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1. Introduction

The univariate Pareto distribution was first proposed in literature as a model for
income analysis. The probability density function f(x) of the Pareto distribution
is defined by

f(x) =
a ka

xa+1
; x ≥ k, a, k > 0. (1)

The graph of f(x) shows that the fraction of the population that owns a small
amount of wealth per person is rather high and then decreases steadily as wealth
increases. Arnold (1985) has studied various properties of (1) and its extensions
using transformations of the random variable. The distribution (1) can also be
used to model the sizes of human settlement, the values of oil reserves in oil fields,
hard disk drive error rates, the standarized price returns on individual stocks,
sizes of sand particles and large casualty losses for certain lines of business. For
various applications of the Pareto distribution, one could refer to Arnold (1985)
and Johnson et al. (1994).

As in the case of univariate Pareto distributions, mathematical simplicity and
tractability have provided a lot of interest in the theory and applications of mul-
tivariate Pareto distributions. Accordingly, Mardia (1962) introduced a bivariate
Pareto distribution with joint density function f(x, y) as

f(x, y) =

{
a(a+1)(pq)a+1

(px+qy−pq)a+2 ; x ≥ p, y ≥ q, a > 0

0 other wise.
(2)

The distribution (2) is referred as bivariate Pareto distribution of first kind,
since the marginal distributions have univariate Pareto (1). The bivariate Pareto
distribution of the second kind was also introduced by Mardia (1962) using two
dependent gamma variables in the sense of Kibble (1941). Later Lindley and
Singpurwalla (1986) have introduced a bivariate Pareto II distribution which has
simple joint survival function with Pareto II marginals. This distribution was
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further studied and generalized by Nayak (1987), Barlow and Mendel (1992),
Sankaran and Nair (1993), Langseth (2002), Balakrishnan and Lai (2009) and
Sankaran and Kundu (2014). For various other bivariate Pareto distributions and
its generalizations, one may refer to Arnold (1990), Arnold (1992) and Kotz et al.
(2002).

When there is very little information about the data generating mechanism,
it is desirable in modeling problems to begin with a family of distributions which
is quite flexible in the desired characterstics. The distributions discussed earlier
are individual in nature and suits only for a particular set of data that meets
the specified requirements. Motivated by this, in the present paper, we introduce
a class of bivariate Pareto distributions arising from a generalization of the uni-
variate dullness property by which Talwalker (1980) has characterized the Pareto
law (1). It is shown that the marginal distributions of the proposed model are
univariate Pareto I models. The proposed bivariate family consists of some known
and several new models. It also imparts enough flexibility in terms of desirable
properties that are generally used in modelling problems.

The rest of the article is organized as follows. In Section 2, we introduce a
family of bivariate Pareto distributions. Various members belonging to the family
are identified. The distributional properties of the family are discussed in Section
3. In Section 4, we study dependence structure of the family of distributions.
In Section 5 we discuss the inference procedure and apply the proposed class of
models to two real data sets. Finally, Section 6 summarizes the major conclusions
of the study.

2. The Model

Let (X,Y ) be a non-negative random vector having absolutely continuous survival
function F̄ (x, y) = P (X > x, Y > y). In order to construct the proposed family of
bivariate Pareto distributions, we assume that Z is a non-negative random variable
with continuous and strictly decreasing survival function Ḡ(z) and cumulative
hazard function H(z) defined by H(z) = − log Ḡ(z). We require the following
theorem to construct the proposed bivariate Pareto family.

