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1. INTRODUCTION

The simplicity of the logistic distribution and its importance as a growth curve
have made it one of the most important statistical models. The shape of the logis-
tic distribution (similar to that of the normal distribution) makes it simpler and
also profitable on suitable occasions to choose it as a model instead of the normal
distribution. Pearl and Reed (1920, 1924), Schultz (1930) and Oliver (1982) ap-
plied the logistic model as a growth model in human populations and in the study
of the populations of some biological organisms. Some applications of logistic
functions in biocassy problems were discussed by Berkson(1944) and Wilson and
Worcester (1943). Other applications and significant developments concerning the
logistic distribution can be found in the book by Balakrishnan (1992). Balakrish-
nan and Leung (1988) defined three types of generalized logistic distributions by
compounding logistic distribution with some other well known models and named
them as Type I, Type II and Type III generalized logistic distributions. Type III
generalized logistic distribution was earlier derived by Gumbel (1944). In this ar-
ticle, our main interest is to deal with estimation problems of Type III generalized
logistic distribution.

A random variable X is said to follow a Type I11 generalized logistic distribution
(Type III GLD)with parameters p, o and a if its pdf is given by (see, Blakrishnan
and Lee 1998)

a
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g(x;a,p,0) = B

—00 < x < 00,—00 < i< oo,0>0,a>0, (1)
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The standard form of Type III generalized logistic distribution defined in(1) is
obtained by putting 1 = 0 and 0 = 1 and we may write go(y) to denote this pdf.
Then we have

e~V

L+ e

gO(y) = B(CL,CL)

2] ,—00 <y <oo,a>0. (2)

For more details relating to the above family of distributions see also, Gumbel
(1944) and Davidson (1980).

It is well known that if H(x) is an absolutely continuous cumulative distribution
function (cdf) then the function F(x)defined in terms of an incomplete beta integral
as

1
/ 71 —t)°tdt, v>0,6 >0, (3)

B(7,9)

F(z) =

is also a cdf. The probability density function (pdf) corresponding to the cdf F(x)
is given by

flx) = H(z)) Y1 — H(z))° h(z), ~v>0,6>0. 4

(z) 5(%5)( ()" ( (@))" h(x) (4)
_(z—p)

If we put H(z) = % and h(z) = %% in (4), then the resulting
1+e |:1+e o

pdf is known as beta-logistic distribution. If further we put v = § = a then the
resulting distribution is known as Type III GLD. Hence one may call the Type 111
GLD also as symmetric beta-logistic distribution.

Maximum likelihood method of estimation of the location and scale parameters
of a) normal distribution b) Laplace distribution and ¢) Cauchy distribution are
extensively discussed in the available literature. For more details see Johnson et
al.(1994, 1995). Likewise based on a random sample of size n drawn from Type
IIT GLD with pdf given in (1), the ML equations a—fl = O,gL =0 and 8l =0 are
respectively given by

nl2(a) - vzl + Y |2

u}+2ilog(1+ewp(xigu>)= (5)

i=1

1+QZ eap ( #))]zo (6)

1+exp

vzl u

no+2a,uz —|—az (7)

Then one may, use Newton—Raphson method of solvmg for obtaining the MLE’s
a, fr and & of a, p and o involved in (1).

One may observe several practical situations in which Type III GLD becomes
the most appropriate model. For example: we consider a real data set originally

1+exp
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TABLE 1
Parameter estimates and K-S statistics for single fibres data set of 10 mm
Distribution Normal Laplace Cauchy Type 111
GLD

Maximum a=4.680850
Likelihood 1=3.058830 1=2.977 £4=2.98711  [1=3.047060
estimators 6=0.616034 ¢=0.502833 5=0.403347 —=0.892756
K-S Statistics 0.098459 0.120187 0.12442 0.09700

reported by Badar and Priest (1982). For illustrative purpose we reproduce below
the above mentioned data on single fibers 10 mm in gauge lengths with sample
size 63.

Data Set : 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445,
2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659,
2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125,
3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377,
3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971,
4.024, 4.027, 4.225, 4.395, 5.020.

For the above data using MLE method we have fitted each of the following dis-
tributions: 1) normal distribution 2) Laplace distribution 3) Cauchy distribution
and 4) Type ITT GLD. The estimated parameters of the fitted distributions and
the Kolmogorov Smirnov goodness-of-fit statistic values are given in the following
table 1.

From the table we observe that for the above data, the Type III generalized
logistic distribution is the most appropriate model. Thus we conclude that the
usual symmetric models such as normal, Laplace, Cauchy etc become less effective
models to study certain real life situations. But however Type III GLD enters in
such situations as the most appropriate symmetric model.

Maximum likelihood method of estimation ends up with some limitations.
When the sample size is small in many cases MLE is not even unbiased. Though
one may obtain the asymptotic variance of the MLE’s, the exact variance for the
small sample cases are generally not explicitly available. Thus for small sam-
ple situation Lloyd’s (1952) best linear unbiased estimation of the location and
scale parameters of a distribution by order statistics is considered as a very good
method of estimation. However when the sample size is large or moderately large
the requirement of obtaining the means, variances and co-variances of the order
statistics of an equivalent sample size arising from the standard form of the given
distribution makes the Lloyd’s method of estimation very difficult. In such sit-
uations Thomas and Sreekumar (2004, 2008) proposed a method of estimation
by U-statistics using best linear unbiased estimators of the location and scale pa-
rameters of a distribution with an appropriate small sample size as kernels. Some
works associated with U-statistics of this nature are seen in the available literature.
For more details see, Sreekumar and Thomas (2006, 2007, 2008) and Thomas and
Baiju (2012).

Hence the main objective of this paper is to determine the best linear unbiased
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estimators based on small sample sizes of the location and scale parameters of Type
ITI GLD for some known values of shape parameter a, and to use them to generate
appropriate U-statistics for estimating those parameters for any sample size. We
have further illustrated by a real life example about the surprising nature of these
U-statistics in terms of their performances when compared with the corresponding
maximum likelihood estimators which are not available explicitly.

