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1. An overview on nonparametric methodology

In recent years, due to the increasing availability of (big) data and the consequent
need to solve more and more complex multivariate problems, there is a growing
interest in permutation testing methods.
Actually, permutation tests are essentially exact in a nonparametric conditional
framework, where conditioning is on the pooled observed data set, which is gen-
erally a set of sufficient statistics in the null hypothesis.

Many complex multivariate problems are difficult to handle outside the condi-
tional framework and in particular outside the nonparametric combination (NPC)
of dependent permutation tests method. We present a overview of NPC method-
ology and develop a SAS code for the method described allowing to solve multi-
variate multi-sample problems. As pointed out in Pesarin and Salmaso (2010b),
despite in the literature permutation tests are mostly derived by means of heuristic
arguments (Edgington and Onghena, 2007; Good, 2005), their natural theoretical
background must be referred to the principles of conditional inference (Birnbaum,
1962; Edwards, 1972). Since within this framework it can be proved that permuta-
tion tests are provided with suitable theoretical properties (Pesarin and Salmaso,
2010b, 2012), whenever permutation tests are correctly applicable, their results
may be extended, at least in a weak sense, to population inferences (Pesarin,
2002).
It is worth noting that within a parametric framework the extension from samples
to populations is possible only when the data set is randomly selected by well-
designed sampling procedures on well-defined population distributions, provided
that their nuisance parameters are completely removable (Pesarin, 2002). When
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these conditions fail, especially if selection-bias procedures are used for data collec-
tion processes, in general most of the parametric inferential extensions are wrong
or misleading. On the contrary, the permutation-based inferential conclusions may
be always extended to the reference population even in case of selection-bias sam-
pling (Pesarin, 2002).
Parametric testing methods usually underlying a modelling approach require a set
of stringent and often difficult to justify assumptions (Pesarin, 2002), especially
when managing real data. Without justification, researchers often assume multi-
variate normality, random sampling from a population (even in cases of selection-
bias), data homoscedasticity also in the alternative (by additive fixed effects),
missing and/or censored data independent of treatments, random effects inde-
pendent of units and/or of errors (the natural deviates), etc., so that consequent
inferences can hardly have a real credibility.
On the contrary, nonparametric testing approaches are based on weaker and more
realistic foundations, are intrinsically robust; and so related inferences are more
credible and easier to interpret.
Roughly speaking, with the term nonparametric test we usually refer to an hy-
pothesis testing procedure that has certainly desirable properties that hold under
relative mild assumptions regarding the underlying populations from which the
data are obtained (Hollander et al., 2013). Often nonparametric tests are described
also as distribution-free methods, meaning that they do not rely on assumptions
that the data are drawn from a given probability distribution. Permutation tests
are a kind of nonparametric conditional procedures that have the nice property of
being exact for whatever, even very small, finite sample size.

The paper is organized as follows. In Section 2 we introduce notation and as-
sumptions underlying NPCmethodology for the general case of One-way MANOVA
design. Section 3 provides a detailed description of the NPC algorithm and Sec-
tion 4 is devoted to the choice of proper combining functions. In Section 5 SAS
macros are illustrated and in Section 6 applications are shown. A brief discussion
is provided in 7.

2. One-way MANOVA design: multivariate C-sample problem

In the following we introduce notation and main assumptions of NPC methodology
referring to the general case of a one-way MANOVA design.

(i) Let X = {Xj , j = 1, . . . , C} = {Xji, i = 1, . . . , nj , j = 1, . . . , C} = {Xhji,
i = 1, . . . , nj , j = 1, . . . , C, h = 1, . . . , V } be a V -dimensional set of data.
The symbol X indicates both the data set and V -dimensional response.
The response X takes its values on the V -dimensional sample space X , for
which a σ-algebra A and a (possibly not specified) nonparametric family
P of non-degenerate distributions are assumed to exist. The data set X
consists of C ≥ 2 samples or groups of size nj ≥ 2, with n =

∑
j nj ; the

groups are presumed to be related to C levels of a treatment and the data
Xj are supposed i.i.d. with distributions Pj ∈ P, j = 1, . . . , C. To simplify
notation, the unit-by-unit representation of data X = {X(i), i = 1, . . . , n;
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n1, . . . , nC} is used, according to which the first n1 data vectors belong to
the first group, the next n2 to the second, and so on.

