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1. Introduction

In survival studies, the failure (death) of subjects may be attributed to one of
several causes or types. In such situations, the subject is exposed to two or more
causes of failure, but its eventual death can be due to exactly one of these causes.
In this context, for each subject, we observe a random vector (T, J), where T is
possibly a censored survival time and J represents cause of death (exactly one
of say k possible causes). J takes the values on the set {1, 2, ..., k}. Modeling
and analysis of such lifetime data under right censoring using various concepts are
extensively discussed in statistical literature (see Kalbfleisch and Prentice (2002),
Lawless (2003), Peng and Fine (2007)and Jeong and Fine (2009)).

The popular approach employed for the analysis of lifetime data with multiple
causes subject to right censoring is based on cause specific hazard rates, λj(t)
defined by

λj(t) = lim
∆t→0

P [T < t+∆t, J = j|T ≥ t]

∆t
j = 1, 2, ...k. (1)

Note that λj(t)∆t is the approximate probability of failure of a subject in (t, t+∆t)
due to cause j given that it has survived up to time t. The analysis of lifetime data
using (1) is studied in literature by various authors. Crowder (2001), Kalbfleisch
and Prentice (2002), and Lawless (2003) provide reviews on this topic.

There are many occasions in survival studies, where the lifetime data are left
censored. For example, Baboons in the Amboseli Reserve, Kenya, sleep in the trees
and descend for foraging at some time of the day. Observers often arrive later in the
day than this descent and for such days they can only ascertain that descent took
place before a particular time, so that the descent times are left censored (Andersen
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et al. (1993)). In early childhood learning centres, interest often focuses upon
testing children to determine when a child learns to accomplish certain specified
tasks. The age at which a child learns the task would be considered as lifetime.
Often, some children can already perform the task when they enter to the study.
Such lifetimes are considered as left censored. The reversed hazard rate h(t),
defined by

h(t) = lim
∆t→0

P [t−∆t < T ≤ t|T ≤ t]

∆t
, (2)

facilitates the analysis of such left censored data. The function h(t) specifies the
instantaneous rate of failure of a subject at time t given that it failed before time t.
Introduced by Barlow et al. (1963), (2) has been used in various contexts, such as,
estimation of distribution function under left censoring (Lawless (2003)), analysis
of lifetime data arising in parallel systems (Marshall and Olkin (2007)), definition
of new stochastic orders (Keilson and Sumita (1982)) and evolving repair and
maintenance strategies (Marshall and Olkin (2007)). Recently, Gupta and Gupta
(2007) have discussed monotonic behaviour of hazard rate and reversed hazard rate
of proportional reversed hazards model. Sengupta and Nanda (2010) introduced a
semiparametric regression model using the reversed hazard rate, analogous to well
known Cox proportional hazards model. For various properties and applications
of (2), one could refer to Andersen et al. (1993), Gürler (1996), Block et al. (1998),
Gupta et al. (1998), Finkelstein (2002), Lawless (2003) and Nair et al. (2005).

Duffy et al. (1990) considered the Australian twin data which consists of in-
formation on the age at which appendectomy of monozygotic (MZ) and dizygotic
(DZ) twins. There were 21 pairs with missing age at onset and therefore the data
contains left censored observations. This data can be viewed in the form of left
censored lifetime data with multiple causes. The details of the data are given in
Section 6. Duffy et al. (1990) excluded these left censored observations in the
analysis. It is therefore appropriate to model the data by including these left cen-
sored observations, which can be done by developing models using reversed hazard
rate. Motivated by this, in this paper, we introduce cause specific reversed hazard
rates, which are useful for the analysis of left censored lifetime data with multiple
causes.

The rest of the article is arranged as follows. In Section 2, we introduce cause
specific reversed hazard rates and study their properties. Nonparametric estima-
tion of cumulative cause specific reversed hazard rates and cumulative incidence
functions are discussed in Section 3. We present asymptotic properties of the es-
timators in Section 4. Simulation studies are conducted in Section 5 to asses the
efficiency of the proposed estimators. We, in Section 6 apply the proposed method
to two real life data sets. Section 7 provides major conclusions of the study.

2. The Model

Let (T, J) be a pair of random variables as described in Section 1. Let F (t) be the
distribution function of T . We assume that the k failures are mutually exclusive
and exhaustive so that a subject can have at most one realized failure time with
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an identifiable cause. The cause specific reversed hazard rate of T is defined as

hj(t) = lim
∆t→0

P [t−∆t ≤ T ≤ t, J = j|T ≤ t]

∆t
j = 1, 2, ..., k. (3)

The hj(t) specifies the instantaneous rate of failure of a subject at time t due to
cause j given that it failed before time t. Denote Fj(t) = P [T ≤ t, J = j] as the
cumulative incidence function of T . We can write (3) as

hj(t) =
fj(t)

F (t)
j = 1, 2, ..., k (4)

where fj(t) =
dFj(t)

dt is the cause specific density of T and F (t) =
k∑

j=1

Fj(t). The

marginal reversed hazard rate for T is given by

h(t) =
k∑

j=1

hj(t).

