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1. Introduction

Estimation of population parameters are considered by several statisticians when
prior information such as coefficient of variation, kurtosis or skewness is known.
The use of prior information in inference is well established in the Bayesian arena of
statistical methodology. In some instances prior information can be incorporated
in classical models as well. Searls and Intarapanich (1990) derived an estimator
of variance when the kurtosis of the sampled population is known. In some of the
problems of biological and physical sciences, situations where the scale parame-
ter is proportional to the location parameter are seen reported in the literature,
then knowing the proportionality constant is equivalent to knowing the population
coefficient of variation.

Situations where coefficient of variation is known, do occur in practice. In
clinical chemistry batches of some substance (chemicals) are to be analysed, after
sufficient batches of the substances are analyzed, their coefficient of variation will
be known. In biological experiments, it is customary to conduct multi-locational
trials. When the results of a few centres are available, the coefficient of variation is
known and it can be used for inferential purpose of an experiment to be conducted
in a new location. In environmental studies the mean represents the average
concentration level of a particular chemical or pollutant and the standard deviation
is directly proportional to the mean, in this case coefficient of variation is known
either from past studies or physical characteristics of the environmental setup (see
Guo and Pal, 2003).

For all these situations the interest for statisticians comes from the fact that,
the inferential procedures instead of getting simplified becomes more complex.
The property of completeness enjoyed by the statistics is no longer holds in this
situation, therefore the standard theory of uniformly minimum variance unbiased
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estimation (UMVUE) is not applicable in this case. For details see, Kunte (2000),
Guo and Pal (2003), Bhat and Rao (2011), Hedayat et al. (2011), Kagan and Mali-
novsky (2013), Fu et al. (2013) and Khan (2013) and the references therein. In the
case of location scale family of distributions, order statistics play a key role in the
development of efficient estimators. Thomas and Sajeevkumar (2003) considered
the problem of estimation of the mean of normal distribution with known coef-
ficient of variation using order statistics. Also Sajeevkumar and Thomas (2005)
discussed about the estimation of the mean of the logistic distribution with known
coefficient of variation by order statistics. Recently Sajeevkumar and Irshad (2011,
2013a) discussed about the estimation of the location parameter of the exponential
distribution with known coefficient of variation by order statistics. Estimation of
the mean of double exponential and normal distributions with known coefficient
of variation by U-statistics are respectively discussed by Sajeevkumar and Irshad
(2012) and Sajeevkumar and Irshad (2013b).

The concept of record values introduced by Chandler (1952) has gained mo-
mentum in a theoretical perspective as well as in terms of its applications. Also
the study of record values in many ways parallels the study of order statistics,
indeed they are inextricably related. This motivates the authors to take up the
study based on record values. Record values and associated statistics are of great
importance in several real life problems involving weather, economic and sports
data. The statistical study of record values started with Chandler (1952) and
has now spread in different directions. Resnick (1973) and Shorrock (1973) doc-
umented the asymptotic theory of records. Glick (1978) provides a survey of the
literature on records. For a detailed discussion on the developments in the theory
and applications of record values, see Arnold et al. (1998) and Ahsanullah (1995).

Let X1, X2, ... be a sequence of independent observations arising from a pop-
ulation. An observation Xj will be called an upper record value (or simply a
record) if its value exceeds that of all previous observations. Thus Xj is a record
if Xj > Xi, ∀ i < j. The first observation X1 is taken as the initial record R1.
The next record R2 is the observation following R1 which is greater than R1 and
so on. The records R1, R2, · · · as defined above are sometimes referred to as the
sequence of upper records. An analogous definition deals with lower record values.
But we are not of interest in the present paper and hence whenever we use the
term record values in this work it means upper record values.