2. MOMENTS OF TYPE III GENERALIZED LOGISTIC DISTRIBUTION

In this section we first proves the following theorem which establishes the existence
of all moments of Type III GLD.

THEOREM 1. All moments of integer orders of Type III GLD defined by (2)
exist.

PROOF. The pdf of the standard form of Type IIT GLD is defined in (2). If Y
is a random variable with pdf go(y) then

EY") = /y’“go(y)dy

— 00

= I+ 1.

0 %)
where I; = [ y*g0(y)dy and I = Ik y*g0(y)dy.
0

—00
Clearly we have

e~V
- -y
(T te)? < €Y, y>0,a>0,
L ’ < 1 >0,a>0
—_— a .
Therefore
k eV d < k —ay g 8
Y P y < [ yTe dy. (8)

0 0

Since y*e~% is integrable for any positive integer k and a > 0 we assert that
the left side integral of (8) is finite. This proves that I < oco. The proof of
the existence of the integral I; is similar and hence is omitted. This proves the
theorem.

It may be noted that if the parent distribution admits the moments of order
k, then the moments of all order statistics of the same order exist as such.
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TABLE 2
Expected values ou.m of order statistics arising from standard Type III GLD for
m=2(1)9 and a=1.5(0.5)2.5 and for a=4.68085.

m r Qi for r = {L;’l] +1tom

a=1.5 a=2 a=2.5 a=4.68085
2 0.759449 0.633333 0.553590 0.387458
3 1.139174 0.950000 0.830385 0.581187
4 0.385723 0.324459 0.285133 0.201613

1.390324 1.158514 1.012136 0.707712
0.642872 1.312951 0.475222 0.336022
1.577187  0.540076 1.146365 0.800634
0.258636  0.218210  0.192110 0.136297
0.834990  0.702042 0.616778 0.435885
1.725626 1.435133 1.252282 0.873584
0.452613  0.381867  0.336193 0.238519
0.987941 0.830112 0.729012 0.514831
1.848574 1.535969 1.339494 0.933376
0.194554  0.164393 0.144861 0.102947
0.607448  0.512352 0.450992 0.319863
1.114772  0.966032 0.821686 0.579821
1.953402 1.621675 1.413464 0.983888
0.350197  0.295907  0.260750 0.185304
0.736074  0.620575 0.546113 0.387142
1.222972 1.026163 0.900421 0.634872
2.044706 1.696113 1.477596 1.027513

-3
OO DUTDTTD T U =W W

Other values of a,.,,, are obtained by the formula ay.m = —m—r41:m

and apy1.2p4+1 = 0 for p=1,2,3,4.

Let X1.m, Xo:m, -+, Xm.m be the order statistics of a random sample of size m
arising from Type ITI GLD defined in (1). Define Y;.,,, = 2= p = 1,2,... m.
Then (Yi.m, Yo2im, <+, Yimum) are distributed as the order statistics of a random

sample of size m drawn from the Type III GLD(a,0,1) with pdf given by (2).Let
E(Y;m) = Qpr:m, 1 S r S m,

Var(}/r:m) = Ur,r:m 1 S T S m,
COU(Yr:man:m) = Ur,s:m; 2 S r<s S m.

Balakrishnan and Lee (1998) have presented a reparametrized model of Type
[T GLD, which has a standard normal distribution as the limiting distribution as
a — 00. They studied the order statistics and moments from this reparametrized
distribution and tabulated the means, variances and co-variances of order statistics
for only one sample size m=20 and for shape parameter values a=0.5(0.5)3(1)6(2)12.
In this work we have independently evaluated the means of all order statistics
arising from Type III GLD defined in (2) for m=2(1)9, a=1.5(0.5)2.5 and for
a=4.68085 by mathcad software and are presented in table 2. The variances
and co-variances of all order statistics of a sample of size m arising from (2) for
m=2(1)9, a=1.5(0.5)2.5 and for a=4.68085 also have been computed using math-
cad software and are given in table 3. In table 2 and table 3 we have included
entries for a = 4.68085, as we require it to deal with the case of illustrating the
proposed method of estimation in this paper for a real life example.
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TABLE 38
Variances and covariances vr s.n of order statistics arising from standard Type 1II GLD
for1<r<s<mn,n=2(1)9 and a=1.5(0.5) 2.5, 4.68085

n T S a=1.5 a=2 a=2.5 a=4.68085
2 1 1 1.29284  0.88876  0.67425 0.32601
1 2 0.57676 0.40111 0.30646 0.15012
3 1 1 1.12480  0.76277  0.57368 0.27277
1 2 0.49502 0.34499  0.26393 0.12962
1 3 0.30769 0.21253  0.16168 0.07853
2 2 0.76377 0.53907 0.41571 0.20730
4 1 1 1.04244  0.69851 0.52130 0.24411
1 2 0.45375 0.31408  0.23927 0.11656
1 3 0.28651 0.19928  0.15225 0.07457
1 4 0.20271 0.13882  0.10503 0.05049
2 2  0.61499 0.43380  0.33441 0.16666
2 3 0.39856 0.28189  0.21764 0.10877
5 1 1 0.99260 0.65859  0.48833 0.22571
1 2 0.42838 0.29422  0.22304 0.10764
1 3 0.27179 0.18855  0.14382 0.07020
1 4 0.19614 0.13572  0.10335 0.05029
1 5 0.14886 0.10114  0.07613 0.03622
2 2 0.54342 0.38118  0.29286 0.14503
2 3 0.35143 0.24867  0.19205 0.09603
2 4 0.25642 0.18082  0.13935 0.06940
3 3 0.47437 0.33727 0.26124 0.13134
6 1 1 0.95878  0.63095  0.46528 0.21268
1 2 0.41098 0.28019  0.21142 0.10111
1 3 0.26115 0.18031 0.13711 0.06653
1 4 0.18997 0.13149 0.10014 0.04873
1 5 0.14709 0.10118  0.07677 0.03709
1 6 0.11675 0.07873  0.05898 0.02780
2 2 0.50067 0.34891 0.26700 0.13125
2 3 0.32303 0.22778  0.17555 0.08744
2 4 0.23701 0.16745  0.12920 0.06448
2 5 0.18453 0.12953  0.09954 0.04931
3 3 0.40748 0.28966  0.22434 0.11276
3 4 0.30218 0.21503  0.16663 0.08385
7 1 1 0.93411 0.61047  0.44807 0.20284
1 2 0.39817 0.26965  0.20260 0.09609
1 3 0.25308 0.17383  0.13175 0.06352
1 4 0.18483 0.12761 0.09702 0.04705
1 5 0.14435 0.09955  0.07563 0.03663
1 6 0.11675 0.07986  0.06037 0.02897
1 7 0.09559 0.06404  0.04777 0.02234
2 2 0.47192 0.32679  0.24909 0.12155
2 3 0.30381 0.21325  0.16389 0.08121
2 4 0.22346 0.15760  0.12147 0.06050
2 5 0.17533 0.12346  0.09507 0.04727
2 6 0.14225 0.09935  0.07612 0.03748
3 3 0.36782 0.26070  0.20156 0.10099
3 4  0.27279 0.19414  0.01505 0.07572
3 5 0.21518 0.15286  0.11834 0.05942
4 4 0.34329 0.24494  0.19012 0.09595

