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THE VARIANCE OF GINI’S MEAN DIFFERENCE 
AND ITS ESTIMATORS (*)1

M. Zenga, M. Polisicchio, F. Greselin 

1. INTRODUCTION

The two most known measures of variability are the standard deviation  and 
the Gini’s mean difference . The standard deviation  is more popular than  be-
cause its square, the variance 2, has some interesting properties from both descrip-
tive and sampling points of view. The popularity of the mean difference is mainly 
due to its relationship with the Gini’s concentration index. An impediment to a lar-
ger diffusion of  is due to some difficulties arising in the determination of the 

variance of the sample mean difference, Var( ˆ ), as well as in its estimation. 

Var( ˆ ) results to be a function of 2,  and a functional . In this paper a 

strong relationship between  and is pointed out: in effect,  is the expected 

value of D(x), the mean deviation about x, and  is the expected value of D2(x).

Moreover, in this paper two estimators for Var( ˆ ) are introduced: the natural es-

timator ˆ( )Var  and an unbiased estimator ˆˆ ( )Var .

The present work is organized as follows. In Section 2 some definitions and 

notations are introduced. In Section 3, Var( ˆ ) is derived for sampling from a 
continuous random variable (c.r.v.) and for sampling with replacement from a fi-
nite population (f.p.). 

Section 4 deals with the functional , its relationship with D2(x) and its com-

puting formulas. Some examples, referring to four c.r.v. and two finite popula-
tions, are also given.  

The natural estimator of Var( ˆ ) is obtained in Section 5, while an unbiased es-

timator of Var( ˆ ) is given in Section 6. For the previously selected examples, 
some sampling simulations are reported in Section 7. Finally, Section 8 concludes 
and points out some possible developments.  

(*) This paper, though it is the result of a close collaboration, was specifically elaborated as fol-
lows: Section 6 and the Concluding remarks are due to M. Zenga, M. Polisicchio wrote the Intro-
duction, Sections 2 and 4, while Sections 3, 5 and 7 are due to F. Greselin. 
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2. NOTATIONS AND DEFINITIONS

Let X be a c.r.v. with probability density function f(x), for x . The Gini’s 

mean difference  is defined by: 

( ) ( )x y f x f y dx dy  (2.1) 

Let D(x) be the mean deviation of the c.r.v. X about x:

( ) E( ) ( )D x x X x y f y dy  (2.2) 

It is easy to show that: 

( ) ( ) E( ).D x f x dx D  (2.3) 

In the case of a f. p. of N units,  is given by: 

2
1 1

1
,

N N

i j

i j

a a
N

 (2.4) 

where a1 , a2, ..., aN are the values that the variate X takes on the N units. By con-
sidering the mean deviation of X about ai :

1

1
( )

N

i i j

j

D a a a
N

 , (2.5) 

the mean difference can be expressed by: 

1
1

1
( ) M ( )

N

i

i

D a D
N

. (2.6) 

Let  e 2 denote, respectively, the mean and the variance of both the variate 
X of a f.p. and the c.r.v. X. In this paper it is assumed that 2 is finite. 

By (X1,...,Xi,... Xn) we denote both a random sample of size n (n > 3) from the 
c.r.v. X and a random sample (with replacement) from the variate X of a f.p.. 
Obviously, in both cases, the r.v. Xi (i=1,2,...,n) are independent and identically 

distributed. Let ˆ  denote the sample mean difference without repetition: 
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ˆ 1
.

( 1)

n n

i j
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X X
n n

  (2.7) 

It is well known that: 

ˆE( ) , for every .  (2.8) 

3. THE VARIANCE OF ˆ

To get the variance of ˆ  its second moment about zero is needed (see, for ex-
ample Kendall et al., 1994, p. 362): 

2

2

1 1

2 2
1 1 1 1

ˆ 1
E( ) E

( 1)

1
E( ) .

( 1)

n n

i j

i j
i j

n n n n

i j s t

i j s t
i j s t

X X
n n

X X X X
n n

 (3.1) 

The n2(n – 1)2 terms of the quadruple summation can be classified as follows: 

i) n(n – 1)(n – 2)(n – 3) terms with i j s t; for these terms: 

2E( ) E( )E( ) ;i j s t i j s tX X X X X X X X

ii) n(n – 1) terms with i = s, j = t, i j and n(n – 1) terms with i = t, j = s, i j; for 
these cases:  