Let X1, X2, · · · be a sequence of independent observations arising from a pop-
ulation with absolutely continuous cumulative distribution function (cdf) FX(x)
and pdf fX(x). If we write Rn to denote the nth upper record value, then its pdf
is given by (see Arnold et al. 1998, p.10),

fRn(x) =
1

(n− 1)!
[− log{1− FX(x)}]n−1fX(x). (1)

The joint pdf of the mth and nth upper record values Rm and Rn for m < n is
given by (see Arnold et al. 1998, p.11),

fRm,n(x1, x2) =
1

(m− 1)!(n−m− 1)!
[− log{1− FX(x1)}]m−1 fX(x1)

1− FX(x1)
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×[− log{1− FX(x2)}+ log{1− FX(x1)}]n−m−1fX(x2), x1 < x2. (2)

The rest of the paper is organized as follows. In section 2, we discuss the general
technique of estimating the location parameter of a distribution with known coef-
ficient of variation by record values. Results of section 2, are directly applied in
normal, logistic and exponential distributions are discussed in sections 3, 4 and
5 respectively. Real-life data have been used to illustrate the application of the
results obtained and is given in section 6.

2. Estimation of the location parameter when the scale parameter
is proportional to the location parameter using record values

In this section we consider the family G of all absolutely continuous distributions
which depend on a location parameter µ and a scale parameter σ, such that σ = cµ.
Throughout this work we assume that c is known. Then any distribution belongs
to G has a pdf of the form,

f(x;µ, cµ) =
1

cµ
f0

(
x− µ

cµ

)
, µ > 0, c > 0, x ∈ R. (3)

If in the pdf defined in (3), µ is the mean and cµ is the standard deviation, then c
is the known coefficient of variation. In real life situations, coefficient of variation
is meaningful, only when it is positive. In standard case our pdf defined in (3),
reduces to the usual standard form of location scale family of distributions.

Let XU(1), XU(2), · · · , XU(n) be the first n upper record values arising from (3)
and let YU(1), YU(2), · · · , YU(n) be the corresponding upper record values arising
from the standard form of the pdf defined in (3). Let us now denote E(YU(n)) by
αn, V ar(YU(n)) by βn,n, E(YU(m)YU(n)) by αm,n, Cov(YU(m), YU(n)) by βm,n and
E(Y 2

U(n)) by α2
n. Let X(U) = (XU(1), XU(2), · · · , XU(n))

′ be the vector of first n

upper record values arising from (3) and let Y(U) = (YU(1), YU(2), · · · , YU(n))
′ be

the corresponding vector of first n upper record values arising from the standard
form of (3). Now we derive the best linear unbiased estimator (BLUE) of µ
involved in (3), and is given by the following theorem.

Theorem 1. Suppose XU(1), XU(2), · · · , XU(n) are the first n upper record val-
ues arising from (3) . Let YU(1), YU(2), · · · , YU(n) be the corresponding upper record
values arising from the standard form of the distribution defined in (3). Let α =
(α1, α2, · · · , αn)

′, B = ((βi,j)), 1 ≤ i ≤ j ≤ n, be the vector of means and disper-
sion matrix respectively of Y(U) = (YU(1), YU(2), · · · , YU(n))

′. Then the BLUE µ̃1

of the parameter µ is given by,

µ̃1 =
(cα+ 1)′B−1

(cα+ 1)′B−1(cα+ 1)
X(u) (4)

and

V ar(µ̃1) =
c2µ2

(cα+ 1)′B−1(cα+ 1)
, (5)

where 1 = (1, 1, · · · , 1)′.
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Proof. Given XU(1), XU(2), · · · , XU(n) are first n upper record values arising
from (3).

Let E(YU(i)) = αi, i = 1, 2, · · · , n,

V ar(YU(i)) = βi,i, i = 1, 2, · · · , n

and

Cov(YU(i), YU(j)) = βi,j , 1 ≤ i ≤ j ≤ n.

Then we have,
XU(i) − µ

cµ

d
= YU(i), i = 1, 2, · · · , n.