(ii) The null hypothesis refers to equality of multivariate distributions of re-
sponses on C groups:

H0 : {P1 = . . . = PC} =
{
X1

d
= . . .

d
= XC

}
.

Assume that we are interested in a set of side-assumptions such that H0 may
be properly broken down into a finite set of sub-hypothesesH0i , i = 1, . . . , k,
each appropriate for a partial aspect of interest. Therefore, H0 is true if all

the H0i are jointly true; and so it may be written as
{∩k

i=1H0i

}
. In this

sense, H0 is also called the global or overall null hypothesis. Actually we may
have many sub-hypotheses as the number V of responses, but this is not
necessarily true. It must be noticed that H0 implies that the V -dimensional
data vectors in X are exchangeable with respect to C groups.

The alternative hypothesis, instead, states that at least one of the null sub-
hypotheses H0i is not true. Hence, the alternative may be represented by
the union of k sub-alternatives,

H1 :

{
k∪
i=1

H1i

}
,

stating that H1 is true when at least one sub-alternative is true. In this
context, H1 is called the global or overall alternative.

(iii) Let T = T(X) be a k -dimensional vector of test statistics, in which the
ith component Ti = Ti(X), i = 1, . . . , k, represents the non-degenerate i the
partial test which is assumed to be appropriate for testing sub-hypothesis
H0i against H1i. Without loss of generality, in the NPC context all partial
tests are assumed to be marginally unbiased, consistent and significant for
large values.

2.1. Condition for proper inferential solutions

Partial tests must satisfy the following conditions.

1. All permutation partial tests Ti are marginally unbiased and significant for
large values, so that they are both conditionally and unconditionally stochas-
tically larger in H1 than in H0.

2. All permutation partial tests Ti are marginally consistent, i.e. as sample
sizes tend to the infinity Pr{Ti ≥ Tiα|H1i} → 1, ∀α > 0, where Tiα, which
is assumed to be finite, is the critical value of Ti at level α.
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Actually, the NPC methodology relies on a Conditional Monte Carlo (CMC) pro-
cedure. Details on the procedure will be presented in Section 3. However, it must
be emphasized that, when conditions (i)–(iii) defined in Section 2 are jointly sat-
isfied, the NPC of dependent tests leads to exact solutions.
When these conditions are not completely satisfied, solutions, approximations and
related conclusions may be biased and not reliable.

3. Nonparametric Combination algorithm

The NPC methodology is based on:

a) on a decomposition of the global null hypothesis into k, k > 1, sub-hypotheses,
where for each sub-hypothesis, there exists a suitable partial permutation
test statistic;

b) on a simulation procedure, conditional on the set of observed data, which
provides an estimate of the null multivariate permutation distribution of the
whole set of statistics;

c) on a combination of the partial simulation results into a second-order statistic
whose null permutation distribution is estimated by using the same simula-
tion results of the first step.

NPC methodology is essentially a two-stage algorithm allowing to obtain a condi-
tional Monte Carlo (CMC) estimate of the permutation distribution of combined
tests. Actually, with reference to point a), the k-dimensional hypothesis test prob-
lem is processed in two phases: firstly, we define a suitable set of k, with k ≥ 1,
unidimensional permutation tests called partial tests. Each partial test examines
the marginal contribution of any single response variable in the comparison made
between several treatment groups. The second phase is the nonparametric combi-
nation of dependent tests in one second order combined test, which is suitable for
testing possible global differences between the multivariate distributions of two or
more groups. When there is a stratification variable, we expect two combination
levels: the partial tests combination in s second order combined tests, s ≥ 1,
within the i-th stratum, i = 1, . . . , s, and a further combination of the tests in a
single third order combined test.

The first phase concerns with the estimate of the k-variate distribution of T,
while the second finds the estimate of permutation distribution of combined test
T ′′
ψ by using the same CMC results of the first phase. Once the combining function
ψ has been chosen, the notation T ′′

ψ is replaced by T ′′.
In this multivariate setting, simulations from the permutation sample space

X/X are carried out by means of a CMC method.