2 2E( ) E( ) E( ) 2 ;i j i j i j j i i jX X X X X X X X X X

iii) n(n – 1)(n – 2) terms with only two equal indexes of the summation, one in 
each expression delimited by the absolute value. For these cases: 

E( ) E( )

E( ) E( ) ;

i j i t i j s i

i j j t i j s j

X X X X X X X X

X X X X X X X X F

in conclusion: 
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1 1 1 1

2 2

E( )

( 1)( 2)( 3) 4 ( 1) 4 ( 1)( 2) .

n n n n

i j s t

i j s t
i j s t

X X X X

n n n n n n n n n F

Hence:

2 2 2ˆ 1
E( ) [4 4( 2) ( 2)( 3) ]

( 1)
n n n

n n
F  , 

and, finally: 

2 2ˆ (2 3)4
Var( ) ( 2) .

( 1) 2

n
n

n n
F  (3.2) 

Formula (3.2) for Var( ˆ ) is deduced here as in (Lomnicki, 1952). The variance 

of ˆ  was first derived in (Nair, 1936), in a somewhat complex way, on the basis 
of the ordinal statistics X(i), i = 1,...,n. Moreover, Nair derived the expression of 

the variance of ˆ  for the Normal, the Exponential and the Rectangular distribu-
tions.

Michetti and Dall’Aglio gave an equivalent expression for the variance of ˆ

and derived it for the Pareto distribution. They also obtained the variance of ˆ  in 
the case of unordered sampling without replacement (Michetti and Dall’Aglio, 
1957).

Glasser derived the variance of ˆ  in the case of sampling without replacement 
(Glasser, 1962). To overcame the issue of the estimators of  and their variances, 

Schechtman and Yitzhaki proposed an upper bound on the variance of ˆ

(Schechtman and Yitzhaki, 1990). 

4. THE FUNCTIONAL 

The functional  may be expressed in different forms. A simple formula can 

be based on the mean deviation of X about x, respectively given by (2.2) and (2.5) 
for c.r.v. and f.p.. This expression allows to obtain an interesting relation between 

 and 2.

For a c.r.v.,  is given by: 

( ) ( ) ( )x y x z f x f y f z dx dy dz , (4.1) 

or:
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( ) ( ) ( )x y f y dy x z f z dz f x dx . (4.2) 

By identifying the mean deviation of X about x, we get:

2 2( ) ( ) ( ).D x f x dx E D  (4.3) 

and, for (2.3), it follows that: 

2 .  (4.4) 

In the following, we get an expression for the computation of , based once 

again on D(x). In fact: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ ( )] [1 ( )]

2[ ( ) ( )] ( )

x

x

D x x y f y dy x y f y dy y x f y dy

xF x Q x Q x x F x

xF x Q x x

where F(x) is the cumulative distribution function of X and Q(x) is the first in-

complete moment function of X, i.e.: ( ) ( )
x

Q x y f y dy .

Now:

2 2 2( ) 4[ ( ) ( )] ( ) 4[ ( ) ( )]( ),D x xF x Q x x xF x Q x x  (4.6) 

and, by substituting this expression into (4.3), we get: 

2 2{4[ ( ) ( )] ( ) 4[ ( ) ( )]( )} ( )xF x Q x x xF x Q x x f x dx

2 24 {[ ( ) ( )] [ ( ) ( )]( )} ( ) .xF x Q x xF x Q x x f x dx  (4.7) 

Lomnicki derived formula (4.7) in another way (Lomnicki, 1952): the present 
approach, however, making reference to D(x), generally allows an easier calcula-

tion of the functional , as it can be appreciated below in this Section. 

For some r.v. it is easier to get  by the functions: 

( ) 1 ( )G x F x

and:
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( ) ( )V x Q x .

With this notation, D(x) can be expressed by: 

( ) ( ) 2[ ( ) ( )]D x x xG x V x

and  can be written as: 

2 24 {[ ( ) ( )] ( )[ ( ) ( )]} ( )xG x V x x xG x V x f x dx   (4.8) 

In the case of a f.p.: 

3
1 1 1

2
1 1 1

1

1 1
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a a a a
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1 1
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1 1
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i

D a a a
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 (4.9) 

If a(1) , a(2), ..., a(N) are the ordered values of a1 , a2, ..., aN , it is easy to show that, 

analogously to (4.7), can be also expressed by: 

2 2
( ) ( ) ( )3 2

1 1

4 4
( ) ( )( )

N N

i i i

i i

ia T a ia T
N N

 (4.10) 

where: 

( )
1

i

i j

j

T a .

