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1. INTRODUCTION

Bardwell and Crow (1964) considered a two parameter family of discrete dis-
tributions, namely the hyper-Poisson distribution (HPD), with probability mass
function (p.m.f.)

by = P(Y1 =y)
= ¢ (1 X0)0Y/(N)y (1)
fory=0,1,2,... ,A>0, 8§ >0 and
S~ (@9 2
o(a; b; 2) -|-kz::1 b)e Kl

is the confluent hypergeometric series in which (a)g =1 and for k = 1, 2, ... |
(a)p =ala+1)...(a+k—-1)=T(a+k)/T(a)

For a detailed account of confluent hypergeometric series refer Mathai and Haubold
(2008) or Chapter 13 of Abramowitz (1965). The probability generating function
(p-g.f.) of the HPD with p.m.f. (1) is

H(s) = ¢~ (1;X,0)6(1; A; 0s)
The mean and variance of the HPD are respectively %% an
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When A = 1 the HPD reduces to the Poisson distribution and when A\ is a
positive integer, the distribution is known as the displaced Poisson distribution of
Staff (1964). Bardwell and Crow (1964) termed the distribution as sub-Poisson
when A < 1 and super-Poisson when A > 1. Various methods of estimation of
the parameters of the distribution were discussed in Bardwell and Crow (1964)
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and Crow and Bardwell (1965). Some queuing theory associated with hyper-
Poisson arrivals has been worked out by Nisida (1962). Roohi and Ahmad (2003)
attempted estimation of the parameters of the HPD using negative moments.
Kemp (2002) developed a g-analogue of the distribution and Ahmad (2007) in-
troduced and studied Conway-Maxwell hyper-Poisson distribution. Kumar and
Nair[2011, 2012a] developed extended versions of the hyper-Poisson distribution
and discussed some of their applications. Kumar and Nair (2012b) considered an
alternative form of the HPD through the p.m.f.

qQy = P(YQ = y)
= o(14+y; A +y;—0) 0Y/(\)y (2)

in which A > 0 and 8 > 0. A distribution with p.m.f. (3) they named as the
alternative hyper-Poisson distribution (AHPD). Clearly, when A\ = 1, the AHPD
reduces to the Poisson distribution. An important characteristic of the AHPD is
that it is under-dispersed when A < 1 and over-dispersed when A > 1. The p.g.f.
of AHPD is the following, for x =0, 1, 2, ... .

Q(s) = o[1;A;0(s — 1)]

The mean and variance of AHPD are respectively % and % [1 +

[} (A—l)}
XOFD) |

Bardwell and Crow (1964) considered the classical data derived from haemacy-
tometer yeast cell counts and shown that the HPD gives a better fit to the data
compared to Poisson distribution as well as two parameter Neyman Type- A dis-
tribution. Kumar and Nair (2012) considered two data sets among them the first
data is on - the distribution of the epileptic seizure counts and the other data is on
the distribution of corn borers in a field experiment, and shown that in both cases
the AHPD gives better fits compared to the HPD. But there may be situations
where both the HPD and the AHPD are not so suitable, but an analogous model
will be more appropriate. For example the data on distribution of the counts of
red mites on apple lives given in Tables 1 and 2 or data on the distribution of
epileptic seizure counts given in Tables 3 and 4 of this paper. Hence, through this
paper we develop a three parameter class of distribution as a generalization of
both the HPD and AHPD. Such a generalized model opens up more flexibility in
modeling situations where both the HPD and the AHPD are not giving better fits.
This new class of distribution, we termed as “the alpha generalized hyper-Poisson
distribution” (or in short “the AGHPD”). In section 2 we give the definition of
the AGHPD and derive its p.g.f., expression for factorial moments, raw moments,
mean, variance, and recursion formulae for its probabilities, raw moments and
factorial moments. In section 3 we discuss the estimation of the parameters of
the AGHPD by the method of moments and the method of maximum likelihood,
and in section 4 we have considered certain real life data applications. Section
5 contains a generalized likelihood ratio test for testing the significance of the
additional parameter of the model and section 6 contains a simulation study for
comparing the performance of the estimators obtained in the paper.
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2. THE ALPHA GENERALIZED HYPER-POISSON DISTRIBUTION

In this section we present the definition of the AGHPD and obtain some of its
important properties.

