

Sc

Cc

)
+ 2π, if Cc < 0, Sc < 0,

undefined, if Cc = 0, Sc = 0.

arctan is operated so as to provide us with an unique inverse of
Sc

Cc
on [0, 2π] and

hence, a unique mean direction.
A particular case of the above definition is the sample circular mean direction (see
Rao and SenGupta, 2001, p.13), when there is complete absence of observation of
no interest.

Definition 3. For the purpose of robust estimation of the population mea-
sure of central tendency and to have an idea about the direction which divides the
sample into two equal halves, we need to consider the measure for circular median
of the sample. A Censored Sample Circular Median Direction of angular
measurements is any angle ϕ such that

• half of the data points lie in the arc [ϕ, ϕ+ π), and

• the majority of the data points are nearer to ϕ than to ϕ + π. Further, it
can be seen that when the sample size n is odd, the sample median is one of
the data points. When n is even, it is convenient to consider the midpoint
of two appropriate adjacent data points analogous to the linear case.
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It is equivalent to finding ϕ by minimizing the function

d (α) = π − 1

n

k∑
i=1

fi∑
j=1

Im | π− | αij − α || (6)

where

Im =

{
0, if the observation is not of interest,

1, if the observation is of interest,
(7)

and which is a function of α.
A particular case of the above definition is the sample circular median direc-

tion (Mardia and Jupp, 2000; Fisher, 1993), when there is complete absence of
observation of no interest.

The quantity d (α) appearing in equation (6) gives a measure of the spread of
the angles αij

′s about the angle α (see Mardia and Jupp, 2000, p.19). Analogous
to the linear case, where the median minimizes the mean deviation of a set of ob-
servations (representing dispersion in the dataset), the circular median direction of
the censored sample also minimizes the sample measure of dispersion d (α). Based
on this analogy, an equivalent measure of mean deviation for censored circular
sample is as defined below:

Definition 4. A measure of spread of censored angular data associated with
the median direction ϕ is the Censored Sample Circular Mean Deviation
given by

d (ϕ) = π − 1

n

k∑
i=1

fi∑
j=1

Im | π− | αij − ϕ ||

which is nothing but the minimum value taken by d (α) and Im is as defined in
(7).

A particular case of the above definition is the sample circular median direction
(see Fisher, 1993, p.36), when there is complete absence of observation of no
interest.

Definition 5. The Censored Sample Mean Resultant Length R̄c is a
measure of concentration of a censored angular dataset around its mean direction
and is defined as

R̄c = Rc/n =
(
C̄c

2
+ S̄c

2
) 1

2

(8)

where

C̄c =
Cc

n
, S̄c =

Sc

n

Cc and Sc being defined as in (2).

Evidently, R̄c lies between 0 and 1. If the directions are tightly clustered, it would
indicate a greater concentration around the mean direction and so, R̄c will lie
nearer to 1. On the contrary, if the angles are widely dispersed, it would mean
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that there is no apparent concentration of the observations towards the mean
direction. So, in this case, R̄c will approximately be equal to 0. However, R̄c u
0 does not necessarily indicate that the observations of the censored sample are
evenly dispersed about the unit circle. It simply indicates lack of concentration
around the mean direction.

A particular case of the above definition is the sample mean resultant length
(see Mardia and Jupp, 2000, pp.17-18), when there is complete absence of obser-
vation of no interest.

Definition 6. In the linear statistics literature, we have a measure of variance
whose smaller value indicates lesser dispersion of the data and vice-versa. This
calls for the establishment of an analogous measure of variance for censored cir-
cular sample, so as to facilitate comparison with data on the line. We have, thus,
defined the measure of dispersion viz. Censored Sample Circular Variance
as follows:

Vc = 1− R̄c

where R̄c is as defined in (8).

Vc lies between 0 and 1. The interpretation of Vc is just the opposite of that of
R̄c.

A particular case of the above definition is the sample circular variance (see
Mardia and Jupp, 2000, p.18), when there is complete absence of observation of
no interest.

Here, we are working with grouped data with the assumption that all the fre-
quencies are concentrated at the mid-point of the class intervals. This assumption
is fairly true for intervals below 45o in length. In case the grouping is very coarse,
say for those exceeding 45o, the correction for grouping is needed which would,
otherwise, exhibit misleading results. Following the calculations shown in Stuart
and Ord (1987), it can be seen that the sample mean directions and the sample
trigonometric moments do not need correction for grouping as the data are mea-
sured to the nearest 1o or 5o (Mardia and Jupp, 2000, p.23). In our study, the
intervals into which we have classified the months are of equal width 30o and so,
they require no adjustment for grouping. But the groups corresponding to the
seasons are of unequal widths with each of them exceeding 45o. This would mean
that an adjustment for the grouping corresponding to seasons is required.

We see that for season-wise grouping, h is not equal for all the intervals. So,
we propose to consider h as the circular mean of all the widths (in radians) and
then apply the following formula to adjust the resultant length of the censored
circular sample pertaining to the season-wise analysis for the grouping error.