The value of the variance of ˆ  is below reported for some c.r.v. and two f.p. 
For the continuous random variables, the mean deviation D(x) is evaluated first, 

and therefore the mean difference  and the functional  are easily obtained 

from their relation with the mean deviation. For the finite populations, by 
straightforward changes to notation, a similar approach is chosen. 

4.1. Normal distribution

Let X be the normal distribution with probability density function: 
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21

2
1

( ) for 0.
2

x

f x e

So:

21

22
( ) ( ) 2 1

x

x
D x x e

where ( )x denotes, as usual, the c.d.f. of the standard normal, 

2
   and

2

( 6 3 )
3

,

hence:

2

ˆ 2 3( 2) 2(2 3)4 1
Var( ) .

( 1) 3

n nn

n n

4.2. Exponential distribution

Let X be the c.r.v. with probability density function: 

( ) xf x e    for x  0,  > 0. 

It is well known that 2

2

1
 and it is easy to show that: 

2 1
( ) ;xD x x e

1
 and 

2

4
.

3

Hence:

2
ˆ 2(2 1) 1

Var( ) .
3 ( 1)

n

n n

4.3. Rectangular distribution

Let X be the c.r.v. with probability density function: 

1
( )f x

b a
   for a  x  b, (b > a).
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In this case 
2

2 ( )

12

b a
 and also: 

2
2( ) 7

( ) ; ; ( ) .
2 3 60

x a b a b a
D x x b a

b a

Hence:

2ˆ 3
Var( ) ( ) .

45 ( 1)

n
b a

n n

4.4. Pareto distribution

Let X be the c.r.v. with probability density function: 

( 1)
0( )f x x x    for x  x0 ,  > 2, x0 > 0.

In this case 
2

2 0
2( 1) ( 2)

x
 and: 

0 02
( )

1 1

x xx
D x x

x
; 02

( 1)(2 1)

x
;

2 2
2 0

2
(

2
.

1) (2 1)(3 2)

x

Hence:

2 2
2 2 20

2
ˆ 2 (2 3)4

Var( ) ( 2)
( 1) 2( 1) (2 1)(3 2)

x n
n

n n
.

4.5. Finite population 1

i 1 2 3 4   5   6   7 
ai 2 4 5 8 11 15 18 

For this population: 

7 7
2 2

1 1

1 1 212
9; ( 9) .

7 7 7
i i

i i

a a

 and  can be evaluated as follows. Let: 



The variance of Gini’s mean difference and its estimators 463

1

( ) ( ).
N

i i j i

j

T a a a N D a

So, from (2.4): 

2
1

1
( )

N

i

i

T a
N

  (4.11) 

and from (4.9): 

2

3
1

1
( ).

N

i

i

T a
N

  (4.12) 

Table 1 shows how to evaluate  and  from (4.11) and (4.12). 

So, we get: 

2

304
6.204082;

7
 and 

3

13876
40.45481.

7

By applying formula (3.2), we finally obtain: 

ˆ (2 3)4 212
Var( ) ( 2)40.45481 38.49063 .

( 1) 7 2

n
n

n n
 (4.13) 

TABLE 1 

Evaluation of |aj- ai| ,  and for the data of population 1 

 aj

 ai
  2   4   5   8 11 15 18 ( )iT a 2( )iT a

  2   0   2   3   6   9 13 16   49   2401 
  4   2   0   1   4   7 11 14   39   1521 
  5   3   1   0   3   6 10 13   36   1296 
  8   6   4   3   0   3   7 10   33   1089 
11   9   7   6   3   0   4   7   36   1296 
15 13 11 10   7   4   0   3   48   2304 
18 16 14 13 10   7   3   0   63   3969 

        304 13876 

4.6. Finite population 2

i 1 2 3   4   5 
ai 1 3 5 10 11 

This example shows how to get the values of , 2,  and  by using only one 

table. 
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TABLE 2 

Evaluation of , 2, and of , by formula (4.10) 

i a(i) ia(i) Ti ia(i)-Ti -a(i) (ia(i)-Ti)( - a(i)) (ia(i)-Ti)2 ( - a(i))2

1   1     1   1   0  5      0       0 25 
2   3     6   4   2  3      6       4   9 
3   5   15   9   6  1      6     36   1 
4 10   40 19 21 -4   -84   441 16 
5 11   55 30 25 -5 -125   625 25 
 30 117    -197 1106 76 

From table 2 we get: 

2

3 2

76 4 4
6; 15.2; 15.2 1106 ( 197) 19.072.