Continued...
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n T S a=1.5 a=2 a=2.5 a=4.68085

8 1 1 0.91520  0.59455  0.43462 0.19507
1 2 0.38829 0.26138  0.19563 0.09207
1 3 0.24672 0.16860  0.12737 0.06102
1 4 0.18058 0.12424  0.09424 0.04549
1 5 0.14169 0.09763  0.07412 0.03584
1 6 0.11560 0.07939 0.06015 0.02898
1 7 0.09633 0.06554  0.04938 0.02354
1 8 0.08068 0.05374  0.03994 0.01854
2 2 0.45112 0.31052  0.23581 0.11426
2 3 0.28983  0.20244  0.15512 0.07643
2 4 0.21342  0.15004 0.11542 0.05728
2 5 0.16810 0.11833  0.09110 0.04527
2 6 0.13751 0.09646  0.07411 0.03669
2 7 0.11482 0.07979  0.06095 0.02984
3 3 0.34132  0.24097  0.18587 0.09272
3 4 0.25304 0.17972  0.13912 0.06986
3 5 0.20019 0.14232  0.11023 0.05540
3 6 0.16427 0.11359  0.08992 0.04501
4 4 0.30544 0.21791 0.16914 0.08535
4 5 0.24298 0.17344 0.13465 0.06799

9 1 1 0.90017 0.58176  0.42374 0.18875
1 2 0.38039 0.25468  0.18995 0.08878
1 3 0.24157 0.16428  0.12372 0.05891
1 4 0.17703 0.12133  0.09181 0.04411
1 5 0.13929  0.09577 0.07261 0.03500
1 6 0.11419 0.07846  0.05946 0.02865
1 7 0.09596 0.06563  0.04960 0.02377
1 8 0.08173 0.05533  0.04155 0.01968
1 9 0.06967 0.04616  0.03419 0.01577
2 2 0.43526  0.29796  0.22550 0.10856
2 3 0.27914  0.19404  0.14824 0.07264
2 4 0.20564  0.14404 0.11056 0.05463
2 5 0.16235 0.11406 0.08770 0.04348
2 6 0.13340 0.09365 0.07197 0.03565
2 7 0.11230 0.07846  0.06013 0.02963
2 8 0.09577 0.06624  0.05044 0.02456
3 3 0.32222  0.22653  0.17428 0.08653
3 4 0.23876  0.16907  0.13064 0.06538
3 5 0.18919  0.13434  0.10397 0.05219
3 6 0.15586  0.11057 0.08552 0.04288
3 7 0.13146  0.09281 0.07157 0.03570
4 4 0.28025 0.19958  0.15474 0.07794
4 5 0.22306 0.15923  0.12363 0.06243
4 6 0.15434 0.13143  0.10197 0.05142
5 5 0.26880 0.19218  0.14935 0.07555

3. BEST LINEAR UNBIASED ESTIMATION OF LOCATION AND SCALE PARAME-
TERS OF TYPE III GLD UsING ORDER STATISTICS

In the available literature, estimation of location and scale parameters of Type II1
GLD is seen discussed only for a sample of size n=20 assuming that the shape
parameter is given (see, Balakerishnan and Lee 1998). Hence we devote this section
to estimate the location parameter p and scale parameter o of g(x; a, i, o) by order
statistics for given values of a and for all sample sizes n < 9.

Let o = (@1:m, Q2:m, Q) and V= ((vr5:m)) be the vector of means and
dispersion matrix of the vector of order statistics of a random sample of size m
drawn from go(y). In section 2, we have already tabulated the means involved in
«, variances and co-variances involved in V for m=2(1)9, a=1.5(0.5)2.5 and for
a=4.68085. Since go(y) is symmetric about zero, the Lloyd’s (1952) BLUE’s of u
and o involved in (1) and their variances assume a reduced form and are given by
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(see David and Nagaraja (2003), P-189, see also Thomas (1990))
'v-ix 2

o
= e, Var(yin) = e 9
lu (l/vfll) a'f‘(,u ) (llvfll) ( )

and R )

VX o
Om (@V-1a) ar(om) (@V-1a) (10)
It is clear that BLUE’s of p and o are linear functions of order statistics

Xims X2umy - -+ y Xmem- Consequently one can also write [, and &,, as
ﬂm - Zcr:er:mv CATm = Zdr:er:mv (11)
r=1 r=1

where ¢p.,, and dy.,,, are constants independent of u and o such that c¢,..,, =
Cm—rt1:m 80d driy = —dm—pg1:m, ¥ = 1,2, -+, [n/2] where [.| is the usual greatest
integer function. We have computed the coefficients ¢;.,;, of X,..,, in fi,, and the
value of 0= 2Var(u,,) and are given in table 4 for m=2(1)9, a=1.5(0.5)2.5 and
for a=4.68085. Similarly the values of the coefficients d;.,, of X;.,,, in 6, and
the value of 0=2Var(o),) are computed and are given in table 5 for m=2(1)9,
a=1.5(0.5)2.5 and for a=4.68085.