Then the distribution function for T is obtained as

F (t) = exp[−H(t)] = exp[−
k∑

j=1

Hj(t)], (5)

where H(t) =
∫∞
t

h(u)du is the cumulative reversed hazard rate for T and Hj(t) =∫∞
t

hj(u)du is the cumulative cause specific reversed hazard rate.
Now from (4), we obtain the cumulative incidence function as

Fj(t) =

∫ t

0

hj(u)F (u)du = −
∫ t

0

F (u)dHj(u). (6)

The function hj(t) fully describe the distribution of (T, J) in multiple failure mode
settings.

Consider a parallel system with k physical components, each of which is li-
able to fail and let Tj denote the lifetime or failure time of component j (j =
1, 2, ...k). The system fails when the last component fails so that the lifetime is
T = max(T1, T2, ...Tk). In this set up, if hj(t) is the reversed hazard rate of the

component j, then the reversed hazard rate of the system is h(t) =
k∑

j=1

hj(t).

3. Nonparametric Estimation

In this section, we discuss nonparametric estimation of Hj(t) and Fj(t), j =
1, 2, ...k under left censoring. Suppose that the lifetime random variable T is left
censored by the random variable C. Let G(t) be the distribution function of C. We
assume that T and C are independent. Under left censoring we observe random
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vector (X, δ, Jδ) where X = max(T,C) and δ = I(T = X) with I(.) as the usual
indicator function of X. The independence of T and C implies that

L(t) = F (t)G(t) (7)

where L(t) is the distribution function of X. Let (Xi, δi, Jiδi) be independent and
identically distributed copies of (X, δ, Jδ), i = 1, 2...n.

We now employ the counting process approach for the nonparametric estima-
tion of Hj(t) and Fj(t), j = 1, 2, ...k. Suppose that event of interest occur in for-
ward time; but the point of reference, τ is far away from the time span of interest.
Let Nj(t) be the number of observed events occurring in [t, τ) due to cause j. If
there are n individuals, define Nij(t) = I(Xi ≥ t, δi = 1, Ji = j) i = 1, 2, ...n, j =
1, 2, ..k, and Yi(t) = I(Xi ≤ t). Define the sigma field Ft = σ{Nij(s), N

c
ij(s); t ≤

s ≤ τ} where N c
ij(t) = I(Xi ≥ t, δi = 0, Ji = j) i = 1, 2, ...n, j = 1, 2, ..k. Ft

represents a filtration such that Ft ⊆ Fs whenever s ≤ t. We denote history at
an instant just after to time t by Ft+. The process Nij(.) is assumed to be a
counting process such that Nij(t) is measurable with respect to the sigma field
{Ft}0≤t≤τ . Let dNij(t) denote the increment of Nij(t) from the right to left of
the infinitesimal interval [t− dt, t].

For left censored data, under the assumption of independent censoring, we
have

P (Xi ∈ (t− dt, t), δi = 1, Ji = j|Ft+) = hj(t)dt if Xi ≤ t

= 0 if Xi > t (8)

which leads to the fact that,

E[dNij(t)|Ft+] = Yi(t)hj(t)dt (9)

where dNij(t) = I(Xi = t, δi = 1, Ji = j).

Denote Nj(t) =
n∑

i=1

Nij(t), and Y (t) =
n∑

i=1

I(Xi ≤ t). Now we consider the

counting process martingale,

Mj(t) = Nj(t)−Aj(t) (10)

where Aj(t) =
n∑

i=1

∫ t0
t

I(Xi ≤ u)hj(u)du and t0 = sup(t;F (t) < 1). We also have

E[Nj(t)|Ft+] = E[Aj(t)|Ft+] = Aj(t). (11)

and

E[dAj(s)|Fs+] = E[−I(X ≤ s)|Fs+] = dAj(s). (12)

From (10), (11), and (12), we have

E[dMj(t)|Ft+] = E[dNj(t)− dAj(t)|Ft+] = 0. (13)
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Because E[dMj(t)|Ft+] = 0, then for all t ≤ s

E[Mj(t)|Fs]−Mj(s) = E[Mj(t)−Mj(s)|Fs]

= E

[∫ s

t

dMj(u)|Fs

]
=

∫ s

t

E[E[dMj(u)|Fu+]|Fs] = 0.