Theorem 1. The random variable Z satisfies the property

P (Z > log g(x, y)|Z > a log x) = P (Z > b log y) (3)

for all a, b > 0, x, y > 1 and some g(x, y) > xa if and only if

H(log g(x, y)) = H(a log x) +H(b log y) (4)

Proof. Since H−1(t) = Ḡ−1(e−t) for all t > 0

H−1(H(a log x) +H(b log y)) = Ḡ−1(exp[−H(a log x)−H(b log y)])

= Ḡ−1(Ḡ(a log x).Ḡ(b log y)) (5)

or
ḠH−1(H(a log x) +H(b log y)) = Ḡ(a log x).Ḡ(b log y) (6)
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Now to prove Theorem 1 first assume (3). It is equivalent to

Ḡ(log g(x, y)) = Ḡ(a log x).Ḡ(b log y)

= Ḡ [H−1(H(a log x) +H(b log y))]

using (5) and (6) from which we have (4). Conversely assuming (4), we obtain

P (Z > log g(x, y)|Z > a log x) =
Ḡ(log g(x, y))

Ḡ(a log x)

=
exp[−H(log g(x, y))]

exp[−H(a log x)]

= P [Z > b log y].

2

We notice that g(x, y) is a function of (x, y) in R+
2 = {(x, y)|x, y > 0} satisfying

the property (4). Further

(a) g(1, y) = yb, g(x, 1) = xa,

(b) g(∞, y) = ∞, g(x,∞) = ∞,

(c) since H(.) is increasing and continuous, g(x, y) is also increasing and con-
tinuous in x and y and

(d) it is assumed that g(x, y) satisfies the inequality 2
g(x,y)

∂g
∂x

∂g
∂y − ∂2g

∂x∂y ≥ 0.

From properties (a) through (d) it follows that

F̄ (x, y) = [g(x, y)]−1, x, y > 1 (7)

is the survival function of a random vector (X,Y ) with Pareto I marginals
F̄X(x) = x−a, x > 1 and F̄Y (y) = y−b, y > 1.

This completes the procedure for constructing the family of bivariate Pareto
distributions based on g(x, y) arising from a property characterizing a class of
univariate distributions. We designate Ḡ(z) as the baseline distribution that cor-
responds to F̄ (x, y), since the members of the family are generated through the
functional equation (4) based on H(z), the cumulative hazard rate of Ḡ(z).

We derive some members of the family as follows.

1. Let Z be exponential with Ḡ1(z) = exp(−λ z), z > 0 so thatH(z) = λz.Then
g(x, y) = xayb. Then the bivariate distribution is

F̄1(x, y) = x−ay−b; x > y > 1; a, b > 0. (8)

2. When Z has Gompertz distribution Ḡ2(z) = exp[−θ(eαz−1)]; z ≥ 0;α, θ > 0
H(z) = θ(eαz − 1) and the resulting bivariate distribution is

F̄2(x, y) = (xaα + ybα − 1)
−1
α ;x, y > 1, α, a > 0. (9)
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Setting α = 1
a = 1

b , we obtain

F̄3(x, y) = (x+ y − 1)
−a

;x, y > 1, (10)

the well known Mardia’s(1962) type I bivariate Pareto model.

3. Take Z to be a Pareto II variable with Ḡ4(z) = (1 + βz)−α to get H(z) =
α log(1 + βz). Then we have the bivariate law

F̄4(x, y) = x−a−c log yy−b, x, y > 1, a, b > 0; 0 ≤ c ≤ 1. (11)

4. If Z has half-logistic distribution specified by the survival function

Ḡ5(z) = 2(1 + e
z
σ )−1, z > 0, σ > 0.

The model is

F̄5(x, y) = [
1

2
(xα + yβ + xαyβ − 1)]−σ;α =

a

σ
> 0, σ > 0, β =

b

σ
> 0. (12)

5. The Burr XII distribution (Pareto IV) Ḡ6(z) = (1 + zc)−k, z > 0; c, k > 0

with H(z) = k log(1 + zc) for Z leaves the bivariate model as

F̄6(x, y) = exp[−(a log x)c − (b log y)c − (ab log x log y)c]
1
c . (13)

6. Suppose Z follows the distribution Ḡ7(z) = (2ez − 1)−σ, z > 0;σ > 0,

Then H(z) = σ log(2ez − 1) and

F̄7(x, y) = (1 + 2xayb − xa − yb)−1. (14)

7. When Z is distributed as Weibull Ḡ8(z) = e−(λz)α α, λ > 0, z > 0

gives H(z) = (λz)α and

F̄8(x, y) = exp[
−1

λ
{(λa log x)α + (λb log y)α} 1

α ]. (15)