4. ESTIMATION OF THE PARAMETERS OF TYPE IITI GLD UsING U-STATISTICS

The BLUE’s of the location and scale parameters of a distribution by order statis-
tics of a random sample of size m requires the evaluation of all means, variances
and co-variances of order statistics of an equivalent sample size arising from the
standard form of the original distribution. This makes the method unfriendly
to applied statisticians. However if one obtain the BLUE’s of 1 and o by order
statistics for a small or moderate sample size m and use it as kernel of degree m
to construct appropriate U-statistics to estimate p and o, then these U-statistics
would be highly useful as they estimate the parameters explicitly. Moreover these
estimators are highly preferred as they possess the optimal properties of BLUE’s as
well as those of U-statistics. It may be noted that the U-statistics obtained in this
method are distributed asymptotically normal and hence those U-statistics can be
even used for testing of hypothesis problems on the location or scale parameters
involved in Type IIT GLD for large sample sizes. U-statistics was first introduced
by Hoeffding (1948) and is considered as one of the top 20 breakthroughs of twen-
tieth century in statistics (for details see, Sen (1990)). Hence in this section we
estimate the parameters p and o of Type III GLD using U-statistics based on
best linear functions of order statistics as kernels, when the shape parameter a is
known.
Let the BLUE of i as given in (9) be represented as

hl (Xla X27 sy Xm) = Cl:le:m + C2:mX2:m +...+ Cm:me:m (12)
and that of o as given in (10) be represented as

hZ(Xh XQ; ey Xm) = dl:lemL + d2:mX2:m + -+ dm:me:ma (13)



Coefficients of ¢r.m of order statistics Xo.m in the BLUE fim = Y. CrimXrm of p and o 2Var(fim)

TABLE }

r=1

r a=1.b a=2 a=2.5 a=4.68085

Cr:m % Cv‘:m W CTI'"L % CTZTYL %ﬁ’n)
1 0.500000 0.934802 0.500000 0.644934 0.500000 0.490358 0.500000 0.238068
1 0.274250 0.288179 0.296996 0.313960
2 0.451500 0.616359 0.423642 0.427210 0.406008 0.325555 0.372080 0.158526
1 0.324405 0.192218 0.203028 0.224472
2 0.324405 0.458785 0.307782 0.318953 0.296972 0.243434 0.275528 0.118790
1 0.123488 0.139722 0.150556 0.172661
2 0.240857 0.233445 0.228008 0.216020
3 0.271310 0.365116 0.253666 0.254346 0.242871 0.194330 0.222638 0.094969
1 0.092351 0.107420 0.117695 0.139179
2 0.186029 0.184243 0.182191 0.176336
3 0.221620 0.303119 0.208337 0.211457 0.200114 0.161684 0.184485 0.079103
1 0.072129 0.085900 0.095473 0.115919
2 0.148446 0.150016 0.150083 0.148189
3 0.182792 0.173745 0.167905 0.156481
4 0.193264 0.259078 0.180680 0.180925 0.173078 0.138418 0.158823 0.067776
1 0.058175 0.070720 0.079589 0.098909
2 0.121586 0.125165 0.126552 0.127269
3 0.153049 0.147322 0.143408 0.135295
4 0.167190 0.226192 0.156793 0.158087 0.150451 0.120999 0.138527 0.059285
1 0.048096 0.059351 0.067758 0.085979
2 0.101700 0.090048 0.108711 0.111157
3 0.130051 0.169160 0.124337 0.118798
4 0.145166 0.111548 0.132009 0.122364
5 0.149975 0.200703 0.139787 0.139747 0.134371 0.107470 0.123404 0.052685

Other values of ¢,.,,, are obtained from ¢;.,, = Cm—rt1:m

pozywiauab [r7-2dfig fo siajownind fo uoDWAISH
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TABLE 5

Coefficients of dr.m of order statistics Xr.m in 6m = 5. drimXrm and 0~ 2Var(6m)

r=1
m r a=1.5 a=2 a=2.5 a—4.68085
dr:m W d'r:m W d'r:m W d'r:m %
2 1 -0.658372 0.620773 -0.789474 0.607870 -0.903196 0.600060 -1.290462 0.585807
3 1 -0.438915 -0.526316 -0.602130 0.313960
2 0.000000  0.314829 0.000000  0.304842 0.000000  0.298752 0.372080  0.287523
4 1 -0.324797 -0.393037 -0.452230 -0.653163
2 -0.125548 0.211272 -0.137649 0.203520 -0.148289 0.198740 -0.187233 0.189812
5 1 -0.256351 -0.312977 -0.362187 -0.529005
2 -0.148843 -0.164723 -0.178453 -0.227546
3 0.000000 0.159056 0.000000 0.152768 0.000000  0.148865 0.000000  0.141497
6 1 -0.211068 -0.259663 -0.302027 -0.445659
2 -0.146939 -0.164360 -0.179152 -0.230894
3 -0.050587 0.127549 -0.054815 0.122280 -0.058720 0.118988 -0.073633 0.112734
7 1 -0.179002 -0.221650 -0.258961 -0.385639
2 -0.138274 -0.156219 -0.171267 -0.222948
3 -0.071794 -0.078227 -0.084079 -0.105961
4 0.000000 0.106469 0.000000 0.101939 0.000000  0.099095 0.000000  0.093662
& 1 -0.155162 -0.193201 -0.226600 -0.340242
2 -0.128214 -0.146176 -0.161119 -0.211662
3  -0.080165 -0.087923 -0.094861 -0.120283
4 -0.027142 0.091372 -0.029307 0.087401 -0.031335 0.084902 -0.039234 0.080092
9 1 -0.136777 -0.171521 -0.201396 -0.304676
2 -0.118466 -0.143400 -0.150820 -0.199707
3 -0.082499 -0.072875 -0.098671 -0.126051
4 -0.042050 -0.056454 -0.048827 -0.061266
5 0.000000 0.080025 0.000000 0.076683 0.000000  0.074261 0.000000  0.069956
Other values of d,..,, are obtained from d;.,,, = —dy—rt1:m
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where ¢1.m, Co.m, - - -, Cem @0d d1.m, doims -« -, A are constants. Now from Thomas
and Sreekumar(2008) for a random sample of size n (n > m) drawn from (1) the
U-statistic for estimating p using the kernel(12)is given by