Therefore,

E(XU(i)) = (cαi + 1)µ, i = 1, 2, · · · , n, (6)

V ar(XU(i)) = c2µ2βi,i (7)

and

Cov(XU(i), XU(j)) = c2µ2βi,j . (8)

Using (6) to (8) one can also write,

E(X(U)) = (cα+ 1)µ (9)

and

D(X(U)) = Bc2µ2. (10)

Then by generalized Gauss-Markov setup, the BLUE µ̃1 of the parameter µ is
given by,

µ̃1 =
(cα+ 1)′B−1

(cα+ 1)′B−1(cα+ 1)
X(U)

and

V ar(µ̃1) =
c2µ2

(cα+ 1)′B−1(cα+ 1)
.

Thus the theorem is proved.

Clearly µ̃1 can be written as a linear function of XU(i) as,

µ̃1 =

n∑
i=1

aiXU(i),where ai, i = 1, 2, · · · , n are constants.

For comparison purpose, we take two other linear unbiased estimators of µ. For
that considering µ as the location parameter of (3), a linear unbiased estimator
of µ based on the upper record values is given by (same argument that of David
1981, pp: 128-131 and Balakrishnan and Cohen 1991, pp: 80-82),

µ̂1 = − α′B−1(1α′ −α1′)B−1

(α′B−1α)(1′B−11)− (α′B−11)2
X(U) (11)
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and

V ar(µ̂1) =
(α′B−1α)c2µ2

(α′B−1α)(1′B−11)− (α′B−11)2
. (12)

Clearly the estimator considered in (11) is independent of c. But its variance
containing c.

Also by considering cµ as the scale parameter of (3), a linear unbiased estimator
of cµ based on upper record values is given by (same argument that of David 1981,
pp: 128-131 and Balakrishnan and Cohen 1991, pp: 80-82),

T1 =
1′B−1(1α′ −α1′)B−1

(α′B−1α)(1′B−11)− (α′B−11)2
X(U) (13)

and

V ar(T1) =
(1′B−11)c2µ2

(α′B−1α)(1′B−11)− (α′B−11)2
. (14)

From (14) we can obtain another linear unbiased estimator µ∗
1 of µ, and is given

by,

µ∗
1 =

1′B−1(1α′ −α1′)B−1

c
[
(α′B−1α)(1′B−11)− (α′B−11)2

]X(U) (15)

and

V ar(µ∗
1) =

(1′B−11)µ2

(α′B−1α)(1′B−11)− (α′B−11)2
. (16)

The results derived in this section are directly applied in normal, logistic and
exponential distributions are discussed in sections 3, 4 and 5 respectively.

3. Estimation of the mean of the normal distribution with known
coefficient of variation by using record values

A continuous random variable X is said to have the normal distribution with
location parameter µ and scale parameter cµ, if its pdf is given by,

f(x;µ, cµ) =
1

cµ
√
2π

exp

{
−(x− µ)2

2c2µ2

}
, µ > 0, c > 0, x ∈ R. (17)

We will write N(µ, cµ) to denote the normal distribution defined in (17). The
mean and variance of the above distribution are given by E(X) = µ and V ar(X) =
c2µ2, where c is the known coefficient of variation. The above mentioned normal
model with known coefficient of variation is useful in environmental studies where
µ represents mean concentration level of a particular chemical or pollutant (in
air or water), and the standard deviation cµ is directly proportional to mean
concentration level with the proportionality constant c being known from either
past studies or physical characteristics of the environmental setup (see Guo and
Pal 2003). For other applications of this distribution see also Gleser and Healy
(1976).