From (10) we can write

dNj(t) = Y (t)hj(t)dt+ dMj(t). (14)

If Y (t) > 0, then we have,

dNj(t)

Y (t)
= hj(t)dt+

dMj(t)

Y (t)
. (15)

If dMj(t) is noise, then so is
dMj(t)
Y (t) , because the value of Y (t) at time t are known

at time t+. We have E[
dMj(t)
Y (t) |Ft+] = 0.

Let K(t) = I(Y (t) > 0). Integrating both sides of (15) we get∫ t0

t

K(u)dNj(u)

Y (u)
=

∫ t0

t

K(u)hj(u)du+

∫ t0

t

K(u)dMj(u)

Y (u)
. (16)

The integral
∫ t0
t

K(u)dMj(u)
Y (u) in (16) can be considered as random noise in our

estimate. The random quantity H∗
j (t) =

∫ t0
t

K(u)hj(u)du is essentially Hj(t)
itself in the range where we have data. Ignoring the statistical uncertainty in∫ t0
t

K(u)dMj(u)
Y (u) , Ĥj(t) is the nonparametric estimator of Hj(t) given by

Ĥj(t) =

∫ t0

t

K(u)dNj(u)

Y (u)
. (17)

From (17), it is easy to see that

Ĥj(t) =
∑

i:Xi>t

δij
ni

j = 1, 2, ...k

where ni, number of subjects failed just prior to time ti and δij = I(Ji = j)
j = 1, 2, ...k, i = 1, 2, ...n. The cumulative reversed hazard rate can be easily
estimated as

Ĥ(t) =
k∑

j=1

Ĥj(t) =

∫ t0

t

K(u)dN(u)

Y (u)
(18)

where N(t) =
k∑

j=1

Nj(t). The non-parametric estimator of Fj(t) is given by

F̂j(t) = −
∫ t

0

F̂ (u)dĤj(u) (19)
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where
F̂ (t) = exp[−Ĥ(t)]. (20)

It may be noted that (19) can be written as

F̂j(t) =
∑

i:Xi≤t

F̂ (ti)
δij
ni

j = 1, 2, ..., k.

In the absence of censoring, Fj(t) equals the fraction of subjects with Xi ≤ t and
Ji = j which is the empirical sub distribution function for cause j.

4. Asymptotic Properties

To study asymptotic properties of the nonparametric estimator of Hj(t), we con-

sider the identity (16). First we consider Ĥj(t)−H∗
j (t). From (16),

Ĥj(t)−H
∗
j (t) =

∫ t0

t

K(u)

Y (u)
[dNj(u)− Y (u)hj(u)du]

=

∫ t0

t

K(u)

Y (u)
dMj(u). (21)

From (21), we immediately obtain E(Ĥj(t)−H∗
j (t)) = 0 and

E(Ĥj(t)−Hj(t)) = E(H
∗
j (t))−Hj(t))

= −
∫ t0

t

P (Y (u) = 0)hj(u)du.

Note that Y (t)
n ,

Nj(t)
n are sample averages and that, for large n, the random vari-

ation in both should be small. Suppose that Y (t)
n converges to a deterministic

function p(t) for large n. The process
√
n(Ĥj(t)−H∗

j (t)) is asymptotically equal

to
√
(n)(Ĥj(t)−Hj(t)), since H∗

j (t) is very close to Hj(t) for large n.

Now we can prove the consistency of the estimator Hj(t).

Theorem 1. For fixed j, if t ∈ [0,∞) is such that

Y (t)
p−→ ∞ as n → ∞ (22)

then sup
s∈[t,t0]

∣∣∣Ĥj(s)−Hj(s)
∣∣∣ p−→ 0 as n → ∞ .

Proof.∣∣∣Ĥj(s)−Hj(s)
∣∣∣ ≤ ∣∣∣∣∫ t0

t

K(u)dNj(u)

Y (u)
−
∫ t0

t

K(u)hj(u)du

∣∣∣∣+ ∣∣∣∣∫ t0

t

I(Y (u) = 0)hj(u)du

∣∣∣∣
≤

∣∣∣∣∫ t0

t

K(u)dMj(u)

Y (u)

∣∣∣∣+ I(Y (t) = 0)Hj(t)
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Since (22) hold, I(Y (t) = 0)Hj(t)
p−→ 0. To prove sup

s∈[t,t0]

∣∣∣Ĥj(s)−Hj(s)
∣∣∣ p−→ 0 , it

is enough to show that sup
s∈[t,t0]

[∫ t0
t

K(u)dMj(u)

Y (u)

]2 p−→ 0.

