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LONG-TERM SURVIVORS IN AN EPIDEMIC WITHOUT RECOVERY 

Giuseppe Schinaia 

1. A COMPREHENSIVE SI/I EPIDEMIC MODEL

In recent years major advances in the clinical and pharmaceutical research have 
produced treatment schemes and drugs able to put a halt or, at least, to signifi-
cantly slow down to the local progression of some infections. In other cases, in-
fectious agents have developed resistance to traditional treatments and a selection 
of drug-resistant infectives can no longer be removed from those participating in 
the spreading of the infection. Epidemic modeling of infectious diseases like 
HIV/AIDS, some forms of hepatitis, herpes, tuberculosis and others have thus 
to be re-thought of so as to include, among their aspects, the existence of long-
term survivors or long-survivors: a minority of infectives, whose disease progres-
sion evolves along qualitatively different lines from the others. A clear example of 
their detection and of the problems involved is in Buchbinder et al. (1994). 

On the one side, their presence poses serious and unexplored questions at epi-
demiological level while, on the other, it makes the modeling process of the 
spreading of infections all the more complex, since it must also account for the 
contribution of a number of infectives with a peculiarly long period of infec-
tiousness.

This paper introduces a few problems related to presence of long-term survi-
vors in a typical susceptible-infective (SI) epidemic scheme, presenting possible 
solutions and implications on epidemiological indicators. The dynamics of sus-
ceptibles, not being the object of this study, will only be represented in its sim-

plest, general form as 0( ) ( ) ( )S t dt S t I t dt , where the force-of-infection coef-

ficient 0  may include expressions of any complexity, without altering the validity 

of the long-term survivor modeling approach. 
The usual way to include long-term survivors in a classical SI compartmental 

scheme of an epidemic is to insert a new compartment of infectives controlled by 
specific parameters and state variables (time of stay, contribution to the force of 
infection) and run it parallel to the main course of the epidemic, as in figure 1. 
Standard Markov modeling techniques assign numbers to the compartments in-
volved and produce simulation results. 
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Figure 1 – Schematic representation of an elementary SI epidemic compartmental model, approxi-
mating a Markov model with separate compartments for long-term survivors and normal survivors. 

In general, a Markov modeling approach (or its deterministic approximation) is 
acceptable in a short- or medium-term simulation with a homogeneous survival 
of infectives, where the time span prevents the approximations of all the depend-
encies to negatively affect the simulation results (Schinaia, 1997). The presence of 
long-term survivors, broadening the time interval involved, makes Markov model 
forecasts somehow unreliable, because of the lack of flexibility of the interactions 
among all the model entries. In particular, a simple modification of a Markov 
model, like the one proposed in the last section of this paper, by simply using a 
parametric representation of long-term survivors adds such features to the model 
structure that make the nature of the variables involved no longer compatible 
with the definition of Markov property.  

Although the natural setting of theoretical epidemic models is of a stochastic 
nature and all the results in this paper refer to random variables, nevertheless the 
mathematical expressions will be explicitly given in terms of the more transparent 
dynamics of approximating deterministic systems. Moreover, the approach here 
presented to epidemic modeling with long-term survivors is in the form of mix-
tured models (Farewell, 1982 and Ghitany et al., 1994), where different survival 
experiences are treated with different distributional assumptions. An extension of 
this approach to nonparametric models is mathematically more complex, since it 
may involve isotonic regression techniques and it is still the object of research-in-
progress. A discussion of the comparison of the parametric vs. nonparametric 
approach is in Cantor and Schuster (1992). 

2. LONG-TERM SURVIVOR MODELS 

The presence of long-term survivors in a survival study can be naturally ac-
knowledged by direct inspection of the infective survivor curve H: the right-hand 
tail of the curve in figure 2 clearly shows the existence of a fraction of right-
censored failure times exceeding the observation interval.  
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Figure 2 – An example of survivor curve with a positive right tail, showing the presence of long-term 
survivors.

Whether these 'tail' cases should be regarded as long-term survivors obviously 
depends on the duration of the study and on the proportion of cases detected; 

however, in principles, if ( ) 0H , where  is the right-hand point of the obser-

vational interval, then not all the individuals at risk of failure actually failed. This 
implies that the cumulative distribution function ( )F t  of random failure time T

is improper and can be locally factored as  

*

( ) Pr( ) Pr(( ) [( 1) ( 0)])

        Pr( | 1)Pr( 1) (1 ) ( )

i i i i i

i i i i

F t T t T t

T t F t
 (1) 

where 

1   -  individual subject to failure 

0   -  individual long-progressor
i

i th

i th

and Pr( 0)i . The cumulative distribution function * ( )F  is proper (total 

unit mass on real positive axis); in global terms, the survivor function is now 
given by

*( ) (1 ) ( )H t H t  (2) 

where * ( )H t  is the survivor function of individuals subject to failure. 

