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1. Introduction

Regression methods are usually used for studying the relationship between a re-
sponse variable and one or more explanatory variables. Over the last decade the
logistic regression model, also known as logit model, has become the standard
method of analysis when the outcome variable is dichotomous in nature and it
has been found applications in several areas of scientific studies such as bioassay
problems (Finney, 1952), study of income distributions (Fisk, 1961), analysis of
survival data (Plackett, 1959) and modelling of the spread of an innovation (Oliver,
1969). The main drawback of a logit model is that it consider variables of only
symmetric and unimodal nature. But asymmetry may arise in several practical
situations where the logit model is not appropriate. So through this paper we
develop certain regression models based on a modified version of the skew-logistic
distribution and compare it with the existing logit model as well as a regression
model based on the skew-logistic distribution of (Nadarajah, 2009).

The paper is organized as follows. In section 2, we describe some important
aspects of the skew-logistic regression model(SLRM) and propose a modified ver-
sion of the SLRM, which we termed as the “Modified Skew Logistic Regression
Model (MSLRM)”. In section 3, we obtain some structural properties of the mod-
ified skew logistic distribution. In section 4, we consider the estimation of the
parameters of the MSLRM and in section 5, two real life medical datasets are
considered for illustrating the usefulness of the model compared to both the logit
and skew logit models. In section 6, a generalized likelihood ratio test procedure is
suggested for testing the significance of the parameters and a simulation study is
also conducted to test the efficiency of the maximum likelihood estimators(MLEs)
of MSLRM.

1 Corresponding Author. E-mail: drcskumar02@gmail.com
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2. Skew Logistic and Modified Skew Logitic regression models

A random variable X is said to follow the logistic distribution (LD) if its probability
density function (p.d.f) is of the following form.

f(x) =
e−x

(1 + e−x)
2 , (1)

where x ∈ R = (−∞, +∞). The logistic regression model(LRM) is given by

p =
1

1 + e−z
, (2)

in which

z = a+

s∑

r=1

brXr. (3)

The importance of the logistic regression model is due to its mathematical
flexibility and in several medical applications it provides clinically meaningful in-
terpretations (Hosmer and Lemeshow, 2000). Nadarajah (2009) developed a mod-
ified version of the logistic distribution, similar to the skew-normal distribution of
Azzalini (1985), namely skew-logistic distribution(SLD), which he defined through
the following p.d.f, in which x ∈ R, β > 0 and λ ∈ R.

f(x) =
2e(−

x
β )

β
[
1 + e(

−x
β )

]2 [
1 + e(

−λx
β )

] (4)

When λ = 0, (4) reduces to p.d.f of the standard logistic distribution given in
(1). The main feature of skew-logistic distribution is that a new parameter λ is
included here for controlling the skewness and kurtosis. Now the skew-logistic
regression model (SLRM) can be obtained through the following double series
representation.

p =





2
∞∑
j=0

∞∑
=0

(
−1
j

)(
−2
k

)
1

1+λ+λj+k e
( (1+λ+λj+k)z

β ) if z < 0

1− 2
∞∑
j=0

∞∑
=0

(
−1
j

)(
−2
k

)
1

1+λj+k e
−( (1+λj+k)z

β ) if z > 0

(5)

where z is as defined in (3). Here we consider a modified version of the skew-logistic
distribution namely “the modified skew-logistic distribution(MSLD)” through the
following p.d.f, in which x ∈ R, α ≥ −1 and β > 0.

f(x;α, β) =
2

α+ 2

e−x

(1 + e−x)
2

[
1 +

αe−βx

1 + e−βx

]
(6)

Clearly when α = 0 and/or β = 0, the p.d.f reduces to the p.d.f of the logistic
distribution and when α = -1 the p.d.f reduces to the p.d.f of the skew-logistic
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density given in (4). The p.d.f f(x;α, β) of the MSLD(α, β) can also be expressed
interms of the following single series as well as double series representations,

f(x;α, β) =





2
α+2


 e−x

(1+e−x)2 +
α

∞∑

j=0
(−1

j )e
(−1+βj)x

(1+e−x)2


 , if x < 0

2
α+2


 e−x

(1+e−x)2 +
α

∞∑

j=0
(−1

j )e
−(1+β+βj)x

(1+e−x)2


 , if x > 0

(7)

f(x;α, β) =





2
α+2

[
∞∑
k=0

(
−2
k

)
e(1+k)x + α

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e(1+βj+k)x

]
, if x < 0

2
α+2

[
∞∑
k=0

(
−2
k

)
e−(1+k)x + α

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e−(1+β+βj+k)x

]
, if x > 0

(8)