DEFINITION 1. A non-negative integer valued random variable Y is said to
follow the alpha generalized hyper-Poisson distribution ( or in short the AGHPD)
if its probability mass function (p.m.f.) g, = P(Y =y) is

(1 +y A +y;a) 09
W TG A0+ a) (V)

3)

fory=20,1,2 .., 2>0,a € R=(—00,00) and 6§ > 0.

Note that, when A = 1, the AGHPD reduces to the Poisson distribution with
parameter 6, when o = 0 the p.m.f. given in (5) reduces to the p.m.f. p, of the
HPD as given in (1) and when a = —6, the p.m.f. (5) reduces to the p.m.f. ¢,
of AHPD as given in (2). Now we obtain the p.g.f. of the AGHPD through the
following result in the light of the series representation:

ZZB(n,r):ZZB(n,T—n). (4)
r=0n=0 r=0n=0

in which B(n,r) is any real valued function of n and r.

PROPOSITION 2. The p.g.f. G(s) of the AGHPD with p.m.f. (5) is the follow-
ing, in which § = ¢~ 1(1; ;0 + ).

G(s) =6¢(1; X084+ ) (5)

PROOF. By definition, the p.g.f. of the AGHPD with p.m.f. (5) is

G(s) = Z 9ys*
y=0

Y

= 6
0y o(1+y; A+ y;a)——s". (6)
;0 ST,

Expand the confluent hypergeometric series in (8) to get

(1+uy); ol gy
)=94 sY. (7)
LY G,
Now apply (6) in (9) to obtain
oy , »
(I4+y—j); o (0s)
)=20 . 8
ZZ A+y—4); J' Ay )

y=0 j=0
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If we apply the relation(\) (A + ), = (A)g4r in (10), we get

_522 T ](A)y j' (6s)v—7

yOJO

—(52 93+a

y= 0
since (1), = z! and by binomial theorem. Thus we have

> (1), 95+a)
)=
y:O

which leads to (7).

Define the following notations, for any A > 0 and for any integer j > 1,
A= (1)) and A*+j = (144, A+ j). Next we have the following results.

PRrROPOSITION 3. The following is a simple recursion formula for the probabil-
ities gy = gy(\*;,0) of the AGHPD with p.g.f. (7), fory > 1.
M
AMy+1)

in which for j=1, 2, ... , A; = dp(1+j; X\ +7;0+a)and § is as given in Proposition
2.

Gy+1(A5,0) = [0gy (A" + 1; 0, 0)] 9)

PROOF. On differentiating (7) with respect to s, we have

> 50
D+ 1) gy (V5a,0)sY = T oA+ 1305 + ). (10)
y=0

Also, from (7) we have

(2 A+ 1505+ ) =Zgy(/\*—|—1;oz,9) sY. (11)
y=0
where 0* = [¢p(2; A + 1;0 + «)]~!. Relations (12) and (13) together lead to the
following.

oo

S 1+ Dayaiand) s = 20 S0, (40 1 10y (12)

y=0 y=0
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On equating coefficient of s¥ on both sides of (14) we get (11).

For computational purpose we obtain an expression for the r** raw moment of
the AGHPD through the following result.

PROPOSITION 4. For r > 1, an expression for the r'" raw moment .. of the
AGHPD is

Fi(1+k,—, —A+k;a,0), (13)

in which S(r,k) is the Stirling number of second kind (c.f.Riordan, 1968 ) and

> b )y z™y™
Fi(a,b,b; ¢, m*" ) (V) 14

s the Horn-Appel function.