Then by Lenglart’s inequality and Corollary 3.4.1 of Fleming and Harrington
(1991), we get for any ϵ, η > 0,

P

[
sup

s∈[t,t0]

[∫ t0

t

K(u)dMj(u)

Y (u)

]2
≥ ϵ

]
≤ η

ϵ
+ P

[∫ t0

t

K(u)hj(u)du

Y (u)
≥ η

]
. (23)

Condition (22) imply that the second term on the right hand side of (23) become

zero and it follows that sup
s∈[t,t0]

∣∣∣Ĥj(s)−Hj(s)
∣∣∣ p−→ 0. 2

Corollary 2. Under the assumptions of Theorem 4.1, sup
s∈[t,t0]

∣∣∣F̂ (s)− F (s)
∣∣∣ p−→

0.

Proof. Proof follows from Theorem 4.1 using the relation between Hj(t) and
F (t) given in (5). 2

Corollary 3. Under the assumptions of Theorem 4.1, for fixed j, sup
s∈[t,t0]

∣∣∣F̂j(s)− Fj(s)
∣∣∣ p−→

0.

Proof. Proof follows from Theorem 4.1 and Corollary 4.1 using the identity
connecting Hj(t), F (t) and Fj(t) given in (6). 2

Now we obtain the asymptotic variance of
√
n(dĤj(t)− dHj(t)) as

Asvar[
√
n(dĤj(t)− dHj(t))] = nV ar

[
dMj(t)

Y (t)
|Ft+

]
= n

⟨dMj(t)⟩
Y (t)2

= n
Y (t)hj(t)dt

Y (t)
2

=
hj(t)dt

Y (t)/n
, (24)

which converges to
hj(t)dt
p(t) for large n. Note that ⟨dMj(t)⟩ is the predictable

variation process of dMj(t). Thus, the asymptotic variance of
√
n(Ĥj(t)−Hj(t))

is obtained as,

σj
2(t) =

∫ t0

t

hj(u)du

p(u)
, (25)

which can be consistently estimated by

σ̂2
j (t) = n

∑
i:xi≥t

δij
ni

2
. (26)
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Theorem 4. For fixed t and j,
√
n(Ĥj(t)−Hj(t)) is asymptotically distributed

as normal with mean zero and variance σj
2(t).

Proof. From (21) we can write,

√
n(Ĥj(t)−H

∗
j (t)) =

1√
n

n∑
i=1

∫ t0

t

nK(u)

Y (u)
dMij(u).

Then by martingale central limit theorem, for fixed t and j,
√
n(Ĥj(t)−Hj(t)) is

asymptotically distributed as normal with mean zero and variance σj
2(t) (Fleming

and Harrington (1991), page 92-93). 2

Corollary 5. For fixed t,
√
n(Ĥ(t) − H(t)) has a limiting distribution as

normal with mean zero and variance σ2(t) =
∫ t0
t

h(u)du
p(u) .

Proof. Proof follows from Theorem 4.2. To find asymptotic variance of Ĥ(t),
consider dMi(t) = dNi(t) − Yi(t)dH(t), where dMi(t) =

∑
j

dMij(t), dNi(t) =∑
j

dNij(t) and dH(t) =
∑
j

dHj(t). The rest of the derivations follows directly

from the steps for finding the asymptotic variance of Ĥj(t). 2

Corollary 6. For fixed t,
√
n(F̂ (t) − F (t)) has a limiting distribution as

normal with mean zero and variance σ2∗(t) given in (27).

Proof. Since F̂ (t) = exp[−Ĥ(t)], the asymptotic normality of Ĥ(t) carries
over to the asymptotic normality of the estimator F̂ (t), by functional delta method
(Andersen et al. (1993)). Thus for fixed t,

√
n(F̂ (t)− F (t)) has a limiting distri-

bution as normal with mean zero. From Appendix B of Lawless (2003)(page 539),
the asymptotic variance σ2∗(t) is obtained as

σ2∗(t) = F 2(t)Asvar(Ĥ(t)). (27)

2

Corollary 7. For fixed t and j,
√
n(F̂j(t)− Fj(t)) is asymptotically normal

with mean zero and variance given in (29).