The modified skew-logistic regression model(MLRM) is given by the following
double series representation based on (8).

p =





2
α+2

[
∞∑
k=0

(
−2
k

)
e(1+k)z

(1+k) + α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e(1+βj+k)z

(1+βj+k)

]
, if z < 0

1− 2
α+2

[
∞∑
k=0

(
−2
k

)
e−(1+k)z

(1+k) + α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e−(1+β+βj+k)z

(1+β+βj+k)

]
, if z ≥ 0

(9)

where z is as given in (3). For the derivation of (9), see Appendix I. A graphical
representation of MSLRM for particular values of α and β = 2 is given in Figure
1.

3. Some structural properties of modified skew logistic model

Proposition 1. If X follows MSLD(α, β), then Y = −X follows a convex
mixture of standard logistic and skew-logistic distributions.

Proof. The p.d.f f (y) of Y is the following , for y ∈ R , β ∈ R and α ≥ −1.

f (y) = f (−y;α, β)
∣∣∣dxdy

∣∣∣

= 2
α+2

ey

(1+ey)2

[
1 + α eβy

1+eβy

]

= 2
α+2

e−y

(1+e−y)2

[
1 + α

1+e−βy

]

= 2
α+2

e−y

(1+e−y)2
+ 2α

α+2
e−y

(1+e−y)2
1

1+e−βy ,
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Figure 1 – Plots of regression function of MSLD(α, 2) for different values of α .

which shows that the p.d.f of Y can be considered as a convex mixture of the p.d.f
of the standard logistic and and skew-logistic distributions.

Proposition 2. If X follows MSLD(α, β), then Y = |X | follows a half logis-
tic distribution.

Proof. For y > 0, the p.d.f f (y) of Y is

f (y) = f (y;α, β)
∣∣∣dxdy

∣∣∣+ f (−y;α, β)
∣∣∣dxdy

∣∣∣

= 2
α+2

e−y

(1+e−y)2

[
1 + α e−βy

1+e−βy

]
+ 2

α+2
e−y

(1+e−y)2

[
1 + α

1+e−βy

]

= 2e−y

(1+e−y)2
,

which is the p.d.f of the half logistic distribution.

Proposition 3. If X follows MSLD(α, β), then Y = X1/c, c ∈ (0, 1] follows
a distribution with p.d.f

f(y) =
2c

α+ 2

yc−1e−yc

(1 + e−yc)
2

[
1 + α

e−βyc

1 + e−βyc

]

Proof. For any y > 0, the p.d.f f (y) of Y = X1/c is given by

f(y) = 2
α+2

yc−1e−yc

(1+e−yc )2

[
1 + α e−βyc

1+e−βyc

] ∣∣∣dxdy
∣∣∣

= 2c
α+2

yc−1e−yc

(1+e−yc )2

[
1 + α e−βyc

1+e−βyc

]
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Proposition 4. The first four raw moments of MSLD(α, β) are given by

µ′

1 =
2α

α+ 2

∞∑

j=0

∞∑

k=0

(
−1

j

)(
−2

k

)[
1

(1 + β + βj + k)
2 +

(−1)

(1 + βj + k)
2

]
, (10)

µ′

2 =
4

α+ 2



2

∞∑

k=0

(
−2
k

)

(1 + k)3
+ α

∞∑

j=0

∞∑

k=0

(
−1

j

)(
−2

k

)[
1

(1 + β + βj + k)
3 +

1

(1 + βj + k)
3

]
, (11)

µ′

3 =
12α

α+ 2

∞∑

j=0

∞∑

k=0

(
−1

j

)(
−2

k

)[
1

(1 + β + βj + k)4
+

(−1)

(1 + βj + k)4

]
(12)

and

µ′

4 =
48

α+ 2



2

∞∑

k=0

(
−2
k

)

(1 + k)5
+ α

∞∑

j=0

∞∑

k=0

(
−1

j

)(
−2

k

)[
1

(1 + β + βj + k)5
+

1

(1 + βj + k)5

]
. (13)

Proof. By using the double series representation of the p.d.f of the MSLD(α, β)
as given in (8) we obtain its first raw moment as

µ′

1 =
∞∫

−∞

xf(x)dx

= 2
α+2

[
∞∑
k=0

(
−2
k

) 0∫
−∞

xe(1+k)xdx + α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

) 0∫
−∞

xe(1+βj+k)xdx +

∞∑
k=0

(
−2
k

) ∞∫
0

xe−(1+k)xdx+ α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

) ∞∫
0

xe−(1+β+βj+k)dx

]
,

which gives (10), by using the standard results of integration. In a similar way
one can obtain (11),(12) and (13).