Uy = (;,1) ,Z: lmz:l (mn_lr_ z) (r ; 1>ci+1:m] Xrin (14)

=0

and the U-statistic for estimating o using the kernel (13) is given by

CEREE 3 D3 (A [\ TR ESNTD

m/ r=1 | i=0

where we define (’71) =0 for i > r and (m":lr_z) =0forn—r<m-—1-—1.
If we write

) = Covlhy (X1, -+, Xey Xewr, 5 Xm) ha (X1, -+, Xey Xonas -+ 5 Xom—o)],
as the co-variance between two hi(.) functions with exactly ¢ common observa-
tions and

™ —Covlha(X1, -+ Xey Xerrs -+ X)), ha(X1, -+, Xey Xonga, -+, Xom—c)|,
as the co-variance between two ho(.) functions with exactly ¢ common observa-
tions for ¢ = 1,2, -+ ,m, then the variances of U™ and U{™ are given by (See,
Hoeffding, 1948)

VarlU(M] = (m) (" - m) £, (16)

Varlgd™) = Y (m) (” - m) o, )

)&= \e)\m—c
Clearly
¢ = Varlhy (X1, Xa, -+, Xn)] (18)
and
Vi = Varha (X, Xa,- -+, Xon)]. (19)

It may be noted that &(nm) and 1/),(nm) can be obtained from tables 4 and 5 as Var(ji)
and Var(o) respectively for m=2(1)9, a=1.5(0.5)2.5 and for a=4.68085. Now we
evaluate the values of €™ and ¥/{™ for ¢ = 1.2,...,m— 1, using the methodology
developed by Thomas and Sreekumar (2008) as explained in the following steps.
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Define the vectors by, for k=1,2,--- 'm—1 as
m—1 m—1
m+k—1 m+k—2\/1
S () (e X))o
/ _ =0 1=0
m+k — (erk) ) (m+k:) )
()
. Ci+1:m
Pt —1—1 )
T (m+k) (20)
and define w (m+k)(b Vi rh )o? (m) 1. _ 19 ... _ 1 where V.
k= ) Ok Vit kbmar)o™ —8Em k= 1,2,--- ;m—1 where Vp, 1,

is the variance co-variance matrix of the vector of order statistics of a random
sample of size m+k arising from go(y) and €™ is defined in (18). Define the
matrix

[ 0 0 e 0 (nzil) G) 1 i gm) T

0 0 s (mni2) (3) (myz) @) ém)

(m)

LDGED (6D () e) G rh] Lmead

and the vector w = (wy,wa, -+, Wpn_1)"
Then the components 53’”, c=1,2,--- ,m—1involved in (16)are solved from the
following equations

(.68, e, ) H'W. (22)
Similarly, the values of %:™, ¢ =1,2,-- ,m — 1 can be obtained as

(wfmwfm, @z;f,’?)l) HZ, (23)
where Z' = (21,22,...,2m—1) with 2z = (m+k)(gm+ka+kgm+k)o — 1/)m and

gm-+k is obtained from (20) just by replacing each ¢ by diim, © = 1,2,...
Once we obtain the values of &™), ™, ¢ = 1,2,...,m — 1 from (22) and (23)
respectively, then the exact variances of U- statistics for estimating p and o based
on any sample of size n can be obtained using (16) and (17) without any further
direct evaluation of moments of order statistics.

The main advantage of this method is that if one uses the BLUE based on a
sample of size m as the kernel, then the evaluation of variances and co-variances of
order statistics of samples of sizes up to 2m-1 arising from (2) alone are necessary

to obtain the explicit expressions for the variances of the U-statistics Ul(:TZ) and
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TABLE 6
Value of &™) for m=2(1)5 and c=1,2,--- ,m.
m c a=1.5 a=2 a=2.5 a=4.68085
2 1 0467401 0.322469 0.245179  0.119034
2 0.934802 0.644934 0.490358  0.238068
3 1 0.203680 0.141683 0.108160  0.052791
2 0.408140 0.283670 0.216471  0.105605
3 0.616359 0.427210 0.325555  0.158526
4 1 0.113345 0.079172 0.060577  0.029649
2 0.227260 0.158578 0.121264  0.059330
3 0.342220 0.238427 0.182776  0.089034
4 0.458785 0.318953 0.243434  0.118790
5 1 0.072265 0.039859 0.038726  0.018974
2 0.144524 0.101110 0.077412  0.037941
3 0.217430 0.151901 0.116236  0.056927
4 0.290908 0.202970 0.155202  0.075937
5 0.365116 0.254346 0.194330  0.094969

UQ(Z:) for any sample size, however large it may be. For example if for a given values
of a we use fi and 6 as given in (11) for m=4, then with the evaluation of moments
of order statistics arising from the standard Type III GLD for sample sizes up to
7, one can obtain the explicit form of appropriate U-statistic estimators for p and
o and their variances for any sample of size n, however large it may be. Using
the values of variances and co-variances of order statistics, and the coefficients of
BLUEs of y and & given in section 3, we have obtained the values of £™ andyp{™
forc=1,2,...,m—1,m=2,3,45 a=1.5(0.5)2.5 and for a=4.68085 and are given
in table 6 and table 7. For practising statisticians these tables will be helpful to
determine the variance of the U-statistics estimators.
It is unrealistic to assume always that the shape parameter a involved in Type
ITT GLD is known. It is known from Balakrishnan and Lee (1998, p.130) that for
a Type IIT GLD random variable X with pdf (1)
_ BXx-p!
=T Warx)®
w///(a)
2(¢/(a))?’
where 1 (a) is the well known digammma function, ¢’(a) and 1"’(a) are the first
and third derivatives of ¢ with respect to a. Since the expression for [y as given
in(24) is free of the location parametery and scale parameter o of the Type 111

= 3+ (24)