Proof. From (19) we have

√
n
(
F̂j(t)− Fj(t)

)
=

√
n

[∫ t

0

F̂ (u)dĤj(u)−
∫ t

0

F (u)dHj(u)

]
=

√
n

[∫ t

0

[
F̂ (u)

(
dĤj(u)− dHj(u)

)]
+

∫ t

0

(
F̂ (u)− F (u)

)
dĤj(u)

]
(28)

Since for fixed t and j,
√
n(dĤj(t)− dHj(t)) and

√
n(F̂ (t)−F (t)) are asymptoti-

cally normal with mean zero,
√
n(F̂j(t)−Fj(t)) is also asymptotically normal with

mean zero and variance σ2∗
j (t), which can be consistently estimated by
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v̂ar(F̂j(t)) =

t∫
0

(F̂ (u))2
dNj(u)

Y (u)
2 . (29)

2

5. Simulation Studies

Simulation studies are carried out to assess the performance of the proposed esti-
mators. Suppose there are two risks of failure. We generate random samples from
the following parametric family of sub-distribution functions proposed by Dewan
and Kulathinal (2007). Let,

F1(t) = P [T ≤ t, J = 1) = ϕF a(t) and F2(t) = P [T ≤ t, J = 2] = F (t)− ϕF a(t)
(30)

where 1 ≤ a ≤ 2, 0 ≤ ϕ ≤ 0.5 and F (t) is the distribution function of failure
time T . Note that ϕ = P [J = 1] and when a = 1, T and J are independent. For
the other choices of a, the two variables T and J are dependent. The restriction
on the parameters are imposed due to nonnegativity condition of cause specific
density function of T .

Let the failure time distribution be F (t) = 1−exp[−λt]. Censored observations
are generated from U(0, b) where b is chosen such a way that approximately 20% or
40% of the observations are censored. We simulated 1000 replications of random
samples of size n = 50, 100 and 250 by considering different combinations for values
of λ, a and ϕ. To study the effect of censoring, we consider three different censoring
scenarios viz no censoring , mild censoring (20% of the observations are censored)
and heavy censoring (40% of the observations are censored). We compute Ĥ1(t)
and Ĥ2(t) for each sample at different time points of t under different censoring
percentages.

Based on 1000 replications, we compute average absolute bias and average
mean squared error (MSE) of the estimates. Tables 1-4 provide average absolute
bias and average MSE of estimates for different censoring percentages. As the
results for various parametric values are comparable, we present the results for
a = 1.5, λ = 0.5 and 2, and ϕ = 0.2 and 0.4. From the tables, it may be noted
that both bias and MSE of the estimates decreases as sample size increases and
those slightly increase as censoring percentage increases. As lifetime increases,
both bias and MSE of the estimator of Hj(t), j = 1, 2 decreases. This may be
due to the fact that the influence of left censored observations will be more at the
left tail of observations. It is also noted that when ϕ takes small values, there is
a tendency of greater bias for Ĥ1(t) compared to Ĥ2(t). This could be due to the
fact that number of observed failures due to cause 1 is less in such contexts.

6. Data Analysis

The proposed method is applied to two real life data sets. The purpose here is
to illustrate a possible application of the proposed method rather than provide
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TABLE 1
Bias and MSE of the estimates of H1(t) and H2(t) for a = 1.5, ϕ = 0.2 and λ = 0.5

Uncensored 20%Censored 40%Censored

n t
Ĥ1(t) Ĥ2(t) Ĥ1(t) Ĥ2(t) Ĥ1(t) Ĥ2(t)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50

0.2 0.0098 0.0053 0.0082 0.0056 0.1923 0.1072 0.0849 0.0279 0.1983 0.1093 0.0898 0.0282
0.5 0.0082 0.0034 0.0081 0.0056 0.1825 0.1019 0.0557 0.0144 0.1915 0.1051 0.0653 0.0199
1 0.0068 0.0022 0.0079 0.0045 0.1366 0.0390 0.0372 0.0072 0.1383 0.0419 0.0510 0.0081

1.5 0.0032 0.0013 0.0073 0.0036 0.0935 0.0192 0.0274 0.0044 0.0982 0.0199 0.0341 0.0053
2 0.0031 0.0011 0.0064 0.0008 0.0683 0.0115 0.0198 0.0029 0.0941 0.0125 0.0262 0.0034

100

0.2 0.0074 0.0042 0.0073 0.0043 0.1841 0.1221 0.0792 0.0170 0.1882 0.1365 0.0818 0.0127
0.5 0.0071 0.0021 0.0074 0.0042 0.1388 0.0798 0.0537 0.0095 0.1426 0.1248 0.0609 0.0094
1 0.0065 0.0007 0.0053 0.0034 0.1241 0.0295 0.0331 0.0046 0.1376 0.0408 0.0413 0.0099

1.5 0.0021 0.0004 0.0031 0.0042 0.0832 0.0141 0.0314 0.0028 0.0919 0.0342 0.0324 0.0052
2 0.0020 0.0003 0.0003 0.0003 0.0671 0.0081 0.0142 0.0018 0.0606 0.0095 0.0266 0.0031