� The first phase of a procedure estimates the distribution of T including the
following steps:

a) Calculate the vector of the observed values of tests T : To = T(X).
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b) Consider a random permutation X∗ ∈ X/X of X and the values of
vector statistics T∗ = T(X

∗
). Actually, in multivariate situations the

permutation X∗ is obtained by first considering a random permutation
(u∗1, . . . , u

∗
n) of (1, . . . , n) and then by assignment of related individ-

ual data vectors to the proper group; thus, by using the unit-by-unit
representation, X∗ = {X(u∗i ) = [X1(u

∗
i ), . . . , XV (u

∗
i )] , i = 1, . . . , n;

n1, . . . , nC}.
c) Carry out B independent repetitions of step (S.bk). The set of CMC

results {T∗
b , b = 1, . . . , B} is thus a random sampling from the permu-

tation k-variate distribution of vector test statistics T.

d) The k-variate EDF F̂ (t|X/X) =
[
1
2 +

∑
b I(T

∗
b ≤ t)

]
/(B + 1), ∀t ∈Rk,

gives a consistent estimate of the corresponding k-dimensional permu-
tation CDF F (t|X/X) of T. Moreover, the ESFs

L̂i(t|X/X) =

[
1

2
+
∑

b
I(T ∗

ib ≥ t)

]
/(B + 1), i = 1, . . . , k,

give consistent estimates ∀z ∈ R1 of the k marginal permutation SLF
Li(z|X/X) = Pr{T ∗

i ≥ t|X/X}. Thus L̂i(T
o
i |X/X) = λ̂i gives a consis-

tent estimate of the marginal p-value λi = Pr{T ∗
i ≥ T oi |X/X}, relative

to test Ti.

� The second phase of the algorithm for simulating a procedure for NPC should
include the following steps:

a) The k observed p-values are estimated on the dataX by λ̂i = L̂i(T
o
i |X/X),

where T oi = Ti(X), i = 1, . . . , k, represent the observed values of partial

tests and L̂i is the ith marginal ESF, the latter being jointly estimated
by the CMC method on the data set X, in accordance with step S.dk
above.

b) The combined observed value of the second-order test is evaluated
through the same CMC results as the first phase and is given by:

T ′′o = ψ(λ̂1, . . . , λ̂k).

c) The bth combined value of vector statistics (step (S.dk)) is then calcu-
lated by

T ′′∗
b = ψ(L̂∗

1b, . . . , L̂
∗
kb),

where L̂∗
ib = L̂i(T

∗
ib|X/X), i = 1, . . . , k, b = 1, . . . , B.

d) Hence, the p-value of the combined test T ′′ is estimated as

λ̂′′ψ =
∑

b
I(T ′′∗

b ≥ T ′′o)/B.

e) If λ̂′′ψ ≤ α, the global null hypothesis H0 is rejected at significance level
α.
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Of course, if proper routines for exact calculations were available, then the
multivariate distribution F (t|X/X), the partial p-values (λ1, . . . , λk), the dis-
tribution of the combined test Fψ(t|X/X), and the combined p-value λ′′ψ can
be evaluated exactly.

4. Choosing sensible combining functions

For the sake of simplicity, here we focus only on combining functions applied to p
-values associated with partial tests. It may be shown that partial tests are per-
mutationally equivalent to their p-values, as a direct consequence of the monotonic
non-increasing behaviour with respect to t of significance level functions.

Thus, the NPC in one second-order test

T ′′ = ψ(λ1, . . . , λk)

is achieved by a continuous, non-increasing, univariate, measurable and non-
degenerate real function ψ : (0, 1)k → R1.

Note that the continuity of ψ is required because it has to be defined irre-
spective of the cardinality of (Λ1, . . . ,Λk). Moreover, the measurability property
of ψ is required because it is used as a test statistic which then must induce a
probability distribution on which inferential conclusions are necessarily based.

In order to be suitable for test combination (see Pesarin, 1992, 2001; see also
Goutis et al., 1996), all combining functions ψ must satisfy at least the following
reasonable properties:

(P.1) A combining function ψ must be non-increasing in each argument: ψ(.., λi, ..)
≥ ψ(.., λ′i, ..) if λi < λ′i, i ∈ {1, . . . , k}. Also, it is generally desirable that
ψ is symmetric, i.e. invariant with respect to rearrangements of the en-
try arguments: ψ(λu1 , . . . , λuk

) = ψ(λ1, . . . , λk) where (u1, . . . , uk) is any
permutation of (1, . . . , k).

(P.2) Every combining function ψ must attain its supremum value ψ̄, possibly not
finite, even when only one argument attains zero: ψ(.., λi, ..) → ψ̄ if λi → 0,
i ∈ {1, . . . , k}.

(P.3) ∀α > 0, the critical value T ′′
α of every ψ is assumed to be finite and strictly

smaller than ψ̄: T ′′
α < ψ̄ .

