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1. INTRODUCTION 

The concept of reciprocal coordinate subtangent (RCST) has been used in the statistical literature 
as a useful tool to study the monotone behaviors of a continuous density function and for 
characterizing distributions through its functional forms. It is considered as a measure for strongly 
unimodal property (see Hajek and Sidak, 1967). Let X  be an absolutely continuous univariate 
random variable (rv) having a probability density function (PDF) f t( )  such that f t( )′  exists. 

Then RCST to a curve y f t( )=  of the rv X  is given by  

f t
t f t

f t t
( )

( ) log ( )
( )

η
′ ∂

= − = −
∂

 (1) 

RCST also plays a very important role in reliability analysis, however, used it rather unknowingly.  
For example, failure rate or hazard rate is the coordinate subtangent measured on the curve 

y F t( )= , where F t( )  is the survival function (SF). Since many of the failure rate functions have 

complex expressions, Glaser (1980) identified t( )η  (but not called as ‘RCST’) as an easy statistical 

tool to determine the monotone behaviour or shape of a failure rate function. t( )η can also be 

expressed in terms of the failure rate 
F t

h t
F t

( )
( )

( )

′
= −  by 

h t
t h t

h t
( )

( ) ( )
( )

η
′

= − , provided h t( )′  

exist.  However, Mukherjee and Roy (1989) identified RCST as a measure to characterize various 
models by a unique determination of f t( )  using (1) is given by  

t

f t k x dx
0

( ) exp ( )η
 

= − 
 

∫   

where k  is a normalizing constant.  Mukherjee and Roy (1989) also studied some properties and 
applications of t( )η  and proved characterization results to certain important life distributions viz. 
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exponential, Lomax and finite range models.  For more details about t( )η , we refer to Gupta and 
Warren (2001); Navarro and Hernandez (2004); Mi (2004); Lai and Xie (2006); Navarro (2008); 
Sunoj and Sreejith (2012) and the references therein.   

Recently, Roy and Roy (2010) extended the concept of RCST to the bivariate and multivariate 
setup.  In the bivariate case, for a non negative vector variable X Y( , )  with PDF X Yf t s( , )( , ) , the 

vector valued RCST is defined by  

X X Yt s f t s
t ( , )( , ) log ( , )η ∂

= −
∂

 (2) 

and 

Y X Yt s f t s
s ( , )( , ) log ( , ) .η ∂

= −  
∂

 (3) 

If the bivariate RCST ( )X Yt s t s( , ), ( , )η η  is continuous and X Yf( , )(0,0) 0> , then Roy and Roy 

(2010) proved that the density curve can be uniquely determined from the following two 
alternative forms: 

t s

X Y X Yf t s C x dx t y dy( , )
0 0

( , ) exp ( ,0) ( , )η η
 

= − − 
 

∫ ∫  (4) 

and 

s t

X Y Y Xf t s C y dy x s dx( , )
0 0

( , ) exp (0, ) ( , ) ,η η
 

= − −   
 

∫ ∫  (5) 

where C  is a normalizing constant. 
In modeling statistical data, the standard practice is either to derive the appropriate model 

based on the physical properties of the system or to choose a flexible family of distributions and 
then find a member of the family that is appropriate to the data.  In both the situations it would be 
helpful if we find characterization theorems that explain the distribution using important measures 
of indices (see for example, Nair and Sankaran, 1991; Ruiz and Navarro, 1994; Asadi, 1998; 
Sankaran and Nair, 2000; Sankaran and Sunoj, 2004).  