PROOF. For r > 1, the rtP raw moment . of a random variable Y with p.m.f.
(5) is

‘ — ol +y; A +y;a) OV
;y S(LN0+a) (N,

N SRy oL+ A +ys @) 6Y
ZZ k) oL N04a) (V)]

if we apply the equation(1.54) of (Johnson et.al, pp. 12). Next on expanding the
confluent hypergeometric function in the numerator to get

| B oo 0o a$y|9y
e = Z¢1A9+a ZZ >\+y x'y )N,

1+I€ I+m0l zgm
Z¢1/\9+a ZZ A+ k) zpm zm! (15)

=0m=0

since (A)z(A+ ), = (A)z+r. Now (15) implies (13) in the light of (14)
Now we obtain the mean and variance of the AGHPD through the following result.

PROPOSITION 5. Mean and variance of the AGHPD are Mean = %9 and
Variance = Ao — lAﬂ + %Al, in which A1 and Ay are as given in Propo-

sition 3.

Sl

The proof is straight forward and hence omitted.
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PROPOSITION 6. The following is a recursion formula for the raw moments
tn(N*) of the AGHPD | for n > 0.

M *
() = 210 (’;)un-ku 1 (16)
k=0

PROOF. The characteristic function ¢y (¢) of the AGHPD with p.g.f. (5) has
the following series representation. For ¢t € R and ¢ = /—1,

dy(t) = G(e)
= § (1) 0" +a)

> « (2t
= S (17)
n=0
On differentiating (19) with respect to t, we have
O it (o it < o (@)
3 0e" 62 A+ 15 6e +a) = pn(A )(n o (18)
By using (19) we get the following from (20)
zt n MO & it)"
ZﬂnJrl - 27 Nn()\*+1)( )| ezt
n! A o n!
. Zt)n-‘rkx
= ZZunA + 1) (19)
n=0 k=0

by the expansion of the exponential term e*. Now apply (6) in (21) to obtain the
following.

Zﬂn-i-l()\*)(i:;)'n = ¥ ZZ ( )un NS 1)(Z?n (20)
n=0 : n=0 :

On equating the coefficients of (ZZ# on both sides of (22) we get (18).

PrOPOSITION 7. The following is a recursion formula for the factorial mo-
ments pu,)(N*) of the AGHPD for n > 1, in which puj(\*) = 1.

o _ M .
1) (A7) = —=ppm) (A" + 1) (21)

PROOF. The factorial moment generating function Fy (s) of the AGHPD with
p.g.f. (7) has the following series representation.

Fy(s) = G(1 + 5) = 66[1: A 6(1 + ) Z'“[” (A +1 i: (22)
n=0
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Differentiate (24) with respect to s to obtain

K} §n— 1
0012, X+ 1;6(1 1(A%) . 2
10020+ 1,01 +5) + o] = Zlu CE (23)
By using (24) we get the following from (25).
3 Al & . s"
Zﬂ[nﬂ] *, = % ) (A" + 1)*, (24)

n:O

Now on equating the coefficients of 3 s* on both sides of (26) we get (23).

3. ESTIMATION

Here we consider the estimation of the parameters a, A and 6 of the AGHPD by
the method of moments and the method of maximum likelihood.

3.1.  Method of moments

In the method moments, the first three raw moments of the AGHPD are equated
corresponding sample raw moments 7y, 75 and 73 respectively. Thus we obtain the
following system of equations, in which A1, Ay and A3 are as defined in Proposition
3.

0A
Tl =T (25)
2 A»0? A0
[ 26
e R (26)
and
6A393 6/\292 Ale

NATDOE2) A D T A (27)

Now the moment estimators of a, A and 6 of the AGHPD are obtained by solving
the non-linear equations (27), (28), and (29).

3.2.  Method of maximum likelihood

Let a(y) be the observed frequency of y events and k be the highest value of y
observed. Then the log likelihood function of the sample is

log L = Z )log g,
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Let &, A and 6 denote the maximum likelihood estimates of the parameters «,
A and 6 of the AGHPD . Now &, A and 6 are obtained by solving the normal
equations (30), (31) and (32) as given below, in which for j=1, 2, ... and any
nE R, Aj(n) = (1 +ji A+ jin), (B) = [[(B)] ! [%F(ﬂ)}, for B> 0 and A, is
as defined in Result 2.4.