Actually property (P.1) is associated with the notion that large values are
significant and related to the unbiasedness of combined tests. Instead, properties
(P.2) and (P.3) are related to consistency.

4.1. Some Useful Combining Functions

Here we present some of the most used combining functions. Further details on
the combination of one-sided independent tests may be found in Birnbaum, 1954;
Oosterhoff, 1969; and Folks, 1984.
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(a) The Fisher omnibus combining function is based on the statistic

T ′′
F = −2 ·

∑
i
log(λi).

If the k partial test statistics are independent and continuous, then in the null
hypothesis T ′′

F follows a central χ2 distribution with 2k degrees of freedom.
In practice, T ′′

F is the most popular combining function.

(b) The Liptak combining function is based on the statistic

T ′′
L =

∑
i
Φ−1(1− λi),

where Φ is the standard normal CDF. If the k partial tests were independent
and continuous, then in the null hypothesis T ′′

L would be normally distributed
with mean 0 and variance k (see Liptak, 1958).

An alternative version of the Liptak function considers logistic transforma-
tions of p-values: T ′′

P =
∑
i log[(1− λi)/λi].

(c) The Tippett combining function is given by

T ′′
T = max1≤i≤k(1− λi),

significant for large values (the equivalent form T ′′
T = min(λi) is significant

for small values). Its null distribution, if the k tests are independent and
continuous, behaves according to the largest (smallest) of k random values
from the uniform distribution in the open interval (0, 1). Tippett’s T ′′

T was
the first combining function reported in the literature.

5. The algorithm and its SAS implementation

To perform the ANOVA permutation test, according to the NPC test theory (Pe-
sarin and Salmaso, 2010b), the SAS macro NPC Csamples npc(dati, var byn,

var cat, var con, dom byn, dom con, weights, clas, nsample, strato, paired,

unit, missing) can be used.
The input parameters of the procedure are:

• dati: name of the data set;

• var byn: list of binary variables;

• var cat: list of categorical, non-binary variables;

• var con: list of continuous variables;

• dom byn: specify NOTEQ;

• dom con: specify NOTEQ;
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• weights: list of weights for the variables, firstly specify weights for binary
variables and then weights for categorical variables and continuous variables;

• clas: variable defining the two groups (alphanumeric variable);

• nsample: number of conditional resamplings;

• strato: variable defining strata (alphanumeric variable);

• paired: paired data (yes/no);

• unit: variable identifying paired observations;

• missing: presence of missing values (yes/no).

6. Applications

6.1. Wines data: evaluating chemical composition of wines

We present a simple C-sample problem, where free and bound monoterpene and
C[13]-norisoprenoid concentrations of Weisser Riesling wines of different vintages
and from different regions in South Africa, Germany and Northern Italy were
compared (Flury, 1997; Marais et al., 1992). There are a total of nine South
African wines, seven German wines (all from Pfalz) and ten from Northern Italy
(from both Trentino Alto Adige and Friuli).
Formalizing the testing problem, as shown in Section 2, here we deal with a 15-
dimensional data set by X = {Xj , j = 1, 2, 3} = {Xji, i = 1, . . . , nj , j = 1, 2, 3} =

{Xhji, i = 1, . . . , nj , j = 1, 2, 3, h = 1, . . . , 15}. The hypotheses are H0 : {X1
d
=

X2
d
= X3} against H1 : {at least one equality is not true}.
According to the CMC procedure, iterations are now done from the pooled

data set X = X1

⊎
X2

⊎
X3, which is still a set of sufficient statistics for the

problem in H0.
A suitable test statistic based on deviance among sampling means is

T ∗
hC =

C∑
j=1

(X̄∗
hj − X̄h•)

2 · nj , h = 1, . . . , V

where X̄∗
hj =

∑
i(X

∗
hji)/nj and X̄h• =

∑
j X̄hj · nj/n. Note that X̄h• is a permu-

tationally invariant quantity, being based on the sum of all observed data. Hence,
statistic T ∗

hC is permutationally equivalent to T ∗
h =

∑C
j=1 nj · (X̄∗

hj)
2

Results from NPC analysis highlights how globally the three cultures gives
wines that are different in terms of their chemical composition, and in particular
in terms of 6 out 15 collected variables (see Table 1).