Characterizations of the bivariate distribution or joint density through their conditional 
densities or survival functions are an important problem studied by many researchers.  Arnold 
(1995, 1996) and Arnold and Kim (1996) have studied several classes of conditional survival models. 
The identification of the joint distribution of X Y( , )  when conditional distributions of 

X Y s( | )=  and Y X t( | )=  are known is one important problem studied in the past. This 
approach of identifying a bivariate density using the conditionals is called the conditional 
specification of the joint distribution (see Arnold et al., 1999). These conditional models are often 
useful in many two component reliability systems where the operational status of one component 
is known. Another important problem closely associated to this is the identification of the joint 
distribution of X Y( , )  when the conditional distribution or corresponding reliability measures of 

the rv’s X Y s( | )>  and Y X t( | )>  are known. That is, instead of conditioning on a 
component failing (down) at a specified time, we study the system when the survival time of one 
component is known. For a recent study of these models, we refer to Navarro and Sarabia (2011); 
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Navarro et al. (2011) and the references therein.   

In the present paper, we derive some new characterizations to certain important families of 
distributions using the bivariate RCST function given in (2) and (3). The paper is organized as 
follows. In Section 2, we proved characterization results for a general bivariate model whose 
conditional distributions are proportional hazard rate models, Sarmanov family and Ali-Mikhail-
Haq family of bivariate distributions and establish a relationship between local dependence 
function and RCST. In Section 3 and 4, we define RCST for conditionally specified distributions 
and some characterization results are proved. 

 
 

2. BIVARIATE  RCST 

In this section, we consider the bivariate RCST given in (2) and (3) and study its relationship with 
some important families of distributions.  

2.1. Bivariate model with conditional distributions are proportional hazard models 

Recently, Navarro and Sarabia (2011) studied the reliability properties in two classes of bivariate 
continuous distributions based on the specification of conditional hazard functions. These classes 
were constructed by conditioning on two types of events viz. events of the type X t{ }=  and type 

Y s{ }=  and events of the X t{ }>  and type Y s{ }>  respectively, that has been used in Arnold 
and Kim (1996). In survival studies the most widely used semi parametric regression model is the 
proportional hazard rate (PHR) model. The univariate Cox PHR model is a class of modelling 
distributions with PDF and SF given by  

f t t t t( ; ) ( )exp{ ( )}, 0α αλ α = − Λ  ≥  (6) 

and 

F t t t( ; ) exp{ ( )}, 0 ,α α = − Λ  ≥    

where 0α > , t( )λ  is the baseline hazard rate function and 
t

t x dx
0

( ) ( )λΛ = ∫  is the baseline 

cumulative hazard function. The hazard (or failure) rate function of f t( ; )α  is 

h t f t F t t( ; ) ( ; ) / ( ; ) ( )α α α αλ= = . A rv with the PDF (6) can be denoted by 

X PHR t~ ( ; ( ))α  Λ . Special cases of f t( ; )α  and F t( ; )α  include exponential, Burr, Pareto and 
Weibull.  Navarro and Sarabia (2011) obtained a general form of a bivariate PDF with conditional 
distributions satisfying X Y s PHR s t1 1( | )~ ( ( ); ( ))α=  Λ  and 

Y X t PHR t s2 2( | )~ ( ( ); ( ))α=  Λ , given by 

[ ]X Yf t s c a a t s a t a s a a t s( , ) 1 2 1 2 1 1 2 2 1 2 1 2( , ) ( ) ( ) ( )exp ( ) ( ) ( ) ( )φ λ λ φ= − Λ − Λ − Λ Λ  (7) 

for t s, 0 ≥ , where a a1 2, 0 >  and 0φ ≥ . The model given in (7) is a reparametrization of the 
bivariate conditional proportional hazard model due to Arnold and Kim (1996). The case when 

0φ =  corresponds to the case of independence. In particular, if t t1( )Λ =  and s s2( )Λ = , we 
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obtain the class of bivariate distributions with exponential conditionals considered by Arnold and 
Strauss (1988). Navarro and Sarabia (2011) also obtained a bivariate PDF with conditional 
distributions satisfying X Y s PHR s t1 1( | )~ ( ( ); ( ))α>  Λ  and 

Y X t PHR t s2 2( | )~ ( ( ); ( ))α>  Λ , with joint pdf is given by 

[ ]

X Y
s t

f t s a a t s
a a

a t a s a a t s

1 2
( , ) 1 2 1 2

1 2

1 1 2 2 1 2 1 2

( ) ( )
( , ) ( ) ( ) ,

exp ( ) ( ) ( ) ( )

α αλ λ φ

φ

 
= −   

 
                    − Λ − Λ − Λ Λ  

 

(8) 

where in both cases s a a s1 1 2 2( ) [1 ( )]α φ= + Λ  and t a a t2 2 1 1( ) [1 ( )]α φ= + Λ , 1Λ  and 2Λ  are 

two cumulative hazard functions and 1λ  and 2λ  are their respective hazard rate functions.  
 