Now by using proposition 4 we can evaluate the mean, variance, skewness and
kurtosis of the MSLD(α, β) with the help of R softwares as obtained in Table 1.
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TABLE 1

Mean, Variance, Skewness and Kurtosis of the MSLD for particular choice of α and β.

(α, β) Mean Variance Skewness Kurtosis

(-0.5,2) 0.4113 3.1209 0.0045 1.4013
(2, 10) -0.6896 2.8145 0.0247 1.9544
(5,20) -0.9901 2.3098 -0.0009 2.8710
(10, 50) -1.1584 1.9482 -0.0645 3.5265
(20, 100) -1.2659 1.6875 -0.4065 3.8782
(50, 150) -1.3401 1.4941 -1.1858 3.9307
(-200, 200) -1.3806 1.3839 -2.0794 3.8041

Proposition 5. The median of MSLD(α, β) is given by the following equa-
tions

2
α+2

[
∞∑
k=0

(
−2
k

)
e(1+k)xm

(1+k) + α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e(1+βj+k)xm

(1+βj+k)

]
= 1

2 if xm < 0

2
α+2

[
∞∑
k=0

(
−2
k

) (2−e−(1+k)xm)
(1+k) +

α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)(
1

(1+βj+k) +
(1−e−(1+β+βj+k)xm)

(1+β+βj+k)

)]
= 1

2 if xm > 0

Proof. The median of a probability density function f(x) is a point xm on

the real line which satisfies the equation
xm∫
−∞

f (x)dx = 1
2 . Using the double series

expansion of the p.d.f we get,

Case i: If xm < 0

xm∫
−∞

2
α+2

[
∞∑
k=0

(
−2
k

)
e(1+k)xm + α

∞∑
k=0

∞∑
j=0

(
−1
j

)(
−2
k

)
e(1+βj+k)xm

]
dx = 1

2

2

α+ 2




∞∑

k=0

(
−2

k

)
e(1+k)xm

(1 + k)
+ α

∞∑

j=0

∞∑

k=0

(
−1

j

)(
−2

k

)
e(1+βj+k)xm

(1 + βj + k)


 =

1

2
(14)

Case ii: If xm > 0

0∫
−∞

2
α+2

[
∞∑
k=0

(
−2
k

)
e(1+k)xm

(1+k) + α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e(1+βj+k)xm

(1+βj+k)

]
dx+

xm∫
0

2
α+2

[
∞∑
k=0

(
−2
k

)
e−(1+k)xm

(1+k) + α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e−(1+β+βj+k)xm

(1+β+βj+k)

]
dx = 1

2
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which on simplification yields

2
α+2

[
∞∑
k=0

(
−2
k

) (2−e−(1+k)xm)
(1+k) +

α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)(
1

(1+βj+k) +
(1−e−(1+β+βj+k)xm)

(1+β+βj+k)

)]
= 1

2

(15)

Closed form for xm is not obtainable, on solving equations (14) or (15) using math-
ematical softwares MATHEMATICA OR MATHCAD one can obtain the median.

Proposition 6. The mode of MSLD(α, β) is given by the following equation

−2e−x [1− e−x + (2 + α+ αβ) e−βx − (2 + α− αβ) e−(1+β)x+

(1 + α) e−2βx − (1 + α) e−(1+2β)x
]

(2 + α) (1 + e−x) (1 + e−βx)
2 = 0 (16)

Proof. The mode of a probability density function is obtained by equating
the derivative of the density function to zero and solving for the variable. Thus,
differentiating f(x;α, β) with respect to x yields (16). Using the mathematical
softwares MATHCAD OR MATHEMATICA one can solve (16) and obtain the
mode.