6.2. A Two-Sample Epidemiological Survey: Problem Description

A prospective multicentre epidemiological study known as SETIG involving the
surveillance of treatments in severe infections (Arboretti et al., 2000) took place
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Figure 1 – Standard representation of Wines data through Fisher’s Linear Discriminant
Analysis. Scatterplot of the first two linear discriminant (LD) functions, showing that
Weisser Riesling wines from three countries are well separated.

TABLE 1
Raw and adjusted p-values from NPC analysis.

p-value p-FWE
X1 0.6809 0.9892
X2 0.0078 0.0772
X3 0.9978 1.0000
X4 0.7705 0.9912
X5 0.0472 0.3327
X6 0.2596 0.8140
X7 0.1102 0.5585
X8 0.2767 0.8140
X9 0.9920 1.0000
X10 0.8918 0.9988
X11 0.0382 0.2963
X12 0.0020 0.0234
X13 0.1092 0.5585
X14 0.0006 0.0078
X15 0.0008 0.0100

Global 0.0078
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between 1995 and 1997. Its objective was to compare different diagnostic and
therapeutic approaches. The observational nature of the study requires particular
care in the analysis because the incorrect use of observational data for evalu-
ating therapy causal effects can produce biased treatment comparisons. In the
SETIG survey, the hypothesis of interest concerns the comparative effect of the
specific therapeutic approach versus an empirical approach with respect to sev-
eral outcomes which constitute the pattern of interest, where ‘specific therapeutic
approach’ means that an antibiotic specific to the particular infection is used,
and ‘empirical approach’ means that a generic wide-spectrum antibiotic is used.
The causal pattern of coherent alternatives is the following: compared to patients
treated with the empirical therapy, patients receiving the specific therapy should
show a reduced death rate, a shorter duration of treatment, a shorter length of
stay in hospital, and a higher rate of infection resolutions. It is clear that in
statistical terms such a pattern can be reduced to a two-sample multivariate com-
parison with restricted alternatives and mixed variables with a possible presence
of missing values.

The analysis was carried out on 334 patients with sepsis, 154 of whom were
treated with empirical therapy and 180 with a specific therapy. The 334 pa-
tients were at first stratified into four homogenous strata with respect to possible
confounding factors (age, number of concomitant factors, presence of diabetes,
presence of surgical intervention, presence of a tumour, type of unit where pa-
tient is admitted, geographic area, etc.). For the construction of the four strata
s = 1, 2, 3, 4, a stratification by propensity score was used in accordance with
Rosenbaum and Rubin (1983). The propensity score is defined as the probability
of being assigned to a particular treatment, given a vector of concomitant vari-
ables (i.e. the confounding factors). This score, which may also have a prognostic
interpretation, summarizes all the information required to balance the distribu-
tion of confounding variables between treatment groups, in order to have strata
with homogeneous units. In this study, the propensity score was evaluated by a
logistic model (see Arboretti et al., 1999; Arboretti et al., 2000). Four variables
were taken into consideration: death (D) and clinical resolution (R), both binary
variables with 1 denoting ‘yes’ and 0 ‘no’; duration of treatment (U), a binary
variable with 1 denoting ‘more than 15 days’ and 0 ‘15 days or less’; length of
stay (L), a positive integer variable. In the analysis, group 1 contains all sub-
jects treated with a specific therapy and group 2 those treated with an empirical
therapy. The multidimensional system of overall hypotheses defining the causal
pattern can be written, and correspondingly analysed, either within-strata with
respect to variables, as

H0 :

{∩
s

[
(D1s

d
= D2s)

∩
(R1s

d
= R2s)

∩
(U1s

d
= U2s)

∩
(L1s

d
= L2s)

]}
,

against

H1 :

{∪
s

[
(D1s

d
> D2s)

∪
(R1s

d
< R2s)

∪
(U1s

d
> U2s)

∪
(L1s

d
> L2s)

]}
,
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or within-variables with respect to strata, as

H0 :
{[∩

s(D1s
d
= D2s)

]∩[∩
s(R1s

d
= R2s)

]
∩ [∩

s(U1s
d
= U2s)

]∩[∩
s(L1s

d
= L2s)

]}
against

H1 :

{[∪
s(D1s

d
> D2s)

]∪[∪
s(R1s

d
< R2s)

]
∪ [∪

s(U1s

d
> U2s)

]∪[∪
s(L1s

d
> L2s)

]}
.

We note that in each stratum this problem presents three binary variables and
one quantitative; moreover, all sub-alternatives are one-sided, three in a positive
direction and one negative. Variables U and L present some missing values which
may be missing not completely at random. However, in this respect, our analysis
is performed conditionally since we are mainly interested in the direct effects of
two treatments.