5 5 5

It is well known that: 

( )
1 1 1

2 {2 ( 1)}
N N N

i j i

i j i

a a a i N ;

or:

( ) ( )
1 1 1 1

4 2( 1)
N N N N

i j i i

i j i i

a a ia N a .

Therefore: 

( ) ( )
1 1

2

4 2( 1)

.

N N

i i

i i

ia N a

N

Hence, from table 2, we get: 

2

4(117) 2(6)(30) 468 360
4.32.

255

Finally:

ˆ (2 3)4
Var( ) 15.2 ( 2)19.072 18.6624 .

( 1) 2

n
n

n n
 (4.14) 

5. THE NATURAL ESTIMATOR OF THE VARIANCE OF ˆ

In section 3 we presented the variance of ˆ , in the case of sampling with re-
placement from a f.p. or from a c.r.v. (see 3.2). 
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The aim of this section is to get the natural estimator of Var( ˆ ). It can be eas-

ily obtained by substituting, in the expression of Var( ˆ ), 2,  and 2, with their 

respective estimators, derived by considering the sample as a finite population of
n units.

The variance 2 can then be estimated by: 

2 2

1

1
( )

n

i

i

X X
n

 (5.1) 

where X  is the sample mean; for the mean difference, the estimator is given by: 

2
1 1

1 n n

i j

i j

X X
n

  (5.2) 

and, for the functional :

3
1 1 1

1 n n n

i j i t

i j t

X X X X
n

 (5.3) 

The natural estimator of Var( ˆ ) is hence: 

2 2ˆ (2 3)4
( ) ( 2) .

( 1) 2

n
Var n

n n
  (5.4) 

In order to evaluate the bias of the proposed estimator, the expected values of 
2 ,  and 2 are needed. It is well known that: 

2 21
E( )

n

n
,  (5.5) 

and:

2 2
2 2ˆ ˆ1 1

E( ) E { Var( )}
n n

n n
. (5.6) 

For the natural estimator of , given by (5.3), some remarks are needed: 

3
1 1 1

1
E( ) E( )

n n n

i j i t

i j t

X X X X
n

. (5.7) 

In the summation there are: 

i) n(n – 1)(n – 2) terms with i j t; for these terms the expected value is: 
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E( ) ;i j i tX X X X

ii) n(n-1) terms with j = t and i j; for them the expected value is: 

2 2E( ) E( ) 2 ;i j i j i jX X X X X X

all other terms have a null expectation. 
Hence:

2

3

1
E( ) ( 1)( 2) 2 ( 1)n n n n n

n
.  (5.8) 

From (5.5), (5.6) and (5.8), we get: 

2 2

4
ˆ ˆ 4

E( ( )) Var( ) { ( ) ( ) ( ) },
( 1)

Var A n B n C n
n n

 (5.9) 

where: 

3 2

2

2

( ) 2 11 14 6;

( ) ( 2)( 7 12 6);

( ) (2 3)(6 11 6)/2.

A n n n n

B n n n n

C n n n n

The natural estimator ˆ( )Var  is hence a biased estimator of ˆVar( ) .

Formula (5.9) also assures that ˆ( )Var  is asymptotically unbiased. Moreover, 

if the relative bias is defined as: 

ˆ ˆ
ˆ

ˆ

E[ ( )] Var( )
r.b.{ ( )}

Var( )

Var
Var ,

we note that: 

ˆlim  r.b.{ ( )} 0.
n

Var

This condition is stronger than the asymptotic unbiasedness of ˆ( )Var : it 

gives informations about the rate of convergence to zero for the bias of ˆ( )Var .

6. UNBIASED ESTIMATOR OF THE VARIANCE OF ˆ

In order to obtain an unbiased estimator of Var( ˆ ), unbiased estimators of 2

and of  are first needed. An unbiased estimator of 2 is: 
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2 2

1

1
( ) .

1

n

i

i

S X X
n

 (6.1)  

The natural estimator of  is given by (5.3). From (5.8) we get: 

3 2E( ) 2 ( 1)
.

( 1)( 2)

n n n

n n n
 (6.2) 

By substituting in (6.2) 2 with E(S2) and  with the statistic (5.3), we get: 

22

3
1 1 1

2E( )1
E

( 1)( 2) ( 2)

n n n

i j i l

i j l

Sn
X X X X

n n nn

and hence: 

2

1 1 1

1 2
E .