Olog L
da =0,
equivalently
> oo () Ly in ) <o (28)
a — a) — —Ay(a =0,
= Yy Ay(Oé) )\_'_y 1+y Yy 1
Odlog L
=0
oA ’
equivalently

k 00 T
> aty) {Z OG0+ ) — v+ + )]

y=0 =0 ( )m
— (@ +6)"
5y T[wm — A+ )] +9(A) %b(/\+y)} =0, (29)
=0 x
and
Olog L
o6
equivalently
i 1 oy
a(y)— <yt — —A; p =0. 30
yz:(:) b {y 3 } (30)

4. REAL LIFE DATA APPLICATION

In this section we have considered two real life data applications for illustrating
the usefulness of the AGHPD.

The first data set given in the first two columns of Tables 1 or 2 describes the
number of European red mites on apple leaves, taken from Garman (1951). On
july 18, 1951, 25 leaves were selected at random, from each of the six trees and
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counted the number of adult females on each leaf is considered here in this data
set. The second data set given in the first two column of Tables 3 or 4 describes
the epileptic seizure counts. Thirteen patients with intractable epilepsy controlled
by anti-convulsant drugs were observed for times between three months and five
years. Information about the number of daily seizures was recorded. The data
given in Tables 3 or 4 corresponding to the daily seizure counts of a particular
patient for 351 days. We have computed both the moment estimators and the
maximum likelihood estimators of the parameters of the models- the HPD, the
AHPD and the AGHPD along with their corresponding standard errors. Further,
we obtain the expected frequencies in each case and computed the corresponding
chi-square values and Kolmogorov-Smirnoff distance values along with respective
P-values. The results obtained in respect of data set 1 are presented in Table 1
and Table 2 and the results corresponding to second data set are given in Table 3
and Table 4. From the calculated values of the chi-square statistic, Kolmogorov-
Smirnoff distance measure and P-values, one can observe that the AGHPD gives
better fits to both the data sets compared to the existing models.

5. TESTING OF HYPOTHESIS

Note that when o = 0 the AGHPD reduces to the HPD as per definition 2.1.
So, in order to check the validity of the AGHPD model compared to the HPD
model, in this section we discuss the testing of the significance of the additional
parameter o by using generalized likelihood ratio test as given below. Here the
null hypothesis is Hy : « = 0 against the alternative hypothesis H; : o # 0 and
the test statistic is

—2logA = 2[logL(€%; ) — logL(Q*; z)] (31)

where  is the maximum likelihood estimate of Q = ), 6, a)) with no restric-
tion, and Q* is the maximum likelihood estimate of © when o = 0. The test
statistic —2logA given in (33) is asymptotically distributed as x? with one de-
gree of freedom. [for details see Rao (1973)]. We have computed the values of
logL($Y; ), logL(Q*; ) and the test statistic for the AGHPD are presented in Ta-
ble 5. Since the critical value for the test with significance level =0.05 and degree
of freedom one is 3.84, The null hypothesis is rejected in both the cases.
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TABLE 1
Observed distribution of the counts of Red Mites on Apple Leaves [P. Garman, 1951]
and expected frequencies computed using HPD, AHPD and AGHPD using the method of

moments.

count

Expected frequency by method of moments

observed ‘f’ HPD AHPD AGHPD
0 70 60.32 68.14 68.09
1 38 42.80 38.04 38.12
2 17 25.24 20.82 20.85
3 10 12.73 11.17 11.16
4 9 5.61 5.87 5.85
5 3 2.19 3.02 3.00
6 2 0.77 1.52 1.51
7 1 0.25 0.72 0.75
8 0 0.07 0.35 0.36
Total 150 150 150 150
Degrees of freedom 3 3 2
Estimated A =4.911 A =11.822 & = 70.759
value of (2.096 x 1075)  (2.186 x 1076)  (8.106 x 10798
parameters and 6 = 3.485 6 = 13.56 A = 147.467
standard error (3.172 x 107°)  (4.264 x 1075)  (7.819 x 107%)
within brackets 0 = 43.925

(9.917 x 1079)

2

x? - value 4.346 5.212 2.912
P - value based on 0.226 0.157 0.533
X2 - value
Kolmogorov-Smirnoff 0.088 0.044 0.022
distance value
P value based on
Kolmogorov-Smirnoff 0.654 0.748 0.930

distance value




A three parameter hyper-Poisson distribution etc. 193

TABLE 2
Observed distribution of the counts of Red Mites on Apple Leaves [P. Garman, 1951]
and expected frequencies computed using HPD, AHPD and AGHPD using the method of
mazimum likelihood.