8. If Z has generalized exponential distribution Ḡ9(z) =
p

eλz−q
, z > 0;

λ > 0, 0 < p < 1, q = 1− p

we have H(z) = log eλz−q
p and

F̄9(x, y) = (q + p−1(xaλ − q)(ybλ − q))
−1
λ . (16)

9. Taking Ḡ10(z) = (1 + eλz−1
α )−1, α, λ > 0, the cumulative hazard function

H(z) = log(1 + α−1(eλz − 1)) provides the bivariate Pareto

F̄10(x, y) = (1 + α−1(α+ xaλ − 1)(α+ ybλ − 1)− α)
−1
λ . (17)
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Remark 2. The method of construction provide a large class of bivariate Pareto
distributions. Any Ḡ(z) which is strictly increasing and provides a g(x, y) satisfy-
ing conditions (a) to (d) can give rise to a bivariate Pareto model. The above cases
1 to 9 comprises only of some simple forms that does not exhaust the members of
the family.

Remark 3. When a = b in the above scheme, we have an exchangeable family
of Pareto distributions. Such a restriction becomes quite handy in inference prob-
lems using Bayesian approach. In that case, F̄1(x, y) is the only Schur-constant
model belonging to the family.

Remark 4. A random variable W (or its probability distribution) satisfies
dullness property (Talwalker (1980)) if for all x, y ≥ 1

P (W ≥ x y|W ≥ x) = P (W ≥ y) (18)

It may be easy to observe that the property (3) reduces to the dullness property
(18) when Z = logW , g(x, y) = xy and a = b = 1.

Remark 5. Although the family (7) comprises of a large number of members,
every bivariate Pareto distribution does not belong to it. For example, the survival
function

S(x, y) = x
−a
2 y

−a
2 exp[−1

2
((a log x)2 + (a log y)2)

1
2 ] x, y > 1, a > 0 (19)

represents a bivariate Pareto model with Pareto I marginals. If it belongs to the
family one must have

g(x, y) = x
a
2 y

a
2 exp[

1

2
((a log x)2 + (a log y)2)

1
2 ] (20)

that satisfies(4) for some cumulative hazard function H(.) of a nonnegative random
variable Z, for all x, y. If (20) is true for all x, y, it should also hold for

H(log g(x, x)) = 2H(a log x)

or

H log(x
(
√

2+1√
2

a)
) = 2H(a log x)

or
1

2
H(

√
2 + 1√
2

t) = H(t) ; t = a log x (21)

for all t > 0. It is known from Kagan et al. (1973) that the functional equation

A(x) = kA(θx), θ > 0 ; A(0) = 0 (22)

has a solution only if 0 < θ < 1 < k. By analogy (21) is a particular case of (22)

with θ =
√
2+1√
2

> 1 and hence there is no admissible H(x) that satisfy (21). Thus

(19) does not belong to the proposed family (7).
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3. Properties

3.1. Marginal Distributions

As shown in Section 2, the marginal distributions of the family (7) are univariate
Pareto I models. The joint density functions of the various models are presented
in Table 1.

3.2. Conditional Distributions

There are two kinds of conditional distributions of interest. One is the usual
f1(x|y) = f(x,y)

a2(y)
and f2(y|x) = f(x,y)

a1(x)
where f(x, y) is the joint density function

and a1(x) and a2(y) are respectively the marginal density functions of X and Y .
These conditional density functions are given respectively in Table 2. The second
type of conditional distributions required in the sequel are conditional distributions
of X (Y ) given Y > y (X > x) denoted by f1(x|Y > y) and f2(y|X > x)
or equivalently the conditional survival functions P (X > x|Y > y) and P (Y >
y|X > x). These are exhibited in Table 3. Note that these two sets of conditional
distributions determine the joint distributions in the family.