Definition 7. The Adjusted Censored Sample Mean Resultant Length
is defined as:

R̄∗
cp = a (ph) R̄cp
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where

a (ph) =
ph
2

sin ph
2

and in particular

a (h) =
h
2

sin h
2

R̄∗
c = a (h) R̄c

Here, h is the mean length in radians of the class interval widths and R̄cp is as
defined in the subsequent section.

Consequently, for this sample, the variance, now termed as the Adjusted Cen-
sored Sample Circular Variance, becomes

V ∗
c = 1− R̄∗

c

The interpretation of V ∗
c remains the same as that of Vc. The length of the censored

sample mean resultant vector corresponding to month-wise analysis, which doesn’t
require adjustment, is calculated using equation (8). In case the intervals are of
equal width and the data does not contain any observation of no interest, the
adjustment can be made using the formula given in (Mardia and Jupp, 2000,
p.23).

The sample trigonometric moments are the sample analogs of the population
trigonometric moments, which play a very vital role in the theory of circular dis-
tributions through determination of population mean and concentration measures.
The censored sample trigonometric moments (about both zero and mean direction)
are as defined below:

Definition 8. The Censored Sample pth Order Trigonometric Mo-
ment about the Zero Direction is calculated as

m′
cp = C̄c (p) + iS̄c (p)

where

C̄c (p) =
1

n

k∑
i=1

fi∑
j=1

(cos pβcij) , S̄c (p) =
1

n

k∑
i=1

fi∑
j=1

(sin pβsij)

where βcij and βsij are as defined in (3) and (4) respectively. It can again be
written as

m′
cp = R̄cpe

(iᾱcp)

where R̄cp and ᾱcp denote the censored sample mean resultant length and the cen-
sored sample circular mean direction of the transformed dataset {pα1, pα2, . . . , pαn}.

In particular,
m′

c1 = R̄ce
(iᾱc0)

A particular case of the above definition is the sample pth order trigonometric
moment about zero direction (see Mardia and Jupp, 2000, pp.20-21), when there
is complete absence of observation of no interest.
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For the censored sample pertaining to the season-wise analysis that has under-
gone adjustment for grouping, the sample moments about zero direction have to
be adjusted. The corrected moments are as defined below:

Definition 9. The Adjusted Censored Sample pth Order Trigonomet-
ric Moment about the Zero Direction is given by:

m∗
cp

′ = C̄∗
c (p) + iS̄∗

c (p)

where
C̄∗

c (p) = a (ph) C̄c (p) , S̄
∗
c (p) = a (ph) S̄c (p)

Here, we see that the mean direction of the adjusted vector remains the same
as

arctan∗
(
S̄∗
c (p)

C̄∗
c (p)

)
= arctan∗

(
S̄c (p)

C̄c (p)

)
= ᾱcp

Thus, we have,
m∗

cp
′ = R̄∗

cpe
(iᾱcp)

In particular,
m∗

c1
′ = R̄∗

ce
(iᾱcp)

Definition 10. The Censored Sample pth Order Trigonometric Mo-
ment about the Mean Direction is calculated as

mcp = C̄ ′
c (p) + iS̄′

c (p)

where

C̄ ′
c (p) =

1

n

k∑
i=1

fi∑
j=1

{cos p (βcij − ᾱc0)} ,

S̄′
c (p) =

1

n

k∑
i=1

fi∑
j=1

{sin pIs (αij − ᾱc0)}

wherein βcij and Is are as defined in (3) and (5) respectively.

In particular,
mc1 = R̄c

as
k∑

i=1

fi∑
j=1

sin Is (αij − ᾱc0) = 0. (9)

and

1

n

k∑
i=1

fi∑
j=1

cos (βcij − ᾱc0) = R̄c. (10)
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(9) and (10) are analogous to the equations

n∑
i=1

(xi − x̄) = 0

and
1

n

n∑
i=1

(xi − x̄)
2
= s2

that exist in linear statistics literature. For the censored sample corresponding to
the season-wise analysis, the particular case of the above definition holds for the
unadjusted censored sample mean resultant length R̄c.

A particular case of the above definition is the sample pth order trigonometric
moment about mean direction (see Mardia and Jupp, 2000, p.21), when there is
complete absence of observation of no interest.