Expected frequency by method of m.l.e

count  observed ‘f’ HPD AHPD AGHPD
0 70 68.20 63.55 68.30
1 38 38.05 39.86 38.00
2 17 20.79 23.19 20.74
3 10 11.13 12.47 11.11
4 9 5.85 6.18 5.8
5 3 3.01 2.83 3.01
6 2 1.56 1.19 1.53
7 1 0.71 0.47 0.76
8 0 0.21 0.17 0.37
Total 150 150 150 150
Degrees of freedom 3 3 2
Estimated A = 47.818 A =3.805 & = —4.246
value of (2.181 x 1073)  (2.262 x 10~%)  (3.096 x 10~°)
parameters and 0 = 26.67 0 = 4.443 A = 43.065
standard error (3.261 x 107%)  (4.116 x 107°)  (2.185 x 107°)
within brackets 0 = 26.226
(4.026 x 1077)
Y2 - value 3.412 4.62 2.412
P - value based on 0.332 0.461 0.543
x? - value
Kolmogorov-Smirnoff 0.050 0.040 0.021

distance value

P value based on

Kolmogorov-Smirnoff 0.687 0.787 0.942
distance value
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TABLE 3
Observed distribution of epileptic seizure counts [Albert, 1991; Hand et al., 1994, p.
133] and expected frequencies computed using HPD, AHPD and AGHPD using the
method of moments.

Expected frequency by method of moments

count  observed ‘I’ HPD AHPD AGHPD
0 126 126 122.19 124.01
1 80 86.74 87.28 85.25
2 59 56.73 58.86 57.78
3 42 35.35 37.23 37.49
4 24 21.02 21.99 22.67
5 8 11.96 12.09 12.58
6 5 6.52 6.19 6.36
7 4 3.42 2.96 3.92
8 3 1.72 1.32 1.23
Total 351 351 351 351
Degrees of freedom 4 4 3
Estimated A =19.07 A =3.528 & =—6.24
value of (4.184 x 107%)  (4.552 x 107%)  (3.831 x 10713)
parameters and 0 =13.12 0 = 5.448 A=1.713
standard error (5.134 x 1075)  (3.022 x 107%)  (3.963 x 10712)
within brackets 0 = 4.022
(7.431 x 10714)
x? - value 18.093 6.653 2.60
P - value based on 0.013 0.155 0.457
x? - value
Kolmogorov-Smirnoff 0.031 0.033 0.009
distance value
P value based on
Kolmogorov-Smirnoff 0.714 0.682 0.972

distance value
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TABLE /J
Observed distribution of epileptic seizure counts [ Albert, 1991; Hand et al. , 1994, p.
133] and expected frequencies computed using HPD, AHPD and AGHPD using the
method of mazimum likelihood.

Expected frequency by method of m.l.e

count  observed ‘f’ HPD AHPD AGHPD
0 126 98.48 112.41 121.59
1 80 99.06 89.45 88.43
2 59 73.96 64.19 59.22
3 42 43.89 41.03 36.86
4 24 21.63 23.31 21.48
5 8 9.10 11.81 11.78
6 5 3.35 5.37 6.12
7 4 1.09 2.21 3.02
8 3 0.32 0.83 1.42
Total 351 351 351 351
Degrees of freedom 3 4 3
Estimated A =2.876 A =2.404 & =12.789
value of (2.787 x 1075) (4292 x 1077)  (2.731 x 10713)
parameters and 0 = 2.896 0 = 3.776 A= 28.717
standard error (5.076 x 10™%)  (4.356 x 1075)  (2.849 x 10712)
within brackets 0 = 12.435
(6.451 x 10714)
x2- value 4.12 4.22 2.449
P - value based on 0.127 0.377 0.513
x? - value
Kolmogorov-Smirnoff 0.077 0.04 0.012

distance value

P value based on
Kolmogorov-Smirnoff 0.124 0.570 0.857
distance value

TABLE 5
Calculated values of the test statistic in case of generalized likelihood ratio test.