The record values and associated inference arising from the two parameter
normal distribution N(µ, σ) are discussed by Balakrishnan and Chan (1998). The
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TABLE 1
Coefficients of XU(i) in the BLUE µ̃1 for n=2(1)10

c a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
0.2 0.09 0.76

0.08 0.06 0.66
0.06 0.05 0.04 0.59
0.05 0.04 0.03 0.03 0.56
0.05 0.04 0.03 0.02 0.02 0.53
0.04 0.03 0.02 0.02 0.02 0.02 0.50
0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.49
0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.47
0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.46

0.4 -0.03 0.76
-0.02 0.02 0.62
-0.01 0.01 0.01 0.54
-0.01 0.01 0.01 0.01 0.49
-0.01 0.01 0.01 0.01 0.01 0.46
-0.01 0.01 0.01 0.01 0.01 0.01 0.43
-0.01 0.01 0.01 0.01 0.01 0.01 0 0.40
-0.01 0.01 0.01 0.01 0 0 0 0 0.38
-0.01 0.01 0.01 0.01 0 0 0 0 0 0.37

means, variances and convariances of the record values arising from the standard
form of N(µ, σ) are also available in this paper. Using the results of Balakrishnan
and Chan (1998) and also using the results based on upper record values given in
section 2, we have evaluated the coefficients of XU(i) in the BLUE µ̃1, V ar(µ̂1)
defined in (12), V ar(µ∗

1) defined in (16), V ar(µ̃1) defined in (5) for the parameter
µ involved in (17) with the help of MATHCAD and MATHEMATICA software’s.

We have also evaluated the numerical values of the efficiency e1 = V ar(µ̂1)
V ar(µ̃1)

of µ̃1

relative to µ̂1 and the numerical values of the efficiency e2 =
V ar(µ∗

1)
V ar(µ̃1)

of µ̃1 relative

to µ∗
1 for c = 0.20, 0.40 and n = 2(1)10 and are given in TABLE 2. From this

table, it may be noted that in all the cases our estimator µ̃1 is much better than
that of estimators µ̂1 and µ∗

1.

4. Estimation of the mean of the logistic distribution with known
coefficient of variation by using record values

The logistic distribution is a well-known and widely used statistical distribution
because of its simplicity and its historical importance as a growth curve (see Erke-
lens 1968). It has several important applications in biological, actuarial, industrial
and engineering fields. Some applications of order statistics from the logistic dis-
tribution in the fields of life-testing and reliability studies have been mentioned
by Lawless (1982). Also logistic distribution has a shape similar to that of normal
distribution, which makes it simpler and also profitable on suitable occasions to
replace the normal distribution by the logistic distribution to simplify the anal-
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TABLE 2
V1 = V ar(µ̂1)

µ2 ,V2 =
V ar(µ∗

1)

µ2 , V3 = V ar(µ̃1)

µ2 , the efficiency e1 of µ̃1 relative to µ̂1 and the

efficiency e2 of µ̃1 relative to µ∗
1

c n V1 V2 V3 e1 e2
0.20 2 0.04000 0.72165 0.02216 1.80505 32.56543

3 0.03897 0.34485 0.01635 2.38349 21.09174
4 0.03790 0.22274 0.01332 2.84535 16.72222
5 0.03692 0.16305 0.01142 3.23292 14.27758
6 0.03604 0.12793 0.01008 3.57539 12.69147
7 0.03526 0.10486 0.00909 3.87899 11.53575
8 0.03457 0.08862 0.00830 4.16506 10.67711
9 0.03394 0.07662 0.00768 4.41927 9.97656
10 0.03337 0.06738 0.00715 4.66713 9.42378

0.40 2 0.16000 0.72165 0.06726 2.37883 10.72926
3 0.15589 0.34485 0.04388 3.55264 7.85893
4 0.15160 0.22274 0.03308 4.58283 6.73337
5 0.14767 0.16305 0.02679 5.51213 6.08623
6 0.14418 0.12793 0.22650 6.36556 5.64812
7 0.14106 0.10486 0.01969 7.16404 5.32555
8 0.13826 0.08862 0.01747 7.91414 5.07270
9 0.13576 0.07662 0.01573 8.63064 4.87095
10 0.13348 0.06738 0.01433 9.31472 4.70133

ysis without too great discrepancies in the respective theories. Sajeevkumar and
Thomas (2005) considered the problem of estimation with known coefficient of
variation in logistic model using order statistics. Hence in this section we con-
sider the problem of estimation of the mean of logistic distribution with known
coefficient of variation by record values.