( 1)( 2) 2

n n n

i j i l

i j l

S
X X X X

n n n n

So, an unbiased estimator of is given by: 

2

1 1 1

ˆ 1 2

( 1)( 2) 2

n n n

i j i l

i j l

S
X X X X

n n n n
.  (6.3) 

Now, by substituting in (3.2) 2 with S2,  with ˆ  and 2 with 2ˆ , we get the 

statistic: 

2 2ˆˆ ˆ(2 3)4
( ) ( 2) .

( 1) 2

n
Var S n

n n
 (6.4) 

Now, by remembering that: 

22 2ˆ ˆ ˆ ˆE( ) [E( )] Var( ) Var( ) ,

we obtain from (6.4): 

2 2

2 2

ˆ ˆ

ˆ

(2 3)4
E ( ) ( 2) ( Var( ))

( 1) 2

(2 3) 2(2 3)4
( 2) Var( ) .

( 1) 2 ( 1)

n
Var n

n n

n n
n

n n n n

From (3.2), it follows that: 
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ˆ ˆ ˆ

ˆ

2(2 3)
E ( ) Var( ) Var( )

( 1)

( 2)( 3)
Var( ) ;

( 1)

n
Var

n n

n n

n n

 (6.5) 

and:

ˆ ˆ( 1)
E ( ) Var( )

( 2)( 3)

n n
Var

n n
. (6.6) 

From (6.6) and (6.4) an unbiased estimator of Var( ˆ ) is hence given by: 

2 2ˆˆ ˆ(2 3)4ˆ ( ) ( 2)
( 2)( 3) 2

n
Var S n

n n
. (6.7) 

7. SAMPLING RESULTS

The theoretical results of the previous sections are very relevant for applica-
tions. The aim of this section is to observe the behaviour of the estima-

tors ˆ( )Var  and ˆˆ ( )Var , for increasing values of the sample size n and for dif-

ferent underlying distributions, by sampling methods1.2

The adopted methodology can be described by the following steps: 
a) choice of the c.r.v. and of the values of its parameters, evaluation of its de-

scriptive indexes, such as 2, , , the functional  and Var( ˆ );

b) choice of the number B of independent pseudorandom samples to be drawn 
from the c.r.v.; 

c) setting of the sample sizes n;
d) simulation of B samples of size n from the c.r.v.; 

e) for each sample obtained in d), evaluation of ˆ , ˆ( )Var  and ˆˆ ( )Var ;

f) for each group of B samples, evaluation of: 

- the mean value M1( ˆ ), to be compared with 

 - the variance V( ˆ ), to be compared with Var( ˆ ).

 - M1
ˆ( ( ))Var  and M1

ˆˆ( ( ))Var , to be compared with Var( ˆ ).

As far as step a) is concerned, the families of distributions presented in Section 
4 will be considered. 

Note that the choice of the parameters is crucial: we need the existence of the 
first and the second moment of each c.r.v. and this requirement will be accom-
plished in all examined cases. 

1 The authors wish to thank Dr. Paolo Radaelli for his valuable help in processing data for an 
earlier draft of this paper.
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The choice of B, the number of samples to be drawn from each c.r.v. can be 
reasonably fixed by B = 5000. Finally, the increasing values 6, 30, 60, 120, and 
240 were chosen for the sample size n.

7.1. Normal distribution, with = 0,  = 5 (Table 3). 

For this distribution 5.641896 and F = 35.899778. 

TABLE 3 

Simulation data for the estimation of ˆVar( )  by ˆ( )Var  and ˆˆ ( )Var ,

sampling from the normal distribution (B=5000 samples) 

n
1

ˆM ( ) )ˆV( 1
ˆM ( ( ))Var 1

ˆˆM ( )( )Var )ˆVar(

    6 5.635187 3.297402 2.458101 3.435431  3.381288 

  30 5.624399 0.566456 0.522389 0.567180  0.565566 

  60 5.635056 0.271621 0.264487 0.275657  0.276920 

120 5.646730 0.135127 0.133863 0.136679  0.137031 

240 5.643642 0.065605 0.067517 0.068231  0.068163 

We observe that M1( ˆ ) is very close to the value of , for the unbiasedness of 
ˆ . The values of V( ˆ ), M1

ˆ( ( ))Var  and M1
ˆˆ( ( ))Var  steadily decrease as n in-

creases, as Var( ˆ ) does. 

The natural estimator ˆ( )Var  offers a poor estimation of Var( ˆ ) for small 

sample sizes (but it shows a better performance as n increases), while the unbi-

ased estimator ˆˆ ( )Var  performs well for all values of n.