As regards the analysis, this is carried out firstly within each stratum and
variable and then between strata or between variables. As variables are either
binary or quantitative and there are missing values, all partial tests have the form

T ∗
hs = φh

(∑
i

X∗
h1si · γ∗h1s −

∑
i

X∗
h2si · γ∗h2s

)
,

s = 1, . . . , 4, h = D,R,U,L, where γ∗hjs = (ν∗hks/ν
∗
hjs), k ̸= j = 1, 2, and the

function φh(·) is −(·) or +(·) according to whether the hth sub-alternative is ‘
d
<’

or ‘
d
>’.

6.3. Analysis of SETIG Data Using SAS

In this section we briefly revise the analysis of the SETIG data using the software
package SAS 9.0. In order to carry out the analysis in SAS, the NPC 2samples
macro can be used along with the PROC MULTTEST to compute the closed
testing procedure within strata, using the exact permutation minP tests (Westfall
and Young, 1993). The main instructions to run the macro are:

filename mac_npc ’...\npc.sas’;

dom_byn=great great less, dom_con=great,

clas=group, nsample=10000, strato=strata, paired=no, missing=yes);

which requires the following input parameters: data = name of the data set;
var byn = list of binary variables; var cat = list of categorical variables, non-
binary; var con = list of continuous variables; dom byn = list of directional
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marginal sub-hypotheses for binary variables: if XAu < XBu, specify LESS; if
XAu > XBu, specify GREAT; if XAu ̸= XBu, specify NOTEQ; dom con = list of
directional marginal sub-hypothesis for continuous variables, see above; weights
= list of weights for the variables, firstly specify weights for binary variables,
then weights for categorical variables and for continuous variables; clas = variable
defining the two groups (character variable); nsample = number of conditional re-
samplings; strato = variable defining strata (character variable); paired = paired
data (character variable) (specify yes/no); unit = variable identifying paired ob-
servations; missing = presence of missing values (specify yes/no).

Notice that we have specified D, U , and R as binary variables and L as a con-
tinuous variable. Furthermore, we have considered Group and Strata as variables
defining the two groups and the four strata respectively. In order to specify the
multidimensional system of hypotheses for each variable within each stratum, a
left-tailed test for variable R and three right-tailed tests for the other three vari-
ables were considered. This analysis was carried out using nsample = 10000 CMC
iterations. Since we are dealing with missing data, the option for missing values
should be activated.

7. Conclusions

With this work we present an overview of NPC techniques for the analysis of mul-
tivariate complex problems.
Applications to real data show how the NPC methodology can be considered as an
effective framework for hypothesis testing problems in presence of complex multi-
variate causal patterns, in both experimental and observational studies, provided
that in the null hypothesis the exchangeability of data with respect to groups is
assumed.
The proposed approach allows to explore the causal pattern at different levels of
the analysis: at the univariate level by means of partial tests; at the multivariate
level, either within strata or within variables, by means of second-order combined
tests; and at the global level by means of a third order of combination.
NPC tests are relatively efficient and do not require strong underlying assump-
tions.
Their good properties and power behavior are maintained when applied to high-
dimensional and small sample size data set, even when the number of covariates
exceeds the number of cases (Pesarin and Salmaso, 2010a). Within the NPC
framework, continuous, categorical or mixed variables, with or without missing
values, may be easily handled, while the underlying dependence relation structure
among variables is nonparametrically and implicitly captured by the combining
procedure. Hence, the researcher is not explicitly required to specify the depen-
dence structure of variables. This is a great advantage especially when dealing
with correlated data (Pesarin and Salmaso, 2010b; Brombin and Salmaso, 2013).
By making available these SAS macros, we hope that researchers dealing with
complicated multi-dimensional inferential problems consider NPC approach, that
represents a robust nonparametric alternative solution and works under a set of
less-stringent assumptions.
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The SAS macro is available upon request by authors.
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SUMMARY

Overview of NonParametric Combination-based permutation tests for Multivariate
multi-sample problems

In this work we present a review on nonparametric combination-based permutation tests
along with SAS macros allowing to deal with two-sample and one-way MANOVA design
problems, within NonParametric Combination methodology framework. Applications to
real case studies are also presented.

Keywords: Multivariate multi-sample problems, One-way MANOVA design, NPCmethod-
ology, SAS