Analogous to the linear measures of sample skewness and kurtosis respectively
given by

γ1 =

∑n
i=1(yi−ȳ)3

n{
1
n

∑n
i=1 (yi − ȳ)

2
} 3

2

and

β2 =

∑n
i=1(yi−ȳ)4

n{
1
n

∑n
i=1 (yi − ȳ)

2
}2

the skewness and kurtosis measures for censored circular sample are defined as
follows:

Definition 11. The Censored Sample Circular Skewness is defined as

ŝ =

{
R̄c2 sin (ᾱc2 − 2ᾱc0)

}
V

3
2
c

(11)

For symmetric unimodal datasets (such as the ones from Von Mises or Wrapped
normal distribution), ŝ is nearly zero, indicating symmetry. Analogous to the
linear case, a positive (negative) value of the measure indicates that the underlying
distribution is positively (negatively) skewed.
For the censored sample pertaining to the season-wise analysis of occurrence of
seasonal diseases, we replace R̄c2 and Vc in (11) by R̄∗

c2 and V ∗
c respectively. This

gives us the Adjusted Censored Sample Circular Skewness, defined as:

ŝ∗ =

{
R̄∗

c2 sin (ᾱc2 − 2ᾱc0)
}

V ∗
c

3
2

The interpretation of ŝ∗ remains the same as that of ŝ.
A particular case of the above definition is the sample circular skewness measure
(see Mardia and Jupp, 2000, p.22), when there is complete absence of observation
of no interest.
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Definition 12. The Censored Sample Circular Kurtosis is defined as:

k̂ =

{
R̄c2 cos (ᾱc2 − 2ᾱc0)− R̄c

4
}

V 2
c

(12)

Similar to the skewness measure for the censored sample for season-wise analysis,
the Adjusted Censored Sample Circular Kurtosis is obtained by replacing
R̄c2, R̄c and Vc in (12) by R̄∗

c2, R̄
∗
c and V ∗

c respectively and is given by

k̂∗ =

{
R̄∗

c2 cos (ᾱc2 − 2ᾱc0)− R̄∗4

c

}
V ∗
c
2

The interpretation of k̂∗ remains the same as that of k̂.
For unimodal datasets with a peak that can be well approximated by a wrapped

normal distribution, k̂ is nearly 0, i.e., mesokurtic. Analogous to the linear case, a
positive (negative) value of the measure indicates that the underlying distribution
is sharp (flat) peaked. The numerators in the expressions (11) and (12) have arisen
due to the interpretation of trigonometric moments of concentrated distributions
on the circle.

A particular case of the above definition is the sample circular kurtosis measure
(see Mardia and Jupp, 2000, p.22), when there is complete absence of observation
of no interest.

3.1. Rayleigh Uniformity Test for Censored Circular Sample

One of the most vital test of hypothesis that arises in the circular statistics lit-
erature is the test of uniformity, i.e. whether the distribution on a circle is uni-
form or not. If the circular r.v. θ has a uniform distribution on the circle, then
E[(cos θ, sin θ)T ] = 0 and so, it is intuitively reasonable to reject uniformity when
its estimate viz. the vector sample mean (C̄, S̄) is far from 0 or equivalently, when
R̄ is large (see Mardia and Jupp, 2000, pp.94-95). Thus, a test statistic based on
R̄ would prove to be fruitful.

In case of censored circular sample, under the hypothesis of uniformity of the

observations, it can be seen that the asymptotic distribution of 2nR̄c
2
is χ2

2. This
constitutes the Rayleigh Uniformity Test for Censored Circular Data of
which the general Rayleigh Uniformity Test is a particular case when there is
complete absence of observation of no interest.

In case of the censored sample corresponding to season-wise analysis, the test

statistic undergoes adjustment and the adjusted test statistic becomes
2n

{a (h)}2
R̄∗2

c

which follows χ2
2 distribution asymptotically.

4. Binary Logistic Regression for linear response and circular pre-
dictor

In the circular statistics literature, many situations may call for the analysis and
prediction of a dichotomous linear outcome from a circular predictor. In such a
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case, analogous to the linear case (see Peng et al., 2002, pp.4-5) one may think
of carrying out a Binary Logistic Regression for Circular Predictor and Linear
Response. The proposed model is described as follows:

Let Y be the binary linear response variable representing the occurrence of
event of interest and let

Y =

{
1, if the event is of interest,

0, if the event is not of interest.
(13)

Further, let π be the probability of happening of Y and (1-π) be the probability
of non-happening of Y . Let α denote the circular predictor variable which is
continuous in nature and measured in radians. Since α is a continuous circular
r.v, its probability density function exists and has the following properties (see
Rao and SenGupta, 2001, p.25):

(i)f (α) ≥ 0;

(ii)

2π∫
0

f (α) dα = 1;

(iii)f (α) = f (α+ k.2π)

for any integer k, i.e. f is a periodic function with period 2π.
Since a circular r.v. cannot be treated in a similar manner as a linear r.v, we

need to transform α in such a way that the periodicity is taken into account. We
are to look for a function f (x) so that

lim
x−→360o

f (x) = f (0)

We, thus, perform the sine and cosine transformation of α, and include the result-
ing components viz. sinα and cosα as covariates in the regression model. Then
the Binary Logistic Regression for Circular Predictor and Linear Response con-
sists in predicting the logit of Y from sinα and cosα. Logit of Y is the natural
logarithm (ln) of the odds of Y , where odds is the ratio of probability of happening
of Y to that of probability of non-happening of Y . The mathematical form of the
proposed model is given by:

ln

(
π

1− π

)
= a+ b sinα+ c cosα (14)

From (14) the probability of the occurrence of event of interest is predicted as
follows:

π = Pr(Y = Outcome of interest|α) = ea+b sinα+c cosα

1 + ea+b sinα+c cosα

Analogous to the linear case, the coefficients a, b and c are estimated using the
Maximum Likelihood Estimation method. The regression coefficients represent
the change in the logit of the dependent variable with an unit change in the
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TABLE 1
Month-wise occurrence of seasonal diseases in the Kamrup (rural) district of Assam,

India.