3.3. Regression Functions

The bivariate Pareto family (7) is rich enough in the sense that it contains a large
number of members that could be candidates for different data situations. The
members of the family have basically two shape parameters besides location and
scale parameters that can be arbitrarly introduced in the models. Further, the
members are highly flexible in various distributional characterstics to represent
a wide variety of models. The last aspect needs a detailed consideration with
reference to some important model characterstics that are often required in data
analysis problems.

We represent the regression functions A(x) = E(Y |X = x) and B(y) =
E(X|Y = y) with suffixies corresponding to the member distributions. Accord-
ingly for F̄1(x, y), the regression functions are constants, being the respective
means. In the case of F̄3(x, y), we obtain

A3(x) = (1 +
x

a
)

and
B3(y) = (1 +

y

b
),

both linearly increasing functions. They intersect on the means (E(X), E(Y )) of
the distributions. However for F̄2(x, y), the regression functions are

A2(x) =
1 + α

α

xa(1+α)

(xa − 1)1+
b−1
bα

and

B2(y) =
1 + α

α

yb(1+α)

(yb − 1)1+
a−1
aα
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which are non-linear in character. These functions do not intersect at the means.
All the remaining distributions also have non-linear regressions, but with different
functional forms. For instance, F̄4(x, y) has

B4(y) =
b(a+ c log y)(a+ c log y − 1) + c

b(a+ c log y − 1)2

which is a logarithmic function, where as for F̄7(x, y)

B7(y) =
2(1 + t)2

t
a−1
a (2t+ 1)

1
a+1

[Bu(
1

a
+ 1,

a− 1

a
)− 1

t
Bu(

1

a
+ 1,

2a− 1

a
)]

where u = 3−2yb

yb−2
, t = 1−yb and Bu(p, q) =

1∫
u

zp−1(1− z)q−1dz is the incomplete

beta function. The expressions for A4(x) and A7(x) are obtained by changing a
to b, b to a and y to x.

4. Dependence Structure

Since the bivariate distributions in the proposed family have identical marginal
distributions, in modelling and analysis of data, a crucial aspect that differentiate
them in a practical situation is the differences in the dependence or association
between the constituent random variables. Thus a study of various dependence
concepts and measures become crucial when discussing family properties, as they
tell us the extent to which the variables are associated and also the nature of their
relationships. There are three distinct approaches in the study of association. The
first one is through numerical measures like the Pearson’s correlation coefficient,
the Kendall’s tau, Spearman’s rho, Gini’s measure and Blomqvist’s β. Presently
we discuss the correlation coefficient and postpone the study of the other measures
in a seperate work when the copulas of the member distributions are taken up. A
second approach is to study the dependence properties. The six basic properties
of positive dependence are (1) total positivity of order 2 (2) stochastic increase (3)
right tail increase (4) positive association (5) positive quadrant dependence and
(6) positive correlation or Cov(X,Y ) ≥ 0. Negative dependence properties are
defined as the dual’s of these. Among the six properties, the relative stringency is
expressed as follows

(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6).

Finally, we have local measures of dependence, which measures the dependence
structure at specific values of x and y. These become important in survival studies
where the duration spent in a specific state of a disease is crucial and also in eco-
nomics where income of individuals below the poverty line or above the affluence
level is of importance. The Holland and Wang dependence function, Clayton-
Oakes measure, Bjerve and Doksum’s correlation curve, Anderson measure, Nair
and Sankaran function etc belong to this category (See Nair and Sankaran (2010)
for references). We will now discuss each of these approaches in some detail, with
illustrative examples from the members of the family.
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4.1. Correlation Coefficient

Obviously F̄1(x, y), in which the variables are independent, has zero correlation
coefficient. The Mardia form F̄3(x, y), has coefficient of correlation R3 = 1

a (Kotz
et al. (2002)). Since the variances of X and Y exist only when a > 2, we see
that the model exhibits a low correlation lying in (0, 1