The last column in table 3 provides the theoretical value of Var( ˆ ), evaluated 
by (3.2), as a function of the sample size. 

7.2. Exponential distribution, with  = 0.2 (Table 4). 

For this distribution, 2=25, =5 and  =33.333333. 

TABLE 4 

Simulation data for the estimation of ˆVar( )  by ˆ( )Var  and ˆˆ ( )Var ,

sampling from the exponential distribution (B=5000 samples) 

n
1

ˆM ( ) ˆV( ) 1( ˆM ( ))Var 1( ˆˆM ( ))Var )ˆVar(

    6 4.994363 6.031127 3.404964 6.179060  6.111111 

  30 4.982594 1.131140 0.972381 1.108940  1.130268 

  60 4.989829 0.555146 0.520780 0.556491  0.560264 

120 5.002536 0.279077 0.269150 0.278240  0.278945 

240 5.005114 0.135643 0.137380 0.139687  0.139179 
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7.3. Rectangular distribution, with parameters a=0, b=1 (Table 5). 

In this case, 2 = 0.083333,  0.333333 and = 0.116667. 

TABLE 5 

Simulation data for the estimation of )ˆVar(  by )ˆ(
~

arV  and )ˆ(ˆarV ,

sampling from the rectangular distribution (B=5000 samples) 

n
1

ˆM ( ) ˆV( ) 1( ˆM ( ))Var 1( ˆˆM ( ))Var )ˆVar(

    6 0.333384 0.006514 0.007144 0.006814  0.006667 

  30 0.332434 0.000842 0.000907 0.000848  0.000843 

  60 0.333204 0.000387 0.000412 0.000395  0.000395 

120 0.333599 0.000189 0.000196 0.000191  0.000191 

240 0.333396 0.000091 0.000095 0.000094  0.000094 

7.4. Pareto distribution, first case: x0=2,  = 4 (Table 6). 

For this c.r.v., 2 = 0.88889,  0.76190 and = 1.09206. 

TABLE 6 

Simulation data for the estimation of )ˆVar(  by )ˆ(
~

arV  and )ˆ(ˆarV ,

sampling from the Pareto distribution with x0=2,  = 4 (B=5000 samples) 

n
1

ˆM ( ) )ˆV( 1( ˆM ( ))Var 1( ˆˆM ( ))Var )ˆVar(

    6 0.757956 0.317598 0.152838 0.323718  0.352653 

  30 0.760406 0.066182 0.058303 0.068167  0.068609 

  60 0.763971 0.034881 0.032720 0.035377  0.034203 

120 0.762148 0.016666 0.015852 0.016478  0.017077 

240 0.761713 0.008636 0.008493 0.008660  0.008532 

7.5. Pareto distribution, second case: x0 = 1,  = 3 (Table 7). 

For this distribution, 2 = 0.75,  0.6 and = 0.87857. 

TABLE 7 

Simulation data for the estimation of ˆVar( )  by )ˆ(
~

arV  and )ˆ(ˆarV ,

sampling from the Pareto distribution with x0 = 1,  = 3 (B=5000 samples) 

n )ˆ(M
1

)ˆV( 1( ˆM ( ))Var 1( ˆˆM ( ))Var )ˆVar(

    6 0.595250 0.278668 0.128952 0.283815  0.352571 

  30 0.598957 0.062708 0.055119 0.064760  0.069379 

  60 0.603939 0.034635 0.032320 0.035029  0.034630 

120 0.599629 0.015848 0.015113 0.015729  0.017300 

240 0.600024 0.009020 0.008805 0.008983  0.008646 
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For the last two cases, let us remark that the values chosen for the shape pa-
rameter  (  = 3 and  = 4) assure the existence of the second moment, but not 
that of the fourth moment.  

All data obtained from the simulations show that ˆ( )V , ˆ( )Var  and ˆˆ ( )Var

decrease as n increases, like ˆVar( ) . ˆ( )V  and the unbiased estimator ˆˆ ( )Var

give a good approximation of ˆVar( )  for any value of the sample size n (except 

the second case of the Pareto distribution, for which it holds only for n  30) 

while ˆ( )Var , being only asymptotically unbiased, improves its estimate as n in-

creases. 
In particular, for all considered distributions, the minimum sample sizes that 

assures a mean relative error 
ˆ ˆ

ˆ

( ) ( )

( )

Var Var

Var
< 0.02 in estimating Var( ˆ ) by 

ˆ( )Var  is n = 240. 