Proposition 7. The mean deviation about the average A denoted by δ1 (X)
is given by the following

δ1 (X) =

{
δ11 (A) , ifA < 0
δ12 (A) , ifA ≥ 0

where,

δ11 (A) =
2

α+2

[
∞∑
k=0

(
−2
k

)
e(1+k)A

(1+k)2
+ α

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e(1+βj+k)A

(1+βj+k)2

]
−A,

δ12 (A) =
2

α+2

[
2

∞∑
k=0

(
−2
k

)
e−(1+k)A

(1+k)2
+

α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)( (2e−(1+β+βj+k)A
−1)

(1+β+βj+k)2
+ 1

(1+βj+k)2

)]
+A

Proof. The mean deviation about A is defined by

δ1 (X) =

∞∫

−∞

|x−A|f (x) dx

δ1 (X) on simplification yields

δ1 (X) = 2AF (A)−A−
A∫

−∞

xf (x) dx+
∞∫
A

xf (x) dx



368 S. Kumar and L. Manju

Case (i). A < 0

δ1 (X) = 2AF (A)−A−

A∫

−∞

xf (x) dx+

0∫

A

xf (x) dx+

∞∫

0

xf (x) dx (17)

Using the double series expansion of p.d.f we get,

A∫
−∞

xf (x) dx = 2
α+2

{
∞∑
k=0

(−2
k )e

(1+k)A

(1+k)2
[A (1 + k)− 1] +

α
∞∑
k=0

∞∑
j=0

(−1
j )(

−2
k )

(1+βj+k)2
[A (1 + βj + k)− 1]

} (18)

0∫
A

xf (x) dx = 2
α+2

{
∞∑
k=0

(−2
k )

(1+k)2

[
e(1+k)A (1−A (1 + k))− 1

]
+

α
∞∑
k=0

∞∑
j=0

(−1
j )(

−2
k )

(1+βj+k)2

[
e(1+βj+k)A (1−A (1 + βj + k))− 1

]
} (19)

∞∫

0

xf (x) dx =
2

α+ 2





∞∑

k=0

(
−2
k

)

(1 + k)
2 + α

∞∑

k=0

∞∑

j=0

(
−1
j

)(
−2
k

)

(1 + β + βj + k)
2



 (20)

Substituting (18)-(20) in (17) we get the equation of δ11 (A).
Case (ii). A ≥ 0

δ1 (X) = 2AF (A)−A−

0∫

−∞

xf (x) dx−

A∫

0

xf (x) dx+

∞∫

A

xf (x) dx (21)

0∫

−∞

xf (x) dx =
−2

α+ 2





∞∑

k=0

(
−2
k

)

(1 + k)2
+ α

∞∑

k=0

∞∑

j=0

(
−1
j

)(
−2
k

)

(1 + βj + k)2



 (22)

A∫
0

xf (x) dx = −2
α+2

{
∞∑
k=0

(−2
k )

(1+k)2

[
e−(1+k)A (1 +A (1 + k))− 1

]
−

α
∞∑
k=0

∞∑
j=0

(−1
j )(

−2
k )

(1+β+βj+k)2

[
e−(1+β+βj+k)A (1 +A (1 + βj + k))− 1

]
} (23)

∞∫
A

xf (x) dx = 2
α+2

{
∞∑
k=0

(−2
k )

(1+k)2
e−(1+k)A [1 +A (1 + k)] +

α
∞∑
k=0

∞∑
j=0

(−1
j )(

−2
k )

(1+β+βj+k)2
e−(1+β+βj+k)A [1 +A (1 + βj + k)]

} (24)

Substituting (22) - (24) in (21) we get the equation of δ12 (A).
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4. Estimation

This section deals with the maximum likelihood estimation of the parameters of
the MSLRM. Suppose we have a sample of n independent observations of the
pair (xi, yi) , i=1,2,...,n, where yi denotes the value of the dichotomous outcome
variable and xi is the value of the independent variable for the ith subject. Let
pi = P (Yi = 1|Xi) , so that P (Yi = 0|Xi) = 1 − pi. The probability of observing

the outcome Yi whether it is 0 or 1 is given by P (Yi|Xi) = p
yi

i (1− pi)
1−yi . If

there are n sets of values of Xi, say X , the probability of observing a particular
sample of n values of Y, say Y is given by the product of n probabilities, since
the observations are independent. That is,

P (Y|X) =

n∏

i=1

p
yi

i (1− pi)
1−yi (25)

Let z = a+
s∑

r=1
brXr and Θ = (α, β, a, b1, b2, ..., bs) be the vector of parameters

of the MSLD regression model and let Θ̂ =
(
α̂, β̂, â, b̂1, b̂2, ..., b̂s

)
be the maximum

likelihood estimator(MLE) of Θ. The log-likelihood function of MSLRM is given
by

l = log L (y|z, θ) =

n∑

i=1

yi log pi +

n∑

i=1

(1− yi) log (1− pi) (26)

The MLE of the parameters are obtained by solving the following set of likelihood

equations, in which, δ (p, y) =
n∑

i=1

yi

pi
−

n∑
i=1

(1−yi)
(1−pi)

, with pi is as defined in (9).