A continuous random variable X is said to have the logistic distribution with
location parameter µ and scale parameter cµ, if its pdf is given by (see Sajeevku-
mar and Thomas, 2005),

f(x;µ, cµ) =
π√
3

exp
{

−π√
3
(x−µ

cµ )
}

cµ
[
1 + exp

{
−π√
3
(x−µ

cµ )
}]2 , µ > 0, c > 0, x ∈ R. (18)

We will write LD(µ, cµ) to denote the logistic distribution defined in (18). The
mean and variance of the above distribution are given by E(X) = µ and V ar(X) =
c2µ2, where c is the known coefficient of variation. Applications of record values
arising from usual two parameter logistic distribution are elucidated by (see Arnold
et al. 1995, pp: 65-68). Using those results, first we have evaluated the means,
variances and covariances of the record values arising from the standard form of the
distribution defined in (18) with the help of MATHCAD and MATHEMATICA
software’s. Using those values and also using the results based on record values
given in section 2, we have evaluated the coefficients of XU(i) in the BLUE µ̃1,
V ar(µ̂1) defined in (12), V ar(µ∗

1) defined in (16), V ar(µ̃1) defined in (5) for the



342 N. K. Sajeevkumar and M. R. Irshad

TABLE 3
Coefficients of XU(i) in the BLUE µ̃1 for n=2(1)10

c a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
0.2 0.06 0.80

0.13 0.24 0.45
0.13 0.22 0.11 0.31
0.13 0.21 0.11 0.06 0.25
0.13 0.21 0.11 0.06 0.03 0.21
0.13 0.20 0.11 0.06 0.03 0.01 0.19
0.13 0.19 0.10 0.06 0.03 0.01 0.01 0.18
0.13 0.19 0.10 0.05 0.03 0.01 0.01 0 0.18
0.12 0.19 0.09 0.05 0.03 0.01 0.01 0 0 0.17

0.4 -0.14 0.84
-0.03 0.21 0.46
-0.02 0.19 0.07 0.34
-0.01 0.17 0.07 0.04 0.28
-0.01 0.16 0.07 0.04 0.02 0.24
0 0.15 0.06 0.04 0.02 0.01 0.22
0 0.14 0.06 0.04 0.02 0.01 0.01 0.21
0 0.14 0.06 0.03 0.02 0.01 0 0 0.20
0 0.13 0.05 0.03 0.02 0.01 0 0 0 0.19

parameter µ involved in (18) with the help of MATHCAD and MATHEMATICA
software’s. Also we have evaluated the numerical values of the efficiency e1 =
V ar(µ̂1)
V ar(µ̃1)

of µ̃1 relative to µ̂1 and the numerical values of the efficiency e2 =
V ar(µ∗

1)
V ar(µ̃1)

of µ̃1 relative to µ∗
1 for c = 0.20, 0.40 and n = 2(1)10 and are given in TABLE 4.

From this table, it may be noted that in all the cases our estimator µ̃1 is much
better than that of estimators µ̂1 and µ∗

1.

5. Estimation of the location parameter of the exponential dis-
tribution with known coefficient of variation by using record
values

A distribution occupying a commanding position, especially in life-testing prob-
lems, is the two-parameter exponential distribution E(µ, σ), σ > 0. In the context
of life-length studies, the location parameter µ and the scale parameter σ respec-
tively represent the minimum guaranteed life and the average excess life of an
equipment or a system. The parameters µ and σ are functionally independent
and the statistical inference about these parameters make use of the existence
of complete minimal sufficient statistics. This brings about a substantial simpli-
fication in the inferential problems. There, however, exist situations where the
average life σ depends on the minimum guaranteed life µ and the functionally in-
dependent nature of the parameters no longer hold, resulting in the loss of optimal
properties of the statistics. For instance, in testing for time to breakdown of an
insulating fluid under high test voltages, it is observed that high voltages quickly
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TABLE 4