Month Angular range (in degrees) Number of cases (frequency)
January 0− 30 222
February 30− 60 309
March 60− 90 242
April 90− 120 215
May 120− 150 276
June 150− 180 158
July 180− 210 219
August 210− 240 308
September 240− 270 122
October 270− 300 180
November 300− 330 235
December 330− 360 214

corresponding predictor. The statistical significance of the individual regression
coefficients can be assessed using the Wald’s Chi-square statistic and the goodness
of fit of the logistic model can be assessed using three measures viz., the Hosmer-
Lemeshow (H-L) test statistic, the Cox and Snell’s R2 index and Nagelkerke’s R2

index (Peng et al., 2002). The interpretation of the two indices is same as that of
the coefficient of determination in linear regression, but Cox and Snell’s R2 can
never reach a maximum of value 1. However, Nagelkerke’s R2 which can be seen as
an amendment of Cox and Snell’s R2, can reach a maximum value of 1. The H-L
statistic tests the validity of the hypothesis that the predicted probabilities fit the
actual probabilities well. A positive (negative) value of the estimated regression
coefficient implies that there is a direct (inverse) relationship between the logit of
Y and the predictor. The odds ratio are interpreted in the same manner as in the
case of linear predictor.

5. Analysis

5.1. Data sets

The month-wise and season-wise adjusted frequencies of seasonal diseases in our
study area have been displayed in Table (1) and Table (2) respectively.

5.2. Censored Circular Descriptive statistics for month-wise analysis

Here, the individual is of interest if he is suffering from (reported) any kind of
seasonal disease during a month; otherwise, is not of interest. Thus, only those
individuals will be included in the sample who are suffering from (reported) any
kind of seasonal diseases in a month. This gives us the censored circular sample
for month-wise analysis. The circular descriptive statistics of this censored sample
are listed in Table (3).
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TABLE 2
Season-wise occurrence of seasonal diseases in the Kamrup (rural) district of Assam,

India

Season Angular range (in degrees) Number of cases (frequency)
Winter 0− 58 544
Pre-monsoon 58− 149 742
Monsoon 149− 269 798
Post-monsoon 269− 360 616

TABLE 3
Censored Circular Descriptive Statistics for data shown in Table (1)

.

Statistics Values (in Radians)
Censored Sample Circular Mean Direction 1.27
Censored Sample Mean Resultant Length 0.06
Censored Sample Circular Variance 0.94
Censored Sample Circular Median Direction 1.31
Censored Sample Circular Mean Deviation 1.48
Censored Sample Circular Skewness 0.04
Censored Sample Circular Kurtosis −0.04

5.3. Censored Circular Descriptive statistics for season-wise analysis

Same is for the season-wise analysis, wherein the individual is of interest if suffering
from (reported) any kind of seasonal disease during a season; otherwise, it is not
of interest. This provides us with the censored circular sample for season-wise
analysis. Table (4) lists the circular descriptive statistics of this censored sample.

5.4. Censored Sample Trigonometric Moments for month-wise analysis

The trigonometric moments about the Zero and the Mean Direction for censored
circular sample pertaining to the month-wise analysis has been displayed in the

TABLE 4
Censored Circular Descriptive Statistics for data shown in Table (2)

.
Statistics Values (in Radians)
Censored Sample Circular Mean Direction 1.35
(Unadjusted) Censored Sample Mean Resultant Length 0.06
Adjusted Censored Sample Mean Resultant Length 0.07
Adjusted Censored Sample Circular Variance 0.93
Censored Sample Circular Median Direction 1.81
Censored Sample Circular Mean Deviation 1.40
Adjusted Censored Sample Circular Skewness 0.09
Adjusted Censored Sample Circular Kurtosis −0.08
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TABLE 5
Censored Sample Trigonometric Moments about the Zero Direction for data shown in

Table (1)

.

Order of moments (p)
(
C̄c (p) , S̄c (p)

)
(in Radians)

1 (0.02, 0.06)
2 (0.02, 0.05)
3 (0.00,−0.04)
4 (−0.13, 0.03)

TABLE 6
Censored Sample Trigonometric Moments about the Mean Direction for data shown in

Table (1)

.