Case 1 : For z ≥ 0,

∂l

∂α
= 0

or equivalently

δ (p, y)


 2

(α+ 2)
2




∞∑

k=0

(−1)
k
e−(1+k)z − 2

∞∑

j=0

∞∑

k=0

(−1)
j+k (1 + k) e−(1+β+βj+k)z

(1 + β + βj + k)




 = 0,

(27)

∂l

∂β
= 0

or equivalently

δ (p, y)


 2α

(α+ 2)

∞∑

j=0

∞∑

k=0

(−1)
j+k (1 + k) (1 + j) e−(1+β+βj+k)z

(1 + β + βj + k)
2 [(1 + β + βj + k) z + 1]


 = 0,

(28)

∂l

∂a
= 0
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or equivalently

δ (p, y)


 2

(α+ 2)




∞∑

k=0

(−1)
k
(1 + k) e−(1+k)z + α

∞∑

j=0

∞∑

k=0

(−1)
j+k

(1 + k) e−(1+β+βj+k)z




 = 0

(29)
and for r = 1, 2,..., s,

∂l

∂br
= 0

or equivalently

δ (p, y)


 2xr

(α+ 2)




∞∑

k=0

(−1)
k
(1 + k) e−(1+k)z + α

∞∑

j=0

∞∑

k=0

(−1)
j+k

(1 + k) e−(1+β+βj+k)z




 = 0.

(30)
Case 2 : For z <0

∂l

∂α
= 0

or equivalently

δ (p, y)


 2

(α+ 2)2


2

∞∑

j=0

∞∑

k=0

(−1)j+k (1 + k)
e(1+βj+k)z

(1 + βj + k)
−

∞∑

k=0

(−1)k e−(1+k)z




 = 0,

(31)
∂l

∂β
= 0

or equivalently

δ (p, y)


 2α

(α+ 2)




∞∑

j=0

∞∑

k=0

(−1)
j+k

(1 + k)
je(1+βj+k)z [(1 + βj + k) z − 1]

(1 + βj + k)
2




 = 0,

(32)
∂l

∂a
= 0

or equivalently

δ (p, y)


 2

(α+ 2)




∞∑

k=0

(−1)k (1 + k) e(1+k)z + α

∞∑

j=0

∞∑

k=0

(−1)j+k (1 + k) e(1+βj+k)z




 = 0,

(33)
and for r = 1, 2,..., s,

∂l

∂br
= 0

or equivalently

δ (p, y)


 2xr

(α+ 2)




∞∑

k=0

(−1)
k
(1 + k) e(1+k)z + α

∞∑

j=0

∞∑

k=0

(−1)
j+k

(1 + k) e(1+βj+k)z




 = 0.

(34)
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Second order partial derivatives of equation (26) with respect to the parameters are
observed with the help of MATHEMATICA software and find that the equation
gives negative values for all α ≥ −1, β > 0, a, b ∈ R. Now we can obtain the Θ̂ by
solving the likelihood equations (27) to (34) with the help of some mathematical
softwares such as MATHCAD, MATHEMATICA, R Softwares etc.