GLD, using a sample X1, X, -+, X,, drawn from (1) we estimate a as the solution
of
(X, — X
U}///(a) Z;( )

34 by = : (25)
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TABLE 7
Value of d)ﬁm) for m=2(1)5 and ¢ =1,2,--- ,m.
m c a=1.5 a=2 a=2.b a=4.68085
2 1 0.161857 0.153328 0.148126  0.138381
2 0.620773 0.607870 0.600060  0.585807
3 1 0.071950 0.068145 0.065821  0.061508
2  0.176880 0.169759 0.165404  0.157344
3 0.314829 0.304842 0.298752  0.287523
4 1 0.040450 0.038324 0.037020  0.034552
2 0.089100 0.085023 0.082489  0.077730
3 0.146046 0.140085 0.136395  0.129455
4 0.211272 0.203520 0.198740  0.189812
5 1 0.025785 0.023838 0.023631  0.021945
2 0.054689 0.052070 0.050424  0.047229
3 0.086489 0.082626 0.080208  0.075680
4 0.121260 0.116180 0.113015  0.106941
5 0.159056 0.152768 0.148865  0.141497

TABLE 8
U-statistics estimates and K-S statistics for single carbon fibres data set of 10mm

Type III genera-
lised logistic

distribution Kernel sizes
m=2 m=3 m=4 m=>5
U-statistics U3, =3.00241 U®, =3.00043 UL, =2.908937 U, =2.98915
1:63 . 1:63 . 1:63 N 1:63 .
Uuss, =o0.80785 UL, =0.80785 UL, =0.808316 U, = 0.78255
K-S Statistics 0.091401 0.090196 0.089172 0.089512

One may use Mathematica software for obtaining the solution a of a from(25).

Since for the real data set describing the gauge length of single fibres 10 mm
considered in section 1, Type III GLD provides the best fit, we once again use
the data set to illustrate the U- statistics estimation of the location and scale
parameters of the distribution. For the data we have computed the sample kurtosis
as

= 3.234852.

On using this value in the right sidee of (25) and solving for a using mathematica
software we obtain a = 4.68085. Thus by taking 4.68085 as the known value of
the parameter a we have used the method explained in this paper to obtain U-
statistics estimators Uf?gg,Uf?QB,Uff*gg,Uf?gs for p and U2(26)3 = UQ(?G)B,USG)&US&
for o together with K-S statistic values and are given in table 8.

From this table it is to be noted that the K-S statistic value computed based
on U-statistics estimators for each of kernels of degree 2,3,4 and 5 have values less

than that computed based on MLE method of estimation(see, table 1 for details).
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5. RELATION BETWEEN U-STATISTICS ESTIMATORS AND OTHER STANDARD
ESTIMATORS

Though, the U-statistics estimators developed by Thomas and Sreekumaar (2004,
2008) seems to be independent of other known estimators, their estimators for
some choices of m turns out to be the same of some already known standard
estimators like unbiased estimators of o based on Gini’s mean difference and the
unbiased estimator of p namely the sample mean X. Further we observe that
U2(272 = 2(3,2 In this section we discuss about these inter relationship between
U-statistics and with some other estimators.

If X; and X> are two independent observations drawn from the distribution
with pdf g(z;a, p,0), then Y; = £ i=12 are distributed as two independent
and identically distributed random variables arising from g¢o(y). Clearly

Ap = E|X1 — X3| = 0E(Ya:2 — Yi:2) = 0(aa:2 — a1.:2), (26)

is defined as the Gini’s mean difference of the Type III GLD. Then an unbiased
estimate of o based on the Gini’s mean difference of the sample is given by,(see
Samuel and Thomas (2003))

) [n/2]
o — > (n—2i+ 1)Ri, (27)

n(n —1)(ao:2 — a1:2) Pt

where R;., = Xp_it1.n—Ximn and [.] represents the usual greatest integer function.
Clearly o* is an unbiased estimator of . Now we prove the following theorem

which describes the inter relationship between o™, U2(273 and U2(3n) and that between
~ (2)
X, and Uy,

THEOREM 2. Let Xi.p, Xom, ..., Xn;n be the order statistics of a random sam-

ple of size n arising from an absolutely continuous distribution having pdf g(x; a, u, o)
(as defined in (1)) with location parameter u, scale parameter o and for given

value of the shape parameter a. Then UQ(QTZ = 0" where c* is as defined in (27).
As g(w;a, p,0) is symmetric about j1, we have U2(272 = UQ(S,)L and U1(273 = X,,, where
X, is the sample mean.

Proor. Using (10), one can derive the BLUE & based on order statistics of a
random sample of size 2 drawn from g(z;a, u,0) as

62 = (22 — a1.2) 'Ry, (28)

which is same as the kernel used for constructing the U-statistic (27). This proves
that U2(2,2 = o*. Since g(z;a, u,0) is symmetric about p, its standard form go(y)

is symmetric about zero, and hence from (28) we further have
572 = (20[2;2)71]‘31:2. (29)

Also using the symmetric property of g(x;a,u,o) and using (10) for n=3 and
simplifying we get
63 = (2as:3) ' Rus. (30)
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Using 62 = (2a2.2) "' Ry.2 as the kernel we obtain

n

Z(n -2+ l)X’iZTL' (31)

i=1

-1
S —
7 200a03)

If 63 = (2a3.3) "' Ry.3 is used as a kernel of degree 3 we obtain,

“L s [(ner) o (rt
U(iz o {( ) _ ( )} Xin
2:n 2033 (2) Lz:; 2 i

n

-1
= —— S (n—2)(n—2i+ 1) Xpn
oy 22X )
-3 n
= — -2t +1)X;.,
2a3.3n(n — 1) ;(n i )X
3ag:2 . (2)
= Uy’ 2
20[2:2 2:n (3)

From David and Nagaraga (2003, p.49), we have
3ag.2 = 203.3. (33)

Using the above relation in (32), we get U2(272 = Uz(d,z

Using (9), and using the symmetric property of go(y) we can obtain the BLUE
1 based on random sample of size 2 as

fiz = 0.5(X1.2 + Xo.2) = Xo. (34)

Hence the corresponding U-statistic generated from X is
v -1y X, =X, (3)
. n r=1
and thus the theorem is proved.