Order of moments (p)
(
C̄ ′

c (p) , S̄
′
c (p)

)
(in Radians)

1 (0.06, 0.00)
2 (0.01,−0.05)
3 (0.02, 0.04)
4 (−0.08,−0.10)

tables Table (5) and Table (6) respectively.
It can be seen from Tables (3), (5) and (6) that(

R̄c cos ᾱc0, R̄c sin ᾱc0

)
= (0.06 cos(1.27), 0.06 sin(1.27))

= (0.02, 0.06)

= m′
c1

which proves the particular case under definition (8) and

R̄c = 0.06

= 0.06 + i.(0.00)

= mc1

This proves the particular case under definition (10) for the censored sample for
month-wise analysis.

5.5. Censored Sample Trigonometric Moments for season-wise analysis

In the following section, the trigonometric moments about the Zero and the Mean
Direction of the censored circular sample corresponding to the season-wise analysis
have been depicted through the Tables (7) and (8) respectively.
From the Tables (4), (7) and (8), it can be observed that(

R̄∗
c cos ᾱc0, R̄

∗
c sin ᾱc0

)
= (0.07 cos(1.35), 0.07 sin(1.35))

= (0.02, 0.07)

= m∗
c1

′
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TABLE 7
Adjusted Censored Sample Trigonometric Moments about the Zero Direction for data

shown in Table (2)

.

Order of moments (p)
(
C̄∗

c (p) , S̄
∗
c (p)

)
(in Radians)

1 (0.02, 0.07)
2 (0.02, 0.08)
3 (0.01,−0.51)
4 (−0.32, 0758)

TABLE 8
Censored Sample Trigonometric Moments about the Mean Direction for data shown in

Table (2)

.

Order of moments (p)
(
C̄ ′

c (p) , S̄
′
c (p)

)
(in Radians)

1 (0.06, 0.00)
2 (0.02,−0.07)
3 (0.35, 0.29)
4 (−0.71, 0.20)

which proves the particular case under definition (9) and

R̄c = 0.06

= 0.06 + i.(0.00)

= mc1

This proves the particular case under definition (10) for the censored sample for
season-wise analysis.

5.6. Rayleigh Uniformity Test for Censored Circular Data for month-wise anal-
ysis

If there were no variation with respect to months, the angular observations corre-
sponding to Table (1) could be regarded as being drawn from the uniform distri-
bution on the circle. Hence, we may frame our null hypothesis to be tested as:

H0: The occurrence of seasonal diseases does not have any month-wise variation.

For the data shown in Table (1), the test statistic is

2nR̄c
2
= 22.24

and its tabulated value at 1% level of significance is 9.21. Also, the p-value of the
test is 0.00.

Hence, our null hypothesis is strongly rejected and we conclude that the oc-
currence of seasonal diseases has month-wise variation.
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5.7. Rayleigh Uniformity Test for Censored Circular Data for season-wise anal-
ysis

If there is no variation season-wise, the angular observations corresponding to Ta-
ble (2) could be regarded being drawn from the uniform distribution on the circle.
Hence, we may frame our null hypothesis as:

H0: The occurrence of seasonal diseases does not have any season-wise variation.

and the alternative as

H1: The occurrence of seasonal diseases has season-wise variation.

The value of the test statistic obtained on the basis of data shown in Table (2) is

2n

{a (h)}2
R̄∗2

c = 19.71.

The tabulated value at 1% level of significance is 9.21 and the p-value of the test
is 0.00.

Hence, our null hypothesis is strongly rejected and we conclude that the oc-
currence of seasonal diseases has season-wise variation.

5.8. Binary Logistic regression for linear response and circular predictor for
month-wise analysis

The individual is of interest if he is suffering from (reported) any kind of seasonal
diseases during a month and otherwise is not of interest. So we define the linear
response Y as

Y =

{
1, if the individual suffers from seasonal disease,

0, if the individual does not suffer from seasonal disease.
(15)

The continuous circular predictor is the month of a year which is represented in
terms of angle as mentioned in section (2).
The Table (9) summarizes the results of the Binary Logistic regression for linear
response and circular predictor for month-wise analysis of occurrence of seasonal
diseases.

Interpretation: From the Table (9), it can be seen that the fitted model has been
found to be:

predicted ln

(
π

1− π

)
= 1.750− 1.020 sinα− 0.212 cosα

The log of the odds of a person to suffer from seasonal disease during a month
is significantly negatively related to the both the sine component (p < 0.05) and
the cosine component (p < 0.05) of the months modeled as a circular r.v. It is
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TABLE 9
Binary Logistic Regression analysis predicting the occurrence of seasonal diseases from

months

.

Predictor β p Odds Ratio
Constant 1.750 0.000 5.755
sinα -1.020 0.000 0.361
cosα -0.212 0.001 0.809
Goodness of fit test statistics Value p-value
Cox and Snell’s R2 0.063
Nagelkerke’s R2 0.100
Hosmer and Lemeshow test statistic 14.5 0.06

TABLE 10
Binary Logistic Regression analysis predicting the occurrence of seasonal diseases from

seasons

.