2 ). As regards F̄4(x, y),the
correlation coefficient (R) has the form

R4 = [
(a− 2)(b− 2)

a b
]
1
2 [
(a− 1)(b− 1)

c
e

(a−1)(b−1)
c E1(

(a− 1)(b− 1)

c
)− 1]

where E1(z) =
∞∫
1

e−z t

t dt , Rez > 0 is the exponential integral discussed in

Abramowitz and Stegun (1966). When c = 0, the distribution F̄4(x, y) is the
product of the marginal distributions of X and Y which means that X and Y are
independent and hence R4 = 0. For any fixed values of a, b > 2, R4 is a decreasing
function of c. Thus as c runs through [0, ab], the correlation coefficient becomes
increasingly negative. When c = ab

R4 = (
(a− 2)(b− 2)

a b
)

1
2 [p epE1(p)− 1]

where p = (a−1)(b−1)
ab . As a, b tends to infinity, lima,b→∞ R4 = [eE1(1)− 1] which

is always negative. Thus (X,Y ) is always negatively correlated.
In all other cases R involves integrals of incomplete beta function to enable

an algebraic analysis of R difficult. However, the nature of the correlation will be
deduced below using other dependence concepts.

4.2. Dependence Concepts

While studying the dependence concepts in relation to the members of the bivariate
Pareto family, we begin with the strongest concepts in view of the implications
to others already considered. We say that a bivariate probability density function
f(x, y) is totally positive of order 2- TP2 (reverse regular of order 2-RR2) if and
only if for all x1 < x2, y1 < y2

f(x1, y1)f(x2, y2) ≥ (≤)f(x1, y2)f(x2, y1) (23)

(Barlow and Proschan (1975)).
In the case of the Mardia form f3(x, y) from Table 1,we consider the difference

f3(x1, y1)f3(x2, y2)− f3(x1, y2)f3(x2, y1)

=
a(a+ 1)

(x1 + y1 − 1)a+2

a(a+ 1)

(x2 + y2 − 1)a+2
− a(a+ 1)

(x1 + y2 − 1)a+2

a(a+ 1)

(x2 + y1 − 1)a+2

The sign of the above expression depends on (x1 − x2)(y1 − y2) which is non-
negative for all x1 < x2 and y1 < y2. Hence f3(x, y) is TP2. For the more general
f2(x, y), the difference leads to the determination of the sign from (xaα

1 −xaα
2 )(ybα1 −

ybα2 ) which is positive. Thus f2(x, y) is TP2. Since TP2 ⇒ Cov(X,Y ) ≥ 0, we
deduce that in the case of f2(x, y), X and Y are positively correlated.
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The density function f4(x, y) is neither TP2 nor RR2. However F̄4(x, y) is RR2

as evidenced from

F̄ (x1, y1)F̄ (x2, y2)− F̄ (x1, y2)F̄ (x2, y1)

= x−a
1 x−a

2 y−b
1 y−b

2 (x−c log y1

1 x−c log y2

2 − x−c log y2

1 x−c log y1

2 ) ≤ 0
(24)

for all x1 < x2 and y1 < y2. Recall that X and Y are positive(negative) quadrant
dependent- PQD (NQD) if and only if

F̄ (x, y) ≥ (≤)F̄ (x, 0)F̄ (0, y)

and that F̄ (x, y) is RR2 implies NQD. Thus F̄4(x, y) possess negative dependence.
In the case of F̄5(x, y), it is TP2 since the sign of the expressions on the left of

(24) with respect to F̄5(x, y) depends on (2xα
2 +xα

1 )(y
β
2 − yβ1 ) which is positive for

y1 < y2. We conclude that F̄5(x, y) has positive dependence through PQD and
further that this implies positive correlation.

While considering the nature of dependence in F̄7(x, y) we note that

F̄7(x1, y1)F̄7(x2, y2)− F̄7(x1, y2)F̄7(x2, y1)

= (xa
1 − xa

2)(y
b
2 − yb1)F̄7(x1, y1)F̄7(x2, y2)F̄7(x1, y2)F̄7(x2, y1)

which is non-positive for x1 < x2. Accordingly we see that F̄7(x, y) is RR2 with the
consequent implication that the distribution is NQD and the associated random
variables are negatively correlated. Similar calculations show that F̄9(x, y) is PQD
and hence the corresponding variables are positively correlated.