6. COMPARISON OF THE U-STATISTIC ESTIMATORS WITH SOME STANDARD UN-
BIASED ESTIMATORS

To compare the efficiency of our U-statistic estimator for u, we take the usual
p— — n J—
moment estimator X, of u, given by X,, = }L > Xin. Clearly X,, is the sample
i=1
mean and is unbiased for u.

To compare the efficiency of U-statistic estimator for o, we take an unbiased
estimator of o based on Gini’s mean difference namely o* given in (27). In order
to compare the efficiency of the U-statistic estimator of U2(:4,)L and U2(5,2 with o,
we require the expression for Var(c*). If X1, X5 and X3 are independent random
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variables with common pdf (1), then considering o* as a U- Statistic estimator
based on kernel of degree 2, from theorem 5.1 we have

2(n = 2)ui” + vy
(2)

Using (10) and (23) for m=2 and simplifying we obtain

Var(Uéi)L) = (36)

(2) (111,1:3 - U1,3:3) (111,1:2 - U1,2:2) 2 d (2) (U1,1;2 - U1,2:2) 2
= —_— — - - o . 37
! |: 30‘%:2 40‘%:2 7o 1/)2 2O‘%:Z ? ( )

From(36) and (37), we obtain the variance of the unbiased estimator o* (= UQ(Z,E)
as

Var(o") = =5

(3)

Using the values of €™ and %™ given in table 6 and 7, we have obtained
the variances of Ul(z) and UQ(TZ) for n=5 (5) 20 (10) 40 (20) 100; m=2(1)5,
a=1.5(0.5)2.5 and for a=4.68085 and are given tables 11 and 9. In theorem 5.1, we

have Var(U(2)) = Var(X,) and Var(UQ(?,z) = Var(UQ(ii) = Var(c*), and hence

1in
in table 11 and table 9 we have given the values of Var(X,,) instead of Var(U2)

and given the values of Var(c*) instead of Var(UQ(iz) or Var(UQ(i)L).

From tables we observe that the variances of all U-statistics reduces drastically
as the sample size n increases. We also observe that the variance of U-statistics
decrease as the shape parameter a of Type III GLD increases. Tandem to this
we observe that as the shape parameter a of the Type III GLD increases the

distribution tends to be one with relatively shorter tail.

1 {2(71 — 2)(2)1,21:3 —v133) (n— 3)(111,12:2 — U1,2:2)} o2 (38)
3ai, 2a3.y

For comparing the estimators in Ul(f::), we have computed the efficiency e (Ul(n;) |Yn>
of U™ relative to X, = U2 for m=3(1)5 and n=>5( 5) 20 (10) 40 (20) 100 and
are given in table 11. It is observed that e (U\"|X, ) is greater than unity in
all cases for m=3,4,5. For comparing the estimators in UQ(?Z) we have computed
the efficiency e (UQ(TZ)|U*) of UQ(TZ) relative to o* = U2(272 = U2(373 is calculated for
m=4(1)5 and n=5(5) 20 (10) 40 (20) 100 and are given in table 9. It is observed
that e (UQ(:’Z)|0*> is also greater than unity in all cases for m=4,5.

The asymptotic relative efficiency E (U1(;TZ) |Yn) of Ul(:rz) relative to X,, =
Ul(sz and Ey ,, (UQ(TZ)W*) of UQTZ) relative to o* = UQ(?) = 2(372 are given by

n

_ X, 4 (2)
By (U1X0) = lim Var(X,) | _ 44
S N ne | Var(U) | m2e™
and (m) Var(a*) 4’¢(2)
B (UM |0*) = lim =
Lt Var(UQTL ) m21/)1m

We have evaluated the above asymptotic relative efficiencies Ej ,, for m=3(1)5,
Es p, for m=4,5, a=1.5(0.5)2.5, for a=4.68085 and are given in table 10.



308 P. Yageen Thomas and R.S. Priya

TABLE 9
Variances of Uéfz) and relative efficiency for e (Ué?/a*) for m=4(1)5.

o on Yeph Yelhn Yelin o (uffer) e (uf)er)
1.5 5 0.159191 0.159091 0.159056 1.00070 1.00085
10 0.071344 0.071292 0.071242 1.00073 1.00143

15 0.045991 0.045961 0.045902 1.00065 1.00194

20 0.033935 0.033915 0.033855 1.00059 1.00236

30 0.022264 0.022252 0.022199 1.00054 1.00293

40 0.016567 0.016559 0.016513 1.00048 1.00327

60 0.010958 0.010953 0.010919 1.00046 1.00357

80 0.008187 0.008183 0.008156 1.00049 1.00380

100 0.006534 0.006532 0.006510 1.00031 1.00369

2 5 0.152784 0.152773 0.152768 1.00007 1.00010
10 0.068025 0.068020 0.067948 1.00007 1.00113

15 0.043756 0.043756 0.043509 1.00007 1.00568

20 0.032251 0.032251 0.031942 1.00008 1.00967

30 0.021136 0.021134 0.020827 1.00009 1.01484

40 0.015719 0.015717 0.015442 1.00013 1.01794

60 0.010392 0.010390 0.010175 1.00019 1.02133

80 0.007762 0.007760 0.007586 1.00026 1.02320

100 0.006194 0.006190 0.006048 1.00065 1.02414

2.5 5 0.148882 0.148864 0.148865 1.00012 1.00011
10 0.066002 0.065990 0.065985 1.00018 1.00026

15 0.042394 0.042384 0.042362 1.00024 1.00076

20 0.031224 0.031217 0.031189 1.00022 1.00112

30 0.020449 0.020443 0.020415 1.00029 1.00167

40 0.015202 0.015198 0.015173 1.00029 1.00191

60 0.010047 0.010044 0.010024 1.00030 1.00229

80 0.007502 0.007500 0.007485 1.00030 1.00227

100  0.005986 0.005984 0.005972 1.00033 1.00234
4.68085 5 0.141609 0.141530 0.141497 1.00056 1.00079
10 0.062220 0.062170 0.062121 1.00080 1.00159