Predictor β p Odds Ratio
Constant 1.490 0.000 4.436
sinα -0.521 0.000 0.594
cosα -0.063 0.329 0.939
Goodness of fit test statistics Value
Cox and Snell’s R2 0.021
Nagelkerke’s R2 0.033
Hosmer and Lemeshow test statistic 15.3 0.05

equivalent to saying that higher the value of the sine and the cosine components
of α (holding the effect of the other predictor constant in either case), the less
likely it is that a person would suffer from a seasonal disease in that month. Both
the R2 values and the insignificant H-L test statistic indicate that the model is a
fairly good fit to the data.

5.9. Binary Logistic regression for linear response and circular predictor for
season-wise analysis

Similarly, we categorize the individuals and model their season-wise occurrence of
disease as response variable Y as in the category mentioned in equation (15).

The circular continuous predictor is the season of a year which is represented
in terms of angle as mentioned in section (2).
Table (10) summarizes the results of the Binary Logistic regression for linear
response and circular predictor for season-wise analysis of occurrence of seasonal
diseases.
Interpretation: Table (10) shows the fitted model to be:

predicted ln

(
π

1− π

)
= 1.490− 0.521 sinα− 0.063 cosα

The log of the odds of a person to suffer from seasonal disease in a season is
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significantly negatively related to the sine component (p < 0.05) of the months
modeled as a circular r.v whereas the cosine component is not significantly related
to it (p > 0.05). In other words, a high value of sine component of α (holding the
effect of the other predictor constant in either case) means that a person to suffer
from a seasonal disease in that season is less likely. Both the R2 values and the
non-significant value of the H-L statistic indicate that the model is a fairly good
fit to the data.

6. Conclusion

In this section, we present the point-wise conclusion of the study on month-wise
and season-wise occurrence of seasonal diseases respectively in the Kamrup (rural)
district during the years 2013 and 2014:

6.1. Month-wise occurrence of seasonal diseases

• It is clear from Table (1) that the modal month of occurrence of seasonal
diseases is February. Thus, the underlying distribution is unimodal in nature
(Mardia and Jupp, 2000, pp.6,8)

• From the Table (3), it can be seen that the both the preferred month and
median month of occurrence for seasonal diseases is March, as the censored
sample mean direction and median direction is 1.27 radian, i.e., 72.77o and
1.31 radian, i.e., 75.06o respectively. A value 0.94 of the censored sample
variance indicates that the data is highly dispersed. The data is marginally
positively skewed as shown by the censored sample skewness measure. Fi-
nally, the underlying distribution is found to be platykurtic (marginal neg-
ative kurtosis) as the censored sample kurtosis has come to be -0.04. The
above two measures jointly indicate that the underlying distribution is nom-
inally well-approximated by the Wrapped Normal Distribution.

• The result of the Rayleigh Uniformity Test for censored sample confirms that
there is a month-wise variation in the occurrence of seasonal diseases.

• The logistic regression analysis for censored sample pertaining to month-
wise analysis reveals that the likelihood of occurrence of seasonal disease in
a month increases from March to June and it decreases from September to
December.

6.2. Season-wise occurrence of seasonal diseases

• From Table (2), it can be inferred that the modal season of occurrence of
seasonal diseases is Monsoon. Thus, the underlying distribution is unimodal
in nature.

• From the Table (4), it can be clearly observed that the both the preferred
season and median season of occurrence for seasonal diseases is Pre-monsoon,
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as the censored sample mean direction and median direction is 1.35 radian,
i.e., 77.35o and 1.81 radian, i.e., 103.71o respectively. Since the censored
sample variance is 0.93, the data can be said to be highly dispersed. The
marginally positively skewness of the data is confirmed by the adjusted cen-
sored sample skewness value of 0.09. Finally, as the adjusted censored sample
kurtosis has come to be -0.08, the underlying distribution can be inferred to
be platykurtic (marginal negative kurtosis) . The above two measures jointly
indicate that the underlying distribution is nominally well-approximated by
the Wrapped Normal Distribution.

• The result of the Rayleigh Uniformity Test for censored data corresponding
to the season-wise analysis shows that there is a season-wise variation of the
occurrence of seasonal diseases.

• One can observe from the regression analysis of seasons that the likelihood of
occurrence of seasonal diseases decreases from Winter to Pre-monsoon and
increases from Pre-monsoon to Post-monsoon.

Further, the statistical nature of the underlying distribution of the dataset is
found to be similar, both through the month-wise and season-wise analysis. This
establishes the validity of the adjustment made to the censored sample for carrying
out the season-wise analysis.
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Appendix

A. Proofs

Theorem 13. In the Rayleigh’s test of Uniformity for Censored Circular Data,
under the hypothesis of uniformity, the asymptotic distribution of the test statistic
2nR̄2

c is χ2
2, where the symbols are as explained in section 3.