250

0.2 0.0073 0.0025 0.0052 0.0032 0.1814 0.1181 0.0740 0.0115 0.1827 0.1955 0.0744 0.0037
0.5 0.0069 0.0021 0.0049 0.0025 0.1331 0.0677 0.0458 0.0064 0.1418 0.0993 0.0566 0.0081
1 0.0065 0.0031 0.0048 0.0005 0.1215 0.0253 0.0301 0.0032 0.1235 0.0910 0.0441 0.0041

1.5 0.0003 0.0001 0.0022 0.0003 0.0767 0.0114 0.0237 0.0019 0.0835 0.0312 0.0334 0.0027
2 0.0002 0.0001 0.0002 0.0002 0.0583 0.0059 0.0139 0.0011 0.0615 0.0071 0.0241 0.0011
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TABLE 2
Bias and MSE of the estimates of H1(t) and H2(t) for a = 1.5, ϕ = 0.2 and λ = 2

Uncensored 20% censored 40%censored

n t
Ĥ1(t) Ĥ2(t) Ĥ1(t) Ĥ2(t) Ĥ1(t) Ĥ2(t)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50

0.2 0.0072 0.0023 0.0065 0.0044 0.1767 0.0576 0.0534 0.0179 0.1932 0.0432 0.0964 0.0232
0.5 0.0061 0.0020 0.0057 0.0023 0.0697 0.0121 0.0238 0.0032 0.0779 0.0111 0.0314 0.0112
1 0.0052 0.0021 0.0041 0.0007 0.0212 0.0022 0.0083 0.0008 0.0432 0.0032 0.0142 0.0072

1.5 0.0035 0.0005 0.0013 0.0003 0.0057 0.0006 0.0018 0.0003 0.0214 0.0021 0.0098 0.0014
2 0.0034 0.0002 0.0033 0.0001 0.0021 0.0002 0.0013 0.0001 0.0096 0.0002 0.0054 0.0004

100

0.2 0.0057 0.0032 0.0043 0.0041 0.1673 0.0410 0.0532 0.0065 0.1732 0.0114 0.0662 0.072
0.5 0.0051 0.0029 0.0041 0.0015 0.0656 0.0079 0.0216 0.0019 0.0745 0.0092 0.0412 0.0054
1 0.0033 0.0007 0.0034 0.0003 0.0184 0.0013 0.0078 0.0004 0.0413 0.0062 0.0311 0.0032

1.5 0.0022 0.0004 0.0011 0.0002 0.0048 0.0004 0.0014 0.0002 0.0102 0.0041 0.0092 0.0011
2 0.0018 0.0001 0.0012 0.0001 0.0021 0.0001 0.0008 0.0001 0.0092 0.0031 0.0034 0.0004

250

0.2 0.0041 0.0013 0.0039 0.0012 0.1610 0.0340 0.0516 0.0042 0.1669 0.0445 0.0412 0.0018
0.5 0.0033 0.0009 0.0012 0.0006 0.0571 0.0059 0.0215 0.0011 0.0789 0.0092 0.0112 0.0051
1 0.0021 0.0004 0.0008 0.0002 0.0107 0.0008 0.0074 0.0002 0.0532 0.0052 0.0099 0.0015

1.5 0.0012 0.0003 0.0007 0.0002 0.0035 0.0002 0.0011 0.0001 0.0114 0.0031 0.0032 0.0006
2 0.0015 0.0001 0.0007 0.0001 0.0016 0.0001 0.0009 0.0001 0.0094 0.0003 0.0031 0.0002
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TABLE 3
Bias and MSE of the estimates of H1(t) and H2(t) for a = 1.5, ϕ = 0.4 and λ = 0.5

Uncensored 20% Censored 40% Censored

n t
Ĥ1(t) Ĥ2(t) Ĥ1(t) Ĥ2(t) Ĥ1(t) Ĥ2(t)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50

0.2 0.0098 0.0072 0.0097 0.0089 0.2430 0.1813 0.1936 0.1063 0.2486 0.1891 0.1962 0.1171
0.5 0.0084 0.0052 0.0079 0.0082 0.1305 0.0508 0.1488 0.0535 0.1407 0.0539 0.1493 0.0723
1 0.0064 0.0032 0.0091 0.0053 0.0707 0.0171 0.1032 0.0257 0.1009 0.0174 0.1094 0.0354

1.5 0.0047 0.0031 0.0058 0.0046 0.0447 0.0076 0.0771 0.0155 0.0588 0.0092 0.0832 0.0167
2 0.0032 0.0015 0.0052 0.0035 0.0302 0.0043 0.0555 0.0095 0.0393 0.0054 0.0574 0.0094