A more interesting result emerges for the Weibull based bivariate distribution
F̄8(x, y). The TP2 nature of the survival function depends on α. For example
α = 1

2 , F̄8(x, y) is RR2 and for α = 2, F̄8(x, y) is TP2. Accordingly the distribution
can be NQD or PQD depending on α. This means that the random variables X
and Y can have negative as well as positive correlation depending on α.

4.3. Dependence Functions

Among the various dependence functions available in literature we choose the
Clayton function (Clayton (1978)), which seems to be more popular. It is defined
as

θ(x, y) =
F̄ (x,y) ∂2F̄

∂x∂y

∂F̄
∂x

∂F̄
∂y

The interpretation of θ(x, y) is that when X and Y are positively (negatively)
associated θ(x, y) > (<)1 and θ(x, y) = 1 implies independence of X and Y .
For detailed study of interpretation, properties and applications of the measure
we refer to Oakes (1989), Anderson et al. (1992), Gupta (2003) and Nair and
Sankaran (2014).

The values of θ(x, y) and the nature of dependence for various models are
presented in Table 4. Other dependence functions mentioned in Nair and Sankaran
(2010) can be obtained in closed forms for certain bivariate Pareto models. As
the nature of dependence is similar to the one based on θ(x, y), we do not present
details on the dependence using other functions.
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TABLE 4
Clayton measure for bivariate Pareto models

Distribution θ(x, y) dependence
F̄1(x, y) 1 independent
F̄2(x, y) 1 + α positive
F̄3(x, y) 1 + 1

θ
positive

F̄4(x, y) 1− c
(a+c log y)(b+c log x)

negative

F̄5(x, y) 1 + 1
σ(1+x)α(1+y)β

positive

F̄7(x, y)
4xayb−2xa−2yb

1+4xayb−2xa−2yb
negative

TABLE 5
American football league data

Sl.No. X Y Sl.No. X Y
1 2.05 3.98 22 10.85 38.07
2 7.78 7.78 23 0.85 0.85
3 7.23 9.68 24 7.05 7.05
4 31.13 49.88 25 32.45 42.35
5 7.25 7.25 26 5.78 25.98
6 4.22 9.48 27 1.65 1.65
7 6.42 6.42 28 2.90 2.90
8 10.40 14.25 29 10.15 10.15
9 11.63 17.37 30 3.88 6.43
10 14.58 14.58 31 10.35 10.35
11 17.83 17.83 32 5.52 11.27
12 9.05 9.05 33 3.43 3.43
13 10.57 14.28 34 2.58 2.58
14 6.85 34.58 35 8.53 14.57
15 14.58 20.57 36 13.80 49.75
16 4.25 4.25 37 6.42 15.08
17 15.53 15.53 38 7.02 7.02
18 8.98 8.98 39 8.87 8.87
19 2.98 2.98 40 0.75 0.75
20 1.38 1.38 41 12.13 12.13
21 11.82 11.82 42 19.65 10.70
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TABLE 6
Failure time data (transformed)

Sl.No. X Y Sl.No. X Y
1 6.96 1.45 11 16.12 1366.49
2 1702.75 1.06 12 2.34 16.61
3 1.15 1.22 13 4914.77 62.18
4 8.50 5.05 14 412503.51 290.03
5 6.75 298.87 15 86.49 2.61
6 3751.83 9.49 16 33.12 1286.91
7 4.06 12.18 17 321980003.30 1.38
8 2.20 11.47 18 145.47 1510.20
9 2.51 1.13 19 29436.77 13.20
10 2.08 2.20 20 9.21 5.64

5. Inference and Data Analysis

The estimators of parameters of the models belonging to the family (7) can be
generally derived using the method of maximum likelihood. When the number of
parameters is not large, one can easily get estimates by solving likelihood equa-
tion. If the model involves more than three parameters, as in the case of (17),
we need to solve a four dimensional optimization problem which may not give
unique solutions. Alternatively one can use a computationally efficient two stage
estimation procedure as suggested by Xu (1996), see also Joe (1997), Joe (2005),
in this respect. In the two stage estimation procedure, the first stage involves the
maximum likelihood estimation from univariate marginals and the second stage
involves the maximum likelihood estimation of the dependent parameters keeping
the univariate parameters held fixed obtained from the first stage. It is proved
that the estimators so obtained satisfy large sample properties of the maximum
likelihood estimators (MLE).