The scheme presented above is due to the work of several authors in the past 
years (Boag, 1949; Maller and Zhou, 1992, 1995, 1996; Rossi and Schinaia 1993, 
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1994; and Sposto et al., 1992). Their researches mainly contributes to include 
long-term survivors in the analysis of survival data; however, little is left to the 
study of the contribution of long-term survivors to the diffusion of infectious 
diseases: in fact, the usage of this survival scheme in a simple model of disease 
progression, such as the SI scheme, cannot lead any further than stating that all 
susceptibles will eventually be infected. The prevalence of infectives at time t is 
given by 

0

0

*
0 0

0 0

( ) ( ) ( ) ( )

     ( ) ( ) (1 ) ( ) ( ) ( )

t

t t

I t S x I t H t x dx

S x I x dx S x I x H t x dx

 (3) 

which monotonically increases with time t and is unbounded 0 , unless 

( ) 0  S t t  for some . Therefore, unless the amount of susceptibles is lim-

ited with respect to the whole reference population, the number of infectives will 
eventually include all the individuals in the population. 

However, actual epidemics appear to evolve somehow more flexibly than the 
situation described by (2) and (3); in fact, it is often the case, for instance, that 
long-term survivors tend to lose their infectivity, as time goes on and this event 
opens a wide range of possible evolutions of the spread of the disease in the sus-
ceptible population. 

To be more general, let us consider the case where long-term survivors reduce 
their contribution to the spread of the epidemic as time-of-infection increases 
and the local contribution can be formalized ,i t  as 

1     i  individual subject to failure
( )

0     i  individual long-progressor
i

- th
t

- th
 (4) 

where Pr( ( ) 1)i t ( ), t t . Similarly to (1), the global cumulative distribu-

tion function of T is then given by *( ) Pr( ) (1 ( )) ( )F t T t t F t  and its cor-

responding survivor function is 

*( ) ( ) (1 ( )) ( )H t t t H t  (5) 

where both * ( )F t  and * ( )H t  refer to individuals subject to failure. 

Using (5), (3) can be re-written as 
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0

0

( ) ( ) ( ) ( )
t

I t S x I t H t x dx (6)

* *
0

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t t t

S x I x t x dx S x I x H t x dx S x I x t x H t x dx

thus including long-term survivors into an expression for the prevalence of infec-
tives, with (5) as a special case when ( ) constant.t  Remembering that, using 

(4), ( )t  is defined as a probability, further hypotheses can be reasonably added 

on the form of ( )t that make ( )F  a proper cumulative distribution function 

(i.e. lim ( ) 1
t

F t ):

i) ( )t  non increasing 

ii)
0

lim ( ) 0;  lim ( ) 1
t t

t t

iii) ( )t  right-continuous 

The development of the epidemic depends now on the form of all the terms 
included and will not a priori evolve towards a definite direction (endemic steady 
state, extinction, explosion); a closer analysis of this question is in the next sec-
tion, where the basic reproduction number is considered. 

3. EFFECTS OF LONG-TERM SURVIVORS ON EPIDEMIC SIMULATIONS

The use of long-term survivor model (6) or of others with similar characteris-
tics can effectively improve the quality of the epidemic simulation by adding im-
portant features to the mathematical structures. Effects of these additions can be 
directly detected on the output of the simulation runs and a comparison of differ-
ent hypotheses in terms of prevalence curves can be used to decide what type of 
modeling approach best fits given epidemiological conditions. 

In this section, some theoretical aspects related to the presence of long-term 
survivors in epidemic models will be discussed and examined and some numerical 
examples will be used to show the effects of different distributional hypotheses 
on the curves of prevalence of infections. 

3.1. Characterization of infectives 

With the progression of scientific knowledge of the infectious disease, both at 
microscopic and macroscopic level, the characterization of the epidemic becomes 
more stringent and generates closer mathematical models and more precise esti-
mates of the statistical quantities involved. Both these aspects involve an increas-
ingly refined classification of susceptibles and infectives to incorporate different 
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characteristics of such populations into comprehensive modeling structures. Split-
ting infectives into normal- and long-term survivors operates a first, although im-
portant, refinement of SI models; however, more information on the level of par-
ticular biological, social and demographic variables can be effectively incorpo-
rated to produce more accurate forecasts of the spread of the epidemic. This is, in 
general, not trivial in compartmental Markov models, since they need to increase 
the number of compartments (states), with the undesirable effect of a growing 
number of parameters controlling the corresponding transitions. 

The model here proposed is general enough to allow for a natural and simple use 
of covariates (cofactors); like any survival model, ( )H t can be easily extended to 

( , )H t x , including any multivariate vector x of specific characteristics of groups of 

infectives, by means of standard multivariate survival techniques, without substan-
tially altering the model structure and the numerical computations. Moreover, the 
actual form of ( )H t  in (5), considered as a mixture of two separate survival mod-

els, * ( )H t  and ( )t , can be used to incorporate variable infectivity, since it, in fact, 

introduces a classification of individuals, where ( )t  can be regarded as a survivor 

function, with the end of infectivity period as the failure-defining event. 