100

0.2 0.0085 0.0066 0.0096 0.0064 0.2258 0.1249 0.1112 0.0716 0.2264 0.1619 0.1475 0.0809
0.5 0.0081 0.0046 0.0075 0.0056 0.1263 0.0369 0.1276 0.0383 0.1361 0.0382 0.1294 0.0715
1 0.0061 0.0032 0.0062 0.0032 0.0704 0.0108 0.0916 0.0194 0.0982 0.0285 0.0973 0.0432

1.5 0.0034 0.0013 0.0059 0.0028 0.0439 0.0048 0.0632 0.0116 0.0515 0.0082 0.0665 0.0097
2 0.0012 0.0009 0.0003 0.0002 0.0212 0.0025 0.0432 0.0071 0.0312 0.0032 0.0532 0.0032

250

0.2 0.0102 0.0093 0.0033 0.0009 0.2213 0.0897 0.1072 0.0537 0.2221 0.0912 0.1289 0.0794
0.5 0.0094 0.0034 0.0029 0.0007 0.1201 0.0259 0.0985 0.0303 0.1314 0.0313 0.0114 0.0652
1 0.0073 0.0009 0.0014 0.0007 0.0645 0.0076 0.0820 0.0153 0.0651 0.0094 0.0886 0.0173

1.5 0.0053 0.0007 0.0001 0.0003 0.0353 0.0031 0.0627 0.0087 0.0494 0.0037 0.0713 0.0092
2 0.0032 0.0003 0.0001 0.0001 0.0203 0.0015 0.0329 0.0051 0.0324 0.0022 0.0399 0.0032
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TABLE 4
Bias and MSE of the estimates of H1(t) and H2(t) for a = 1.5, ϕ = 0.4 and λ = 2

Uncensored 20% Censored 40% Censored

n t
Ĥ1(t) Ĥ2(t) Ĥ1(t) Ĥ2(t) Ĥ1(t) Ĥ2(t)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50

0.2 0.0095 0.0049 0.0077 0.0066 0.0951 0.0235 0.1398 0.0374 0.1086 0.0271 0.1440 0.0193
0.5 0.0093 0.0012 0.0062 0.0054 0.0302 0.0042 0.0631 0.0102 0.0966 0.0045 0.0680 0.0141
1 0.0083 0.0011 0.0057 0.0032 0.0083 0.0007 0.0240 0.0022 0.0149 0.0096 0.0272 0.0038

1.5 0.0007 0.0002 0.0039 0.0015 0.0029 0.0002 0.0083 0.0006 0.0091 0.0004 0.0098 0.0009
2 0.0001 0.0002 0.0011 0.0009 0.0001 0.0001 0.0031 0.0002 0.0041 0.0004 0.0029 0.0002

100

0.2 0.0062 0.0019 0.0075 0.0041 0.0949 0.0159 0.1246 0.0244 0.1065 0.0193 0.1313 0.0254
0.5 0.0061 0.0014 0.0064 0.0026 0.0300 0.0024 0.0615 0.0069 0.0404 0.0023 0.0677 0.0073
1 0.0014 0.0009 0.0041 0.0016 0.0081 0.0004 0.0212 0.0013 0.0108 0.0051 0.0394 0.0012

1.5 0.0005 0.0007 0.0042 0.0011 0.0028 0.0002 0.0080 0.0004 0.0023 0.0013 0.0093 0.0007
2 0.0003 0.0005 0.0023 0.0015 0.0009 0.0001 0.0028 0.0001 0.0003 0.0001 0.0023 0.0005

250

0.2 0.0024 0.0009 0.0033 0.0009 0.0891 0.0121 0.1299 0.0205 0.0900 0.0137 0.1048 0.0238
0.5 0.0014 0.0006 0.0008 0.0007 0.0207 0.0016 0.0614 0.0050 0.0394 0.0058 0.0633 0.0057
1 0.0011 0.0003 0.0003 0.0002 0.0080 0.0003 0.0194 0.0007 0.0107 0.0012 0.0199 0.0021

1.5 0.0003 0.0002 0.0002 0.0001 0.0022 0.0001 0.0065 0.0002 0.0039 0.0009 0.0072 0.0009
2 0.0002 0.0001 0.0002 0.0001 0.0012 0.0001 0.0023 0.0001 0.0015 0.0006 0.0022 0.0003
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Figure 1 – Plot of estimate of Fj(t); j = 1, 2 for mice mortality data

a definite analysis of the data. The first data give the survival times of mice,
kept in a conventional germ-free environment, all of which were exposed to a fixed
dose of radiation at an age of 5 to 6 weeks (Hoel (1972)). There are 3 causes
of death viz thymic lymphoma (cause 1), reticulam cell sacroma (cause 2), and
other causes (cause 3). This data were analysed by different researchers in various
contexts (See Lawless (2003)). We treat other failures due to cause 3 as left
censored observations. The estimates of Hj(t) and Fj(t) j = 1, 2, are computed
at different time points. For j = 1, 2 the estimates of Hj(t) and its standard error

(written in parenthesis) are given in Table 5. Plots of F̂j(t), j = 1, 2 along with
95% confidence limits are given in Figure 1. From Figure 1 it can be seen that
F̂1(t) predominates over F̂2(t), which means that most of the initial failures are
due to cause 1.