In the reminder of this Section, we deal with the two f.p. introduced in Section 
3. Now, as sampling with replacement is considered, the whole sample space can 
be generated, and this is computationally feasible in a reasonable time for low 

values of n. This allows to verify the unbiasedness of ˆˆ ( )Var  and to evaluate the 

bias of ˆ( )Var , even if no new informations will arise. 

7.6. Finite population 1 (Table 8). 

i 1 2 3 4   5   6   7 
ai 2 4 5 8 11 15 18 

For this population 2 212
9; ; 6.204082 and 40.45481.

7
F  The 

sample space has 7n elements: the exact distribution of the statistics ˆ , ˆ( )Var

and ˆˆ ( )Var  can be obtained, as well as their mean values. The results, shown in 

table 8, have to be exactly matched with the corresponding values obtained by 
(5.9) and (3.2). The following remarks hold: 

 - the value of M1( ˆ ) expresses the unbiasedness of ˆ ,

 - its variance V( ˆ ) is the quantity estimated by ˆ( )Var  and ˆˆ ( )Var ,

 - M1
ˆ( ( ))Var  precisely matches with (5.9), 

 - M1
ˆˆ( ( ))Var , evaluated by the exact distribution of ˆˆ ( )Var  on the sample 

space, agrees with (4.13). 
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TABLE 8 

Data for the estimation of ˆ and ˆVar( )  for f.p.1, obtained by generation of the whole sample space, 

compared with the theoretical values of E ˆ( ( ))Var  and )ˆVar(

n
1

ˆM ( ) )ˆ(V 1( ˆM ( ))Var 1( ˆˆM ( ))Var ˆ( ( ))E Var ˆVar( )

  4 6.204082 4.989588 4.875208 4.989588  4.875208 4.989588 

  6 6.204082 2.519617 2.750860 2.519617  2.750860 2.519617 

  8 6.204082 1.630392 1.848289 1.630392  1.848289 1.630392 

10 6.204082 1.189060 1.364161 1.189060  1.364161 1.189060 

7.7. Finite population 2 (Table 9). 

i 1 2 3   4   5 
ai 1 3 5 10 11 

For this population, 26, 15.2, 4.32 and 19.072.F

By generating the whole sample space, the results in Table 9 were obtained. 

TABLE 9 

Data for the estimation of ˆ and )ˆ(Var  for f.p.2, obtained by generation of the whole sample space, 

compared with the theoretical values of E ˆ( ( ))Var  and ˆVar( )

n
1

ˆM ( ) )ˆ(V 1( ˆM ( ))Var 1( ˆˆM ( ))Var ˆ( ( ))E Var )ˆ(Var

  4 4.32 2.229333 2.575000 2.229333 2.575000 2.229333 

  6 4.32 1.000960 1.398637 1.000960 1.398637 1.000960 

  8 4.32 0.594743 0.893687 0.594743 0.893687 0.594743 

10 4.32 0.406471 0.628157 0.406471 0.628157 0.406471 

12 4.32 0.301964 0.470407 0.301964 0.470407 0.301964 

The simulated data and the exact distributions presented in this section verify 
all theoretical results above introduced, about the properties of the natural esti-

mator ˆ( )Var  and the unbiased estimator ˆˆ ( )Var  of Var( ˆ ).

8. CONCLUDING REMARKS

The variance of the sample Gini’s mean difference ˆ  was already known in 
the literature (Nair, 1936; Lomnicki, 1952; Michetti and Dall’Aglio, 1957): from 

(3.2), Var( ˆ ) can be written as follows: 

2
2ˆ ( 2) ( 1.5)1

Var( ) 4 .
( 1) ( 1) ( 1)

n n

n n n n
  (8.1) 

In this work a useful relationship that ties the definition of the functional 

and the mean difference  to D(x), the mean deviation of the r.v. X about x, is 
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shown. The functional  is actually the expected value of D2(x), while is the 

expected value of D(x). Some examples for well known continuous random vari-

ables allow to appreciate how this approach generally simplify the evaluation of 

and hence Var( ˆ ) can be obtained more easily. 

The natural estimator of Var( ˆ ) is given by: 

2
2ˆ ( 2) ( 1.5)1

( ) 4 ,
( 1) ( 1) ( 1)

n n
Var

n n n n
F   (8.2) 

where: 

2 2

1

1
( )

n

i

i

X X
n

,
2

1 1

1 n n

i j

i j

X X
n

,

and:

3
1 1 1

1 n n n

i j i l

i j l

X X X X
n

.