log L(2;x)  logL(2*;x) Test Statistic

1 29.231 -97.098 252.658
2 -264.375 -290.274 651.789




196 C. S. Kumar and B. U. Nair

TABLE 6
Bias and standard errors of each of the parameters of the simulated data sets
corresponding to (i) o =0.95, A = 1.25 and 6 = 1.25 (under dispersed case) (ii)
a=1.25 A\=1.75 and 0 = 1.75 (under dispersed case) (iii) o = 1.50, A = 0.41 and
6 = 0.25 (over dispersed case).

method of moments method of m.l.e
Data sample « A 0 «@ A 0
sets sizes

500 0.743  0.813 0646 0622 0787  0.539
(0.451)  (0.358)  (0.351)  (0.343)  (0.249)  (0.249)

(i) 1000  0.401 0370 0360 0370 0260  0.211
(0.331)  (0.258)  (0.265)  (0.321)  (0.233)  (0.210)

5000  0.120 0141 0120 0110  0.131  0.110

(0.007)  (0.005) (0.003)  (0.005)  (0.003)  (0.001)

500 0.631 0796 0681 0522  0.687  0.551
(0.417)  (0.320) ( 0.445) (0.406) (0.30)  (0.434)

(i) 1000  0.339 0428 0436 0327 0329 0415
(0.316)  (0.231)  (0.364)  (0.237)  (0.202)  (0.261)

5000  0.124  0.147 0150 0119  0.138  0.110
(0.004)  (0.002)  (0.005)  (0.003)  (0.001) ( 0.003)

500 058  0.680  0.671 0520  0.630  0.570
(0.435)  (0.414)  (0.346)  (0.324)  (0.404)  (0.302)

(i) 1000  0.340 0313 0330 0310 0310  0.240
(0.234)  (0.316)  (0.217)  (0.204)  (0.302)  (0.208)

5000  0.191 0180 0182  0.161  0.120  0.141
(0.0041)  (0.0014)  (0.004)  (0.003)  (0.0011)  (0.002)

6. SIMULATION

In this section we carried out a simulation study of the AGHPD variate for the
comparison of the estimation procedures discussed in section 3 of this paper.

We have simulated the AGHPD variates for the following sets of values of its pa-
rameters for samples sizes n = 500, 1000 and 5000.

(i) & = 0.95;\ = 1.25;0 = 1.25 (under dispersed case)

(ii) a = 1.25;A = 1.75;0 = 1.75 (under dispersed case) and

(iil)ae = 1.50;A = 0.41;0 = 0.25 (over dispersed case)

For each of these simulated samples, we have fitted the AGHPD and obtain the
estimates of the parameters by both method of moments and method of maximum
likelihood, computed the bias and standard errors in each case and listed in Table
6. From Table 6 it can observe that both bias and standard errors in respect of
each parameters are in decreasing order as the sample size increases and likelihood
estimators have less bias and standard errors compared to moment estimators.
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SUMMARY

A three parameter hyper-Poisson distribution and some of its properties

A new class of distribution is introduced here as a generalization of the well-known
hyper-Poisson distribution of Bardwell and Crow (J. Amer. Statist. Associ., 1964)
and alternative hyper-Poisson distribution of Kumar and Nair (Statistica, 2012), and
derive some of its important aspects such as mean, variance, expressions for its raw
moments, factorial moments, probability generating function and recursion formulae for
its probabilities, raw moments and factorial moments. The estimation of the parameters
of the distribution by various methods are considered and illustrated using some real
life data sets. Further, a test procedure is suggested for testing the significance of the
additional parameter and a simulation study is carried out for comparing the performance
of the estimators.

Keywords: Confluent hypergeometric series; Displaced Poisson distribution; Factorial
moments; Hermite distribution; Probability generating function