5. Applications

Here we illustrate the procedures discussed in section 4 with the help of the fol-
lowing two data sets:
Data Set 1. Shock data set obtained from (Afifi and Azen, 1979).
(see https://www.umass.edu/statdata/statdata/stat-logistic.html). These data
were collected at the Shock Research Unit at the University of Southern Cali-
fornia, Los Angeles, California. Data were collected on 113 critically ill patients.
Here we consider the explanatory variable as the urine output (ml/hr) at the time
of admission and the dependent variable y as whether the person survived or not.
Data Set 2.Prostate cancer data set:
(see https://www.umass.edu/statdata/statdata/stat-logistic.html).The data is on
380 subjects of which 153 had tumor that penetrated the prostatic capsule. The
variable capsule denotes the status of the tumor, whether it is penetrated or not,
which we consider as the dichotomous dependent variable(Y) and Prostatic Spec-
imen Antigen Value(PSA)in mg/ml as the explanatory (X) variable. These data
set is also studied in (Hosmer and Lemeshow, 2000). These data are copyrighted
by John Wiley and Sons Inc.
Here we consider the simplest model, Z = a + bX . We obtained the MLE of the
parameters α, β, a, b with the help of R software 3.0.3 by using the “nlm package”.
The estimated parameters of logit and skew logit model are also obtained by the
same procedure. The estimated values of the parameters of the LRM, SLRM
and MSLRM along with the computed values of the Akaike Information Criterion
(AIC), Bayes Information Criterion(BIC) and pseudo R2 values (Mcfadden, 1973;
Cameron and Windmeijer, 1996) are given in Table 2. Also, we have plotted the
Empirical cummulative distribution function (ECDF) of the data sets and the
three fitted regression models in Figure 2 and Figure 3. The values of AIC, BIC
are relatively less in case of the MSLRM compared to other existing models while
the values of the of pseudo R2 (such as McFadden’s R2, McFadden’s Adj R2, Cox
Snell R2, Cragg-Uhler(Nagelkerke)R2) are more in case of MSLRM. This shows
that the MSLRM gives a better fit to the given data sets compared to other ex-
isting models. Also Figure 2 and Figure 3 support this conclusion.
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TABLE 2

Estimated values of the parameters with the corresponding Pseudo R2 values and Information criteria values.

Distribution

Data set LRM(a, b) SLRM(λ, β, a, b) MSLRM(α, β, a, b)
α̂ – – 12.134

λ̂ – 11.400 –

β̂ – 8.317 1.793
Data set 1 â 0.154 11.774 0.006

b̂ 0.024 0.086 0.001
AIC 150.000 148.980 144.100
BIC 150.106 149.192 144.202

McFadden’s R2 0.040 0.073 0.105
McFadden’s Adj R2 0.014 0.021 0.053

Cox Snell R2 0.053 0.094 0.132
Cragg-Uhler(Nagelkerke)R2 0.071 0.127 0.179

α̂ – – 11.080

λ̂ – 34.100 –

β̂ – 13.238 9.170
Dataset 2 â -1.114 5.044 -0.002

b̂ 0.057 0.488 0.0002
AIC 468.240 466.860 464.260
BIC 469.399 469.179 466.579

McFadden’s R2 0.094 0.104 0.109
McFadden’s Adj R2 0.086 0.089 0.097

Cox Snell R2 0.119 0.131 0.140
Cragg-Uhler(Nagelkerke)R2 0.160 0.177 0.185
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Figure 2 – ECDF of the data set1 and fitted regression models - LRM, SLRM and
MSLRM

Figure 3 – ECDF of the data set2 and fitted regression models - LRM, SLRM and
MSLRM
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TABLE 3

Calculated values of the test statistic

Data set Hypothesis logL

(
∧

Ω; y|x

)
logL

(
∧∗

Ω; y|x

)
Test statistic

H0 : α = 0 -68.047 -73.001 9.908
Data set1

H0 : α = −1 -68.047 -70.490 4.886

H0 : α = 0 -228.130 -232.120 7.980
Data set2

H0 : α = −1 -228.130 -230.430 4.600

6. Testing of hypothesis and Simulation

In this section we discuss certain test procedures for testing the significance of
the additional parameter α of the MSLRM and carry out a brief simulation study
for examining the performance of the maximum likelihood estimators. First we
discuss the generalized likelihood ratio test procedure for testing the following
hypothesis:
Test 1. H0 : α = 0 against the alternative hypothesis H1 : α 6= 0
Test 2. H0 : α = −1 against the alternative hypothesis H1 : α 6= −1.
Here the test statistic is,

−2 logΛ = 2

[
logL

(
∧

Ω; y|x

)
− logL

(
∧∗

Ω; y|x

)]
(35)

where
∧

Ω is the maximum likelihood estimator of Ω = (α, β, a, b) with no restric-

tion, and
∧∗

Ω is the maximum likelihood estimator of Ω when α = 0 in case of
Test 1 and α = −1 in case of Test 2. The test statistic −2 logΛ given in (35)
is asymptotically distributed as χ2 with one degree of freedom (Rao, 1973). The

computed values of logL

(
∧

Ω; y|x

)
, logL

(
∧∗

Ω; y|x

)
and test statistic in case of both

data sets are listed in Table 3.
Since the critical value at the significance level 0.05 and degree of freedom one is
3.84, the null hypothesis is rejected in both the case, which shows the appropriat-
ness of the MSLRM to the data sets.