Proof. By the virtue of Multivariate Central Limit Theorem, for large n, we
have (

C̄c

S̄c

)
∼ N

[
E

(
C̄c

S̄c

)
,

(
V ar(C̄c) Cov(C̄c, S̄c)

Cov(C̄c, S̄c) V ar(S̄c)

)]
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Let α′
ij ’s denote the censored sample observations. Under the hypothesis of

uniformity of α′
ij ’s, i.e., under the assumption that the α′

ij ’s have come from

Circular Uniform distribution, the expectations, variances and covariances of C̄c

and S̄c are as obtained below:

E(C̄c) = E

 1

n

k∑
i=1

fi∑
j=1

(cosβcij)


= E

 1

n

∑
i

∑
j

(
cosα′

ij

) (summation being over only the i and j

corresponding to the observations in the censored sample)

=

∫ 2π

0

1

n

∑
i

∑
j

(
cosα′

ij

) 1

2π
dα′

ij

=
1

n

∑
i

∑
j

1

2π

∫ 2π

0

(
cosα′

ij

)
dα′

ij

=
1

n

∑
i

∑
j

1

2π
(sin 2π − sin 0)

= 0

Similarly, it can be shown that

E(S̄c) = 0
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V ar(C̄c) = V ar

 1

n

k∑
i=1

fi∑
j=1

(cosβcij)


= V ar

 1

n

∑
i

∑
j

(
cosα′

ij

)
= E


 1

n

∑
i

∑
j

(
cosα′

ij

)
2

−

E
 1

n

∑
i

∑
j

(
cosα′

ij

)2

= E


 1

n2

∑
i

∑
j

(
cos2 α′

ij

)+ 2

 1

n2

∑
i ̸=i′,j ̸=j′

cosα′
ij cosα

′
i′j′

− 0

=
1

n2

∑
i

∑
j

E
(
cos2 α′

ij

)
+

2

n2

∑
i ̸=i′,j ̸=j′

E
(
cosα′

ij cosα
′
i′j′
)

=

∫ 2π

0

1

n2

∑
i

∑
j

(
cos2 α′

ij

) 1

2π
dα′

ij +
2

n2∑
i ̸=i′,j ̸=j′

E
(
cosα′

ij

)
E
(
cosα′

i′j′
)
(∵ α′

ij ’s are independent)

=
1

2n2

1

2π

∑
i

∑
j

∫ 2π

0

(
1 + cos 2α′

ij

)
dα′

ij + 0

=
1

2n2

1

2π

∑
i

∑
j

∫ 2π

0

dα′
ij +

1

2n2

1

2π

∑
i

∑
j

∫ 2π

0

cos 2α′
ijdα

′
ij

=
1

2n2

1

2π

∑
i

∑
j

(2π − 0) +
1

2n2

1

2π

∑
i

∑
j

1

2
{sin 2 (2π)− sin 0}

=
1

2n2

1

2π
n 2π

=
1

2n

Similarly, we have

V ar(S̄c) =
1

2n
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Again,

Cov(C̄c, S̄c) = Cov


 1

n

k∑
i=1

fi∑
j=1

(cosβcij)

 ,

 1

n

k∑
i=1

fi∑
j=1

(sinβsij)


= Cov


 1

n

∑
i

∑
j

(
cosα′

ij

) ,

 1

n

∑
i

∑
j

(
sinα′

ij

)
= E


 1

n

∑
i

∑
j

(
cosα′

ij

) .

 1

n

∑
i

∑
j

(
sinα′

ij

)
− E

 1

n

∑
i

∑
j

(
cosα′

ij

)E

 1

n

∑
i

∑
j

(
sinα′

ij

)
=

1

n2
E

∑
i

∑
j

(
cosα′

ij

)∑
i

∑
j

(
sinα′

ij

)− 0

=
1

n2
E

∑
i

∑
j

(
cosα′

ij

) (
sinα′

ij

)
(∵ Other terms get cancelled as α′

ij ’s are independent)

=
1

2n2
E

∑
i

∑
j

sin 2α′
ij

 =
1

2n2

∫ 2π

0

1

2π

∑
i

∑
j

sin 2α′
ijdα

′
ij

=
1

2n2

1

2π

∑
i

∑
j

∫ 2π

0

sin 2α′
ijdα

′
ij

=
1

4n2

1

2π

∑
i

∑
j

[−{cos 2 (2π)− cos 0}] = 0

Thus, we see that for large n,

(
C̄c

S̄c

)
∼ N

( 0
0

)
,

 1

2n
0

0
1

2n




∴
(
C̄c − 0

1√
2n

)2

+

(
S̄c − 0√

2n

)2

∼ χ2
2

⇒ 2n
(
C̄2

c + S̄2
c

)
∼ χ2

2

⇒ 2nR̄2
c ∼ χ2

2

Hence the proof.
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Theorem 14. For the censored sample pertaining to the season-wise analysis,

which requires adjustment for grouping, the adjusted test statistic is
2n

{a (h)}2
R̄∗2

c

which is asymptotically distributed as χ2
2.