V1 = V ar(µ̂1)

µ2 ,V2 =
V ar(µ∗

1)

µ2 , V3 = V ar(µ̃1)

µ2 , the efficiency e1 of µ̃1 relative to µ̂1 and the

efficiency e2 of µ̃1 relative to µ∗
1

c n V1 V2 V3 e1 e2
0.20 2 0.04000 0.51480 0.02598 1.53965 19.81524

3 0.03984 0.35423 0.02298 1.73368 15.41471
4 0.03894 0.25903 0.02163 1.80028 11.97550
5 0.03796 0.20374 0.02084 1.82150 9.77639
6 0.03712 0.16816 0.02027 1.83128 8.29600
7 0.03644 0.14341 0.01980 1.84040 7.24293
8 0.03590 0.12515 0.01938 1.85243 6.45769
9 0.03547 0.11111 0.01900 1.86684 5.84789
10 0.03512 0.09994 0.01864 1.88412 5.36159

0.40 2 0.16000 0.51480 0.07701 2.07765 6.68485
3 0.15936 0.35423 0.06348 2.51040 5.58018
4 0.15576 0.25903 0.05666 2.74903 4.57166
5 0.15184 0.20374 0.05242 2.89660 3.88668
6 0.14848 0.16816 0.04929 3.01238 3.41165
7 0.14577 0.14341 0.04673 3.11941 3.06891
8 0.14362 0.12515 0.04453 3.22524 2.81046
9 0.14188 0.11111 0.04258 3.33208 2.60944
10 0.14047 0.09994 0.04082 3.44121 2.44831

yield breakdown data and the linear relationship between the minimum time to
breakdown and the average excess time to breakdown seem to hold (see Nelson
1990, p.129).

In this situation, the two-parameter model reduces to a one-parameter model
E(µ, aµ), where a is known and positive. The interest for theoretical statisticians
comes from the fact that in the reduced model E(µ, aµ), the inferential procedures
instead of getting simplified becomes more complex. The property of complete-
ness enjoyed by the statistics in the case of E(µ, σ) distribution no longer holds.
Hence it is not possible to obtain the unique minimum variance unbiased estima-
tor by the use of Rao-Blackwell theorem. For some early works based on E(µ, aµ)
distribution, see Ghosh and Razmpour (1982) and Handa et al. (2002).

A continuous random variable X is said to follow the exponential distribution
with location parameter µ and scale parameter aµ, if its pdf is given by,

f(x;µ, aµ) =

{
1
aµexp

{
−x−µ

aµ

}
, x ≥ µ, µ > 0, a > 0

0, otherwise.
(19)

In this case it can be shown that E(X) = µ+ aµ = (a+1)µ, V ar(X) = a2µ2 and
coefficient of variation c = a

a+1 is a known positive constant for the known value of
a. The results based on record values arising from the two parameter exponential
distribution E(µ, σ) are available in (see Arnold et al. 1998, p.134). Using the
results available in (see Arnold et al. 1998, p.134), the linear unbiased estimator
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µ̂1 given in (11), corresponding to the parameter µ involved in (19) reduces to,

µ̂1 =
1

n
[(n+ 1)R0 −Rn] , (20)

where R0 and Rn denote the 1st and nth record values. And

V ar(µ̂1) =
n+ 1

n
a2µ2. (21)

Also using the results available in (see Arnold et al. 1998, p.134), the linear
unbiased estimator µ∗

1 given in (15), corresponding to the parameter µ involved
in (19) reduces to,

µ∗
1 =

1

an
(Rn −R0) (22)

and

V ar(µ∗
1) =

µ2

n
. (23)

By using the results available in (see Arnold et al. 1998, p.134), we have found
out the following results,

α′B−1α = n+ 1, α′B−11 = 1, 1′B−11 = 1,

α′B−1 = (0, 0, · · · , 1) and 1′B−1 = (1, 0, · · · , 0).