3.2. Basic reproduction number 

One of the most effective indicators of the future development of an epidemic 

spread is the basic reproduction number 0R  (Heesterbeek and Dietz, 1996), repre-

senting the number of new infections generated by a single infected individual. It 
provides information on the severity of an epidemic, by establishing whether it will 
potentially invade the whole population of susceptibles and settle in the environ-

ment; in this paragraph, the general expression for 0R  is derived, when (6) is as-

sumed and direct calculations in a simple case are explicitly given as an example. 

The general form of 0R  is given by 

0R {# susceptibles at time 0}×{force of infection}×{estimated mean of in-

fection time} 

Let us now assume that hypotheses i)-iii) of section 2. hold for ( )t , then 0R

can be expressed as  

0 0

0

(0) ( )R S H t dt

where, using the mixtured model (6), we have 

* *
0 0

0 0 0

(0) ( ) ( ) ( ) ( )R S t dt H t dt t H t dt  (7) 
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If we refer to the interpretation of ( )t  in terms of variable infectivity, the in-

tegrals in (7) can be viewed, respectively, as the estimated mean time of infectiv-
ity, the estimated mean time of survival and the estimated mean time of infectiv-
ity while surviving. 

Direct computations of the additional severity to the epidemic spread due to 
long-term survivors obviously depend on the form of all the terms involved, but 

as an example, let us consider a simple case, where base survival * ( ) tH t e  for 

some  and infectivity lasting x, i.e. 

1   
( )

0

t x
t

t x

When no long-term survivors are present, it is known that * 1
0 0 (0)R S ,

while (7), with a first order approximation of te , becomes 

2 2
*

0 01
2

x
R R

thus showing that the order of magnitude of the contribution of long-term survi-
vors to the diffusion of the infection is no smaller than the square of the period 
during which long-term survivors are infective. 

3.3. Simulation examples 

A few simulation run are here presented to show the influence of long-term 
survivor model (6) on the form of the curve of prevalent infectives. Parameters to 
the survival curves are taken from Schinaia (2000) and are summarized in table 1; 
however, the simulation curves do not necessarily refer to any actual situation, 
since they only mean to offer a visual interpretation of the model presented in the 
previous section. As a matter of fact, parameters controlling the epidemic obvi-
ously need to be estimated from specific data that include observations on long-
term survivors, when mixture model (6) is used to produce forecasts to epidemic 
spread.

TABLE 1 

Summary of base survival models used in the simulation examples 

Base Model Survival Function Parameter Values Median Base Survival 

Exponential te
1

9
6.24 years 

Weibull 

1

exp
s

b

t

e
          

2.299

0.778

b

s
6.22 years 

Lognormal (0;1)

1 ln ln
1

2 2
N

t M
F

2.208

0.683

M e
6.22 years 



G. Schinaia 502

Prevalence of Infectives

(exponential survival)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30

years

no. of infections

with l-t survivors

no l-t survivors

Figure 3a
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Figure 3b
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Figure 3c

Figures 3a, 3b, 3c – Prevalence curves of infectives in simple SI models, with and without long-term 
survivors. Exponential, Weibull and log-normal survivor functions are used for the base survival, 
while long-term survivor probability ( )t  is exponential with mean 15 in all the three cases. 
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In figures 3a to 3c three different models are used for * ( )H t , exponent- 

ial, Weibull and log-normal respectively, while ( ) exp{ 15}t t is used 

in all the three long-term survivor curves. Note that, while * ( ) tH t e  in 

the exponential case in figure 3a produces the approximation of a Markov 
model, with the addition of long-term survivors as in (6), it becomes 

1
( ) exp exp

15 15

tt
H t e t , which is no longer approximating a 

Markov process. 
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RIASSUNTO

Lungo-sopravviventi in un epidemia senza guarigioni 

L’analisi dell’epidemia di una malattia senza possibilità di guarigione spesso implica la 
presenza di lungo-sopravviventi nel processo di modellizzazione. Tali individui sono ca-
ratterizzati da un tempo di permanenza particolarmente lungo nella condizione di infezio-
ne senza alcun segno di progressione verso stadi successivi della malattia. Un approccio 
parametrico alla modellizzazione della loro presenza in un’epidemia coinvolge una suddi-
visione degli stadi di progressione di tipo non-markoviano. Nel presente lavoro si propo-
ne un approccio che coinvolge la funzione di sopravvivenza e si presentano alcune osser-
vazioni sugli indicatori epidemiologici, assieme ad esempi applicativi di tipo numerico e 
grafico. 

SUMMARY

Long-term survivors in an epidemic without recovery 

The analysis of epidemics without recovery often implies the inclusion of long-term 
survivors in the modeling process. Such individuals are characterized by a peculiarly long 
sojourn in a state of infection without any sign of progression towards the subsequent 
evolutionary state of the disease. A parametric modeling of their presence in an epidemic 
involves non-Markov staging of the infection process and of its development. In the pre-
sent work, an approach involving survivor function is proposed, along with some remarks 
on epidemiological indicators and some numerical and graphical examples of its applica-
tion.