Proof. The Multivariate Central Limit Theorem states that for large n,(
C̄c

S̄c

)
∼ N

[
E

(
C̄c

S̄c

)
,

(
V (C̄c) Cov(C̄c, S̄c)

Cov(C̄c, S̄c) V (S̄c)

)]
=⇒

(
a (h) C̄c

a (h) S̄c

)
∼ N

[
a (h)E

(
C̄c

S̄c

)
, {a (h)}2

(
V (C̄c) Cov(C̄c, S̄c)

Cov(C̄c, S̄c) V (S̄c)

)]
It then follows from the relation C̄∗

c = a (h) C̄c , S̄∗
c = a (h) S̄c and the previous

proof that (
C̄∗

c

S̄∗
c

)
∼ N

( 0
0

)
,

 {a (h)}2

2n
0

0
{a (h)}2

2n




∴

 C̄∗
c − 0
a(h)√
2n

2

+

 S̄∗
c − 0
a(h)√
2n

2

∼ χ2
2

=⇒ 2n

{a (h)}2
(
C̄∗2

c + S̄∗2

c

)
∼ χ2

2

=⇒ 2n

{a (h)}2
R̄∗2

c ∼ χ2
2

Hence the proof.

Lemma 15.

k∑
i=1

fi∑
j=1

sin Is (αij − ᾱc0) = 0 (9)

Proof.

S̄c =
1

n

k∑
i=1

fi∑
j=1

sin (βsij)

=
1

n

k∑
i=1

fi∑
j=1

sin (Isαij)

=
1

n

∑
i

∑
j

sin
(
α′
ij

)
=⇒ nS̄c =

∑
i

∑
j

sin
(
α′
ij

)
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α′
ij being the observations of interest in the sample. Again,

C̄c =
1

n

k∑
i=1

fi∑
j=1

cos (βcij)

=
1

n

∑
i

∑
j

cos
(
α′
ij

)
=⇒ nC̄c =

∑
i

∑
j

cos
(
α′
ij

)
Again, as ᾱc0 is the direction of the resultant vector R̄c of the censored sample,
we have, from the theory of Vector Algebra,

C̄c = R̄c cos ᾱc0 and S̄c = R̄c sin ᾱc0.

∴
k∑

i=1

fi∑
j=1

sin Is (αij − ᾱc0) =
∑
i

∑
j

sin
(
α′
ij − ᾱc0

)
=

∑
i

∑
j

sinα′
ij cos ᾱc0 −

∑
i

∑
j

cosα′
ij sin ᾱc0

= nS̄c cos ᾱc0 − nC̄c sin ᾱc0

= nR̄c sin ᾱc0 cos ᾱc0 − nR̄c cos ᾱc0 sin ᾱc0

= 0

Hence the proof.

Lemma 16.

1

n

k∑
i=1

fi∑
j=1

cos (βcij − ᾱc0) = R̄c (10)

Proof. It follows from the previous proof that

1

n

k∑
i=1

fi∑
j=1

cos (βcij − ᾱc0) =
1

n

∑
i

∑
j

cos
(
α′
ij − ᾱc0

)
=

1

n

∑
i

∑
j

cosα′
ij cos ᾱc0 +

1

n

∑
i

∑
j

sinα′
ij sin ᾱc0

= C̄c cos ᾱc0 + S̄c sin ᾱc0

= R̄c cos
2 ᾱc0 + R̄c sin

2 ᾱc0

= R̄c

Hence the proof.
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Summary

In this paper, we aim to analyse the occurrence of seasonal diseases in the Kamrup
(rural) district of Assam during the years 2013 and 2014. This leads us to work with a
censored circular sample containing only the observations of interest and thus, develop
new circular descriptive statistics for analysis of Censored Circular sample, both month-
wise and season-wise. Since the seasons differ by a significant length, we propose to
group the cases in unequal intervals, the width of the intervals being proportional to
the length of the seasons. The Rayleigh Uniformity Test has also been proposed for the
censored sample, using which the presence of seasonal effect in both month-wise and
season-wise occurrence is assessed. Finally, a logistic regression model for predicting
binary response from circular predictor has been proposed to predict the occurrence of
seasonal diseases from months and seasons. It is revealed that the occurrence of seasonal
diseases is highest in the month of February or equivalently, during the Monsoon season.
The distribution of occurrence of seasonal diseases both month-wise and season-wise
is found to be marginally positively skewed and platykurtic, indicating that it can be
moderately well-approximated by a wrapped normal distribution. Rayleigh Uniformity
Test results for both month and season wise analysis suggest the presence of seasonal
effect. The regression analysis shows that likelihood of occurrence of seasonal disease
increases from March to June or Winter to Pre-monsoon and decreases from September
to December or Pre-monsoon to Post-monsoon.

Keywords: Censoring; Rayleigh Uniformity Test; Binary Logistic Regression