Using the above results, the BLUE corresponding to (4) for the parameter µ
involved in (19) reduces to,

µ̃1 =
2 + n(n+ 1)a

2[a2(n+ 1) + 2a+ 1]
R+

a

a2(n+ 1) + 2a+ 1
Rn,

that is,
µ̃1 = g1R+ g2Rn, (24)

where g1 = 2+n(n+1)a
2[a2(n+1)+2a+1] , g2 = a

a2(n+1)+2a+1 and R = R0 +R1 + · · ·+Rn.

And its variance reduces to,

V ar(µ̃1) =
a2µ2

a2(n+ 1) + 2a+ 1
. (25)

The main advantage of this results given in (24) and (25) is that, one can obtain the
BLUE and its variance of the location parameter µ of the exponential distribution
with known coefficient of variation by record values without knowing the values
of means, variances and covariances of the record values arising from the standard
form of the distribution defined in (19). We have evaluated the coefficients ofR, Rn

in the BLUE µ̃1 defined in (24), V ar(µ̂1) defined in (21), V ar(µ∗
1) defined in (23),

V ar(µ̃1) defined in (25), the efficiency e1 = V ar(µ̂1)
V ar(µ̃1)

of µ̃1 relative to µ̂1 and the

efficiency e2 =
V ar(µ∗

1)
V ar(µ̃1)

of µ̃1 relative to µ∗
1 for n = 2(1)10 and c = 0.15(0.05)0.30

and are given in TABLE 5 and TABLE 6. From this table, it may be noted that,
in all the cases our estimator µ̃1 is much better than that of estimators µ̂1 and µ∗

1.
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TABLE 5
Coefficients of R, coefficients of Rn in the BLUE µ̃1, V1 = V ar(µ̂1)

µ2 ,V2 =
V ar(µ∗

1)

µ2 ,

V3 = V ar(µ̃1)

µ2 , the efficiency e1 of µ̃1 relative to µ̂1 and the efficiency e2 of µ̃1 relative to

µ∗
1

c n g1 g2 V1 V2 V3 e1 e2
0.15 2 1.057 0.122 0.046 0.500 0.022 2.170 23.223

3 1.393 0.119 0.042 0.333 0.021 1.970 15.812
4 1.833 0.117 0.039 0.250 0.021 1.886 12.112
5 2.369 0.115 0.037 0.200 0.020 1.848 9.891
6 2.996 0.112 0.036 0.167 0.019 1.833 8.409
7 3.708 0.110 0.036 0.143 0.019 1.831 7.349
8 4.502 0.108 0.035 0.125 0.019 1.837 6.554
9 5.372 0.106 0.034 0.111 0.019 1.849 5.939
10 6.314 0.104 0.034 0.100 0.018 1.865 5.443

0.20 2 1.037 0.148 0.094 0.500 0.037 2.531 13.499
3 1.429 0.143 0.083 0.333 0.036 2.333 9.334
4 1.931 0.138 0.078 0.250 0.034 2.266 7.251
5 2.533 0.133 0.075 0.200 0.033 2.250 6.000
6 3.226 0.129 0.073 0.167 0.032 2.260 5.166
7 4.000 0.125 0.071 0.143 0.031 2.286 4.572
8 4.848 0.121 0.070 0.125 0.030 2.320 4.125
9 5.765 0.118 0.069 0.111 0.029 2.361 3.778
10 6.743 0.114 0.069 0.100 0.029 2.406 3.500

TABLE 6
Coefficients of R, coefficients of Rn in the BLUE µ̃1, V1 = V ar(µ̂1)

µ2 ,V2 =
V ar(µ∗

1)

µ2 ,

V3 = V ar(µ̃1)

µ2 , the efficiency e1 of µ̃1 relative to µ̂1 and the efficiency e2 of µ̃1 relative to