ˆ( )Var  is an asymptotically unbiased estimator of Var( ˆ ). Moreover, the rela-

tive bias is such that: 

n

ˆ ˆ

ˆ

E( ( )) Var( )
lim  0

Var( )

Var
.

We show that an unbiased estimator of Var( ˆ ) is given by: 

2
2ˆˆ ˆ( 2) ( 1.5)1ˆ ( ) 4

( 2) ( 3) ( 3) ( 3)

n nS
Var

n n n n
,  (8.3) 

where S2 and ˆ  are the unbiased estimators of 2 and , respectively given by 

(6.1) and (6.3). Sampling simulations from four c.r.v. allow to better inspect the 

behaviour of ˆ( )Var  for increasing values of the sample size n; they also con-

firmed all theoretical results shown in this work about the properties of ˆˆ ( )Var .

A first conclusion about the estimator ˆ  of  is based on the following rela-
tions:

i) E( ˆ ) = ;

ii)
2

2ˆ ( 2) ( 1.5)1
Var( ) 4 0, as .

( 1) ( 1) ( 1)

n n
n

n n n n
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Hence ˆ  is a mean-squared-error consistent estimator of .
We now consider the standardized sample statistic: 

1
2

2

ˆ ˆ

ˆ

( ) ( )
.

Var( ) ( 2) ( 1.5)
2

( 1) ( 1) ( 1)

n
T

n n

n n n

 (8.4) 

As ˆ  is asymptotically normally distributed [Hoeffding, 1948; David, 1981, p. 
273], the asymptotic distribution of T1 is standard normal. 

To make inferences regarding , T1 needs to be modified. For example, to ob-

tain confidence intervals for  it is necessary to substitute in (8.4) Var( ˆ ) with 
ˆˆ ( )Var .

So we get the sample statistic: 

2
2

2

ˆ ˆ

ˆ
ˆ ˆ

( ) 2( )
.

ˆ ( 2) ( 1.5)( )
2

( 3) ( 3) ( 3)

n
T

n nSVar

n n n

  (8.5) 

Other analyses are needed to specify the minimum value of n needed to ap-
proximate the distribution of T2 with that of the standard normal. 

We recall that the estimator S2 of 2 is such that: 

i) E(S2) = 2;

ii) 2 2 2
4

( 3)1
Var( ) ( ) ,

( 1)

n
S

n n

where 4 is the fourth central moment of the r.v. X [Mood et al., 1974, p. 229]. 

Hence, S2 is a mean-squared-error consistent estimator of 2.

Note that for the existence of Var(S2) it is necessary that 4 , while for the 

existence of Var( ˆ ) it is sufficient that 2 .
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RIASSUNTO

Varianza della differenza media campionaria di Gini e suoi stimatori 

L’utilizzo della differenza media di Gini, come indice di variabilità, è stato finora limita-
to a causa delle difficoltà che si incontrano nella determinazione della varianza della diffe-

renza media campionaria ˆ , così come nella sua stima. Questo lavoro è un contributo 
all’affronto di tali problematiche. Considerando lo scarto medio assoluto D(x) di una v.c. 
X rispetto ad un valore assegnato x, si ricava che la differenza media campionaria  è il 

valore atteso di D(x). Inoltre, denotando con  il valore atteso di D2(x), Var( ˆ ) può esse-

re espresso come funzione di 2 (varianza di X ), di  e .

Successivamente, sono stati ricavati due stimatori di Var( ˆ ): a partire dallo stimatore 
naturale, di cui si è dimostrata la correttezza asintotica, si è poi ricavato uno stimatore non 
distorto. 

SUMMARY

The variance of Gini’s mean difference and its estimators 

The use of Gini’s mean difference as an index of variability has, until now, been re-
stricted because of some difficulties arising in computing and estimating the variance of 

its estimator ˆ . The aim of this paper is to cope with these issues. Considering the mean 
deviation D(x) of a r.v. X about a given value x, the Gini’s mean difference  results to be 

the expected value of D(x). Moreover, denoting by  the expected value of D2(x) and by 

ˆ  the sample mean difference without repetition, Var( ˆ ) can be expressed as a function 

of the variance of X, say 2,  and .

Two estimators for Var( ˆ ) are obtained: starting from the natural estimator, whose 
asympthotic unbiasedness is shown, an unbiased estimator is then derived. 