15 0.039845 0.039810 0.039714 1.00088 1.00330

20 0.029303 0.029270 0.029173 1.00113 1.00446

30 0.019161 0.019140 0.019051 1.00110 1.00577

40 0.014234 0.014220 0.014142 1.00098 1.00651

60 0.009400 0.009390 0.009332 1.00106 1.00729

80 0.007017 0.007010 0.006963 1.00100 1.00776

100  0.005598 0.005590 0.005554 1.00143 1.00792

TABLE 10

Asymptotic relative efficiency Ul(fz) and UQ(Z) as estimators of 1 and o

a 15 2 25  4.68085
Bis (UDX,) 1.019903 1.01155 1.00747 1.002141
B (UYIX,) 1030925 1.01825 1.01185 1.003693
B (UP)X,) 1.03486 1.20444 1.01298 1.003765
By (U)o*)  1.00035 1.00021 1.00031 1.001252

n

Eos (US)|o*)  1.00435  1.02913 1.00293 1.008930




TABLE 11 B
Variances of Ul(:) and relative efficiency for e (Ufﬁ)/Xn) for m=3(1)5

o o Cefto YeGh) Yeghn Yl (of)/F) < (0@/%.) e (U0/%)
1.5 5 0.373921 0.367624 0.365533 0.365116 1.01713 1.02295 1.02412
10 0.186960 0.183493 0.181872 0.181110 1.01889 1.02798 1.03230
15 0.124640 0.122281 0.121114 0.120566 1.01929 1.02911 1.03379
20 0.093480 0.091696 0.090791 0.090382 1.01946 1.02962 1.03428
30 0.062320 0.061121 0.060500 0.060235 1.01962 1.03008 1.03461
40 0.046740 0.045837 0.045365 0.045171 1.01970 1.03031 1.03473
60 0.031160 0.030556 0.030237 0.030112 1.01977 1.03053 1.03480
80 0.023370 0.022916 0.022676 0.022584 1.01980 1.03061 1.03480
100 0.018696 0.018333 0.018139 0.018067 1.01980 1.03071 1.03480
2 5 0.257975 0.255428 0.254532 0.254346 1.00997 1.01353 1.01427
10 0.128988 0.127586 0.126890 0.125501 1.01099 1.01653 1.02778
15 0.085992 0.085039 0.084538 0.080567 1.01121 1.01720 1.06734
20 0.064494 0.063773 0.063385 0.058505 1.01131 1.01750 1.10237
30 0.042996 0.042511 0.042245 0.037387 1.01141 1.01778 1.15003
40 0.032247 0.031882 0.031680 0.027344 1.01145 1.01790 1.17931
60 0.021498 0.021254 0.021117 0.017726 1.01148 1.01804 1.21279
80 0.016123 0.015940 0.015837 0.013095 1.01148 1.01806 1.23123
100 0.012899 0.012752 0.012669 0.010379 1.01153 1.01815 1.24280
2.5 5 0.196143 0.194886 0.194428 0.194330 1.00645 1.00882 1.00933
10 0.098072 0.097379 0.097027 0.096854 1.00712 1.01077 1.01258
15 0.065381 0.064910 0.064657 0.064541 1.00726 1.01120 1.01301
20 0.049036 0.048680 0.048484 0.048401 1.00731 1.01139 1.01312
30 0.032691 0.032451 0.032317 0.032267 1.00740 1.01157 1.01314
40 0.024518 0.024338 0.024236 0.024200 1.00740 1.01164 1.01314
60 0.016345 0.016225 0.016156 0.016134 1.00740 1.01170 1.01308
80 0.012259 0.012168 0.012117 0.012101 1.00740 1.01172 1.01306
100 0.009807 0.009735 0.009693 0.009682 1.00740 1.01176 1.01291
4.68085 5 0.095227 0.095053 0.094985 0.094969 1.00183 1.00255 1.00272
10 0.047614 0.047517 0.047463 0.047439 1.00204 1.00318 1.00369
15 0.031742 0.031677 0.031636 0.031622 1.00205 1.00335 1.00379
20 0.023807 0.023757 0.023725 0.023717 1.00210 1.00346 1.00379
30 0.015871 0.015838 0.015815 0.015811 1.00210 1.00354 1.00379
40 0.011903 0.011878 0.011861 0.011858 1.00210 1.00354 1.00379
60 0.007936 0.007919 0.007907 0.007906 1.00215 1.00367 1.00379
80 0.005952 0.005939 0.005930 0.005929 1.00215 1.00367 1.00381
100 0.004761 0.004751 0.004744 0.004743 1.00215 1.00367 1.00381

pozywiauab [r7-2dfig fo siajownind fo uoDWAISH

60¢
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7. CONCLUSION

Thus we conclude that when a better suitable model than the well-known symmet-
ric models such as: normal, double exponential, Cauchy and so on is required one
may search it from the Type I1I GLD family of distributions. Also if one chooses a
Lloyds BLUE of location and scale parameters of Type III GLD with sample size
m as a kernel, then with the knowledge of the means, variances and co-variances
of order statistics of random sample of sizes between m and 2m-1 arising from the
standard form of the distribution, one can use the results of this paper to estimate
effectively the parameters and derive their variances for any sample size (say even
for n=1000 or more) by U-statistics without any further direct evaluation of mo-
ments of order statistics.
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SUMMARY

In this work we have derived appropriate U-statistics from a sample of any size exceeding
a specified integer to estimate the location and scale parameters of Type III generalized
logistic distribution without the knowledge or by evaluation of the means, variances and
co-variances of order statistics of an equivalent sample size arising from the corresponding
standard form of distribution. The exact variances and the asymptotic variances of the
estimators have been obtained. The efficiency of the obtained estimators relative to
some of the standard estimators have been also obtained. An illustration describing
the betterness of U-statistics estimation method over the classical maximum-likelihood
method is also given.

Keywords: Best linear unbiased estimators based on order statistics; Beta-Cauchy dis-
tribution; Gini’s mean difference; Moment estimators; U-statistics.