Next we conduct a simulation study for assessing the performance of the MLEs
of the parameters of the MSLRM. We consider the following two sets of parame-
ters.
1. α=12.134, β= 1.793, a= 0.006 , b=0.001
2. α=11.086, β= 9.170, a= -0.002 , b=0.0002
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TABLE 4. Bias and Mean Square Error(MSE) within brackets of the simulated
data sets

Data Set sample size: α β a b

100 4.62E-01 -1.09E-01 5.62E-04 1.44E-03
(7.30E-01) (1.23E-02) (8.29E-07) (4.11E-06)

200 -4.31E-01 -4.96E-02 3.55E-04 9.87E-04
(3.98E-01) (4.24E-03) (2.56E-07) (9.92E-07)

Data Set1
300 -1.14E-01 -2.33E-02 1.74E-04 7.65E-04

(2.22E-01) (1.44E-03) (5.62E-08) (7.18E-07)

500 -6.02E-02 -6.06E-03 9.14E-05 3.29E-04
(7.22E-02) (2.54E-04) (1.64E-08) (2.92E-07)

100 6.49E-01 1.21E-01 -1.10E-03 3.88E-04
(1.01E+00) (8.24E-01) (1.84E-06) (6.89E-07)

200 5.14E-01 -7.29E-02 -6.07E-04 1.03E-04
(5.92E-01) (2.22E-02) (4.46E-07) (1.10E-08)

Data Set2
300 -1.34E-01 8.57E-03 -1.34E-04 4.86E-05

(4.54E-01) (4.55E-03) (6.46E-08) (2.94E-09)

500 9.94E-02 2.60E-03 4.95E-05 2.07E-05
(7.76E-02) (5.65E-05) (2.45E-08) (1.87E-09)

The computed values of the bias and mean square error(MSE) corresponding to
sample sizes 100, 200, 300 and 500 respectively are given in Table 4.

From the table it can be seen that both the absolute bias and MSEs in respect
of each parameters of the MSLRM are in decreasing order as the sample size
increases.
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Appendix

A. Proofs of equation (9)

By definition, using the double series expansion for p.d.f, the c.d.f of theMSLD(α, β)
takes the following form, for x < 0 .

F (x) =
2

α+ 2




∞∑

k=0

(
−2

k

) x∫

−∞

e(1+k)xdx+ α

∞∑

j=0

∞∑

k=0

(
−1

j

)(
−2

k

) x∫

−∞

e
(1+βj+k)x

dx




=
2

α+ 2




∞∑

k=0

(
−2

k

)
e(1+k)x

(1 + k)
+ α

∞∑

j=0

∞∑

k=0

(
−1

j

)(
−2

k

)
e(1+βj+k)x

(1 + βj + k)


 (36)

In a similar way, the c.d.f of the MSLD(α, β) can be written as given below, for
x ≥ 0.

F (x) = 1−

∞∫

x

f (x) dx

= 1−
2

α+ 2




∞∑

k=0

(
−2

k

) ∞∫

x

e−(1+k)xdx+ α

∞∑

j=0

∞∑

k=0

(
−1

j

)(
−2

k

) ∞∫

x

e−(1+β+βj+k)xdx




= 1−
2

α+ 2




∞∑

k=0

(
−2

k

)
e−(1+k)x

(1 + k)
+ α

∞∑

j=0

∞∑

k=0

(
−1

j

)(
−2

k

)
e−(1+β+βj+k)x

(1 + β + βj + k)


 (37)

Thus (36) and (37) gives (9).
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Summary

Here we consider a modified form of the logistic regression model useful for situations
where the dependent variable is dichotomous in nature and the explanatory variables
exhibit asymmetric behaviour. Certain structrual properties of the modified skew logistic
model is discussed and the proposed regression model has been fitted to some real life
data sets by using the method of maximum likelihood estimation. Further, two data
illustrations are given for highlighting the usefulness of the model in certain medical
applications and a simulation study is conducted for assessing the performance of the
estimators.
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