µ∗
1

c n g1 g2 V1 V2 V3 e1 e2
0.25 2 1.000 0.167 0.166 0.500 0.056 2.999 8.999

3 1.421 0.158 0.148 0.333 0.053 2.815 6.333
4 1.950 0.150 0.139 0.250 0.050 2.778 5.000
5 2.571 0.143 0.133 0.200 0.048 2.800 4.200
6 3.273 0.136 0.130 0.167 0.045 2.852 3.667
7 4.043 0.130 0.127 0.143 0.043 2.920 3.286
8 4.875 0.125 0.125 0.125 0.042 2.999 2.999
9 5.760 0.120 0.123 0.111 0.040 3.087 2.778
10 6.692 0.115 0.122 0.100 0.038 3.178 2.600

0.30 2 0.949 0.178 0.276 0.500 0.076 3.612 6.556
3 1.378 0.165 0.245 0.333 0.071 3.456 4.703
4 1.904 0.154 0.230 0.250 0.066 3.469 3.778
5 2.510 0.145 0.220 0.200 0.062 3.551 3.222
6 3.182 0.136 0.214 0.167 0.058 3.667 2.852
7 3.908 0.129 0.210 0.143 0.055 3.802 2.588
8 4.680 0.122 0.207 0.125 0.052 3.949 2.389
9 5.492 0.116 0.204 0.111 0.050 4.105 2.235
10 6.337 0.110 0.202 0.100 0.047 4.265 2.111
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6. Real life example

Roberts (1979) has given the one-hour average concentration of sulpher dioxide (in
pphm) from Long Beach, California, for the years 1956 to 1974. From this data, we
observe the upper record values for the months July and August are respectively
given by (14, 18, 37) and (21, 25, 26, 40, 55). Also the upper record values for the
month of September to be (33, 38). For analysing the data of September based
on upper record values, we have only two record values. Obviously we know that,
for analysing a data based on only two values, it is not enough to get good result.
This is a major drawback of record values, that is, statistical inference based on
records arise due to the fact that the occurrences of record data are very rare in
practical situations and moreover the expected waiting time is infinite for every
record after the first. In this case, if any prior information can be incorporated,
the result will be improved. The coefficient of variation of record values, for the
months July and August are respectively given by 0.43 and 0.40 respectively. The
coefficient of variation is a stable measure of dispersion and thus does not change
quite rapidly over the years. Here also we can observe that the coefficient of
variation is constant and is approximately equal to 0.40. This is a situation where
one can make use of the past data to have a knowledge regarding coefficient of
variation.

A simple plot of the upper record values of each month against the expected
values arising from usual standard normal distribution given in Table 1 of Balakr-
ishnan and Chan (1998) indicate a very strong correlation (that is, the correlation
coefficient between expected values and record values of each months as high as
0.90). Hence the assumption that the record values have come from a normal
distribution N(µ, cµ) is quite reasonable. From Table 1, we then determine the
best linear unbiased estimator (BLUE) of µ to be,

µ̃ = −0.03× 33 + 0.76× 38

= 27.89

and
V ar(µ̃) = 0.06726.

Once again without loss of generality assume that the record values for the month
of September arising from a logistic distribution LD(µ, cµ). From Table 3, we
then determine the best linear unbiased estimator (BLUE) of µ to be,

µ̃ = −0.14× 33 + 0.84× 38

= 27.30

and
V ar(µ̃) = 0.07701.
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SUMMARY

Estimation of the location parameter of distributions with known coefficient of variation
by record values.

In this article, we derived the Best Linear Unbiased Estimator (BLUE) of the location
parameter of certain distributions with known coefficient of variation by record values.
Efficiency comparisons are also made on the proposed estimator with some of the usual
estimators. Finally we give a real life data to explain the utility of results developed in
this article.

Keywords: Record values; Normal distribution; Logistic distribution; Exponential dis-
tribution; Best linear unbiased estimator