Now we consider the Australian twin data given in Duffy et al. (1990) which
consists of information on the age at which appendectomy of monozygotic (MZ)
and dizygotic (DZ) twins. The data are given in Table 6. Individuals having age
less than 11 are considered as left censored observations. The data were analyzed
in various contexts by different researchers (See Kalbfleisch and Prentice (2002),
and Sankaran and Gleeja (2011)). We consider only the information on age of
twin one from each pair. The types MZ male, MZ female, DZ male and DZ female
pairs are considered as four different causes. Now the data are in the form of
left censored lifetime data with multiple causes. It is therefore, more appropriate
to model the data using cause specific reversed hazard rates, by including left
censored observations.

The estimates of Hj(t) and Fj(t), j = 1, ...4 are computed. The plots of esti-
mates of cumulative cause specific reversed hazard rates and cumulative incidence
functions along with 95% confidence limits are given in Figures 2 and 3 respec-
tively. From Figure 3, it follows that the chance of appendectomy for DZ female
is high compared to other types.
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TABLE 5
Estimate of Hj(t)

Time Ĥ1(t) Ĥ2(t)

158
1.8832 0.4801
(0.3261) (0.0703)

192
1.3828 0.4801
(0.1987) (0.0703)

212
0.8575 0.4801
(0.1528) (0.0703)

317
0.2567 0.4801
(0.0602) (0.0703)

430
0.1003 0.4214
(0.0339) (0.0569)

529
0.0325 0.3818
(0.0194) (0.0506)

586
0.009 0.3033
(0.01) (0.0451)

747
0 0.0519
(0) (0.0196)

821
0 0.012
(0) (0.0092)

986
0 0.0057
(0) (0.0065)
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Figure 2 – Plot of estimate of Hj(t); j = 1, 2, 3, 4 for Australian twin data
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Figure 3 – Plot of estimate of Fj(t); j = 1, 2, 3, 4 for Australian twin data
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TABLE 6
Australian twin data

Age at onset(T ) Censoring(δ) Cause(J)

24 1 3
34 1 3
26 1 2
21 1 1
11 0 3
21 1 3
11 0 1
12 1 3
11 0 3
18 1 2
11 0 3
11 0 3
11 0 4
16 1 4
26 1 3
17 1 3
19 1 1
22 1 3
15 1 3
27 1 2
11 1 2
11 0 2
42 1 3
22 1 3
22 1 1
12 1 3
11 0 1

Age at onset (T ) Censoring(δ) Cause(J)

25 1 3
22 1 3
12 1 4
13 1 3
16 1 4
11 0 4
12 1 1
13 1 1
11 0 1
20 1 2
11 0 2
17 1 2
11 0 3
15 1 3
11 0 3
21 1 3
17 1 3
11 0 4
17 1 1
20 1 3
11 0 3
12 1 3
24 1 3
47 1 3
22 1 3
26 1 3
35 1 3
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7. Conclusion

In the present paper, we have introduced a new procedure using cause specific
reversed hazard rates for modeling and analysis of left censored lifetime data with
multiple causes. We proposed a non parametric estimator for the cumulative cause
specific reversed hazard rates. The asymptotic properties of the estimators has
been established using counting process method. Simulation studies establishes
that the proposed procedure is efficient. The proposed method was applied to
two real life data sets. Nonparametric tests for equality of cause specific hazard
rates will be useful for comparing several risks. The work in this direction will be
reported elsewhere.
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SUMMARY

Modeling lifetime data with multiple causes using cause specific reversed hazard rates

In this paper we introduce and study cause specific reversed hazard rates in the context of
left censored lifetime data with multiple causes. Nonparametric inference procedure for
left censored lifetime data with multiple causes using cause specific reversed hazard rate
is discussed. Asymptotic properties of the estimators are studied. Simulation studies are
conducted to assess the efficiency of the estimators. Further, the proposed method is ap-
plied to mice mortality data (Hoel (1972)) and Australian twin data (Duffy et al. (1990)).

Keywords: Cause specific reversed hazard rates; Cumulative incidence function; Non-
parametric estimation