We now apply the proposed family of distributions to two real life data sets.
We first apply the model (16) to the American football league data obtained from
the matches played on three consecutive week ends in 1986. The data were first
published in ‘Washington Post’and they are also available in Csörga̋ and Welsh
(1989).

It is a bivariate data set and the variables X1 and X2 are as follows; X1

represents the game time to the first points scored by kicking the ball between goal
posts and X2 represents the game time to the first points scored by moving the
ball into the end zone. These times are of interest to a casual spectator who wants
to know how long one has to wait to watch a touchdown or to a spectator who
is interested only at the beginning stages of a game. The data was first analyzed
by Csörga̋ and Welsh (1989), by converting the seconds to decimal minutes i.e
2:03 has been converted to 2.05. We have adopted the same procedure. The data
are presented in Table 5. We use exponential transformation to the data points
to make observations larger than one. The maximum likelihood estimates of the
parameters of the model (16) are obtained as â = 0.1128 , b̂ = 0.0750, p̂ = 0.991
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and λ̂ = 67.913, The variables X and Y are positively correlated.
To test the goodness of fit, we use the bivariate version of Kolmogrov-Smirnov(K-

S) test given in Justel et al. (1997). The K-S statistic values areD1 = 0.1976, D2 =
0.2085, D3 = 0.0474, D4 = 0.0237 andD5 = 0.0183. ThusD∗ = Max(D1, D2, D3, D4, D5) =
0.2085. The above value is less than the value 0.2517 at 20th percentile so that
the model (16) is an appropriate fit for the given data.

The second data set is taken from Kim and Kvam (2004), which consists of
the failure times of 20 sample units from a system consisting of three components.
We use failure times of first two components. Since some data values are smaller
than one, we make exponential transformation, so that all the observations have
values larger than one. The transformed data are given in Table 6. The model (9)
is applied to the data. The method of maximum likelihood provides the estimates
of the parameters as â = 0.2088, b̂ = 0.3573 and α̂ = 0.0505.

The goodness of fit of Justel et al. (1997) is applied and the test statistic value
D∗ = 0.20939. This value is less than the value 0.2922 at 25th percentile, we
conclude the model (9) is a goodfit for the given data set.

6. Conclusion

In this paper we have introduced a class of bivariate Pareto distributions and
studied the distributional properties of the class. The class includes several well
known bivariate Pareto distributions. It also contains distributions having positive
as well as negative correlations among variables. The dependence structure of the
class of distributions were discussed. The proposed class of distributions was
applied to real life data set.

The referee points out that the density functions and therefore their likeli-
hoods cannot be referred to a unique functional for the whole family. So it does
not make immediate the search for the distribution law that adjusts in the best
way the available empirical data. To solve this problem we have developed in a
companion paper characterstic properties of the class of distributions using veri-
fiable functional forms of different concepts such as bivariate versions of dullness
property, mean residual income, income gap ratio etc. The analysis of dependence
structure using copula is another area which is being worked. The work in this
direction will be reported in a seperate paper.
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SUMMARY

A family of bivariate Pareto distributions

Pareto distributions have been extensively used in literature for modelling and analysis
of income and lifetime data. In the present paper, we introduce a family of bivariate
Pareto distributions using a generalized version of dullness property. Some important
bivariate Pareto distributions are derived as special cases. Distributional properties of
the family are studied. The dependency structure of the family is investigated. Finally,
the family of distributions is applied to two real life data situations.

Keywords: bivariate Pareto distribution; correlation coefficient; association measures;
dullness property