Now we have the following characterization theorem. 
 
THEOREM 2.1.  For a non negative random vector X Y( , ) , the relationships 

X
t

t s a a s t
t

1
1 2 2 1

1

( )
( , ) [1 ( )] ( )

( )
λη φ λ
λ

′
= + Λ −  (9) 

and 

Y
s

t s a a t s
s

2
2 1 1 2

2

( )
( , ) [1 ( )] ( ) ,

( )
λη φ λ
λ

′
= + Λ −   (10) 

 
hold if, and only if, X Yf t s( , )( , )  is of the form (7). 

 
PROOF. Assume that equations (9) and (10) hold, then using (4) we obtain 

t t s s
X Y

x y
f t s C a x dx dx a a t y dy dy

x y

' '
1 2

( , ) 1 1 2 1 1 20 0 0 0
1 2

( ) ( )
( , ) exp ( ) (1 ( )) ( ) ,

( ) ( )
λ λλ φ λ
λ λ

 
= − + − + Λ + 

 
∫ ∫ ∫ ∫

 

and thus 

[ ]X Yf t s C a t t a a t s s( , ) 1 1 1 2 1 1 2 2( , ) exp ( ) log ( ) (1 ( )) ( ) log ( ) ,λ φ λ= − Λ + − + Λ Λ +    

and we have the model (7).  The other part is quite straightforward. 
 
EXAMPLE 2. Bivariate exponential (i.e., t t1( )Λ =  and s s2( )Λ = ) with joint PDF 

[ ]X Yf t s c a a a t a s a a ts( , ) 1 2 1 2 1 2( , ) ( ) exp ,φ φ= − − −    

obtains characterizing relationships X t s a a a s1 1 2( , )η φ= +  and Y t s a a a t2 1 2( , )η φ= + . 
 

EXAMPLE 3. Bivariate Weibull (i.e., t t 1
1( ) γΛ =  and s s 2

2( ) γΛ = ) with joint PDF 
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X Yf t s c a a t s a t a s a a t s1 2 1 2 1 21 1
( , ) 1 2 1 2 1 2 1 2( , ) ( ) exp ,γ γ γ γ γ γφ γ γ φ− −  = − − −      

the relationships are  

( )X t s t a a a s
t

1 21 1
1 1 1 2

1
( , ) γ γ γη γ φ− −

= + −   

and  

( )Y t s s a a a t
s

2 11 2
2 2 1 2

1
( , ) .γ γ γη γ φ− −

= + −    

 

EXAMPLE 4. Bivariate Pareto (i.e., 
t

t 1
1

1

( ) log
β

β
+

Λ =  and 
s

s 2
2

2

( ) log
β

β
+

Λ = ) with joint PDF 

a a
a a

X Y
t s

f t s c a a a a
t s

1 2

1 2

1 1

1 2
( , ) 1 2 1 2 1 2

1 2 1 2

1 1
( , ) ( ) exp log log ,

β βφ β β φ
β β β β

+ +
     + +

= −       + +     
 

characterizes 

X
s

t s a a a
t

2
1 1 2

1 2

1
( , ) 1 log

βη φ
β β

 +
= + +   +  

  

and  

Y
t

t s a a a
s

1
2 1 2

2 1

1
( , ) 1 log .

βη φ
β β

 +
= + +   +  

  

 

EXAMPLE 5. Bivariate Burr (i.e., 
1

1
1

1

( ) log
+

Λ =
γβ

β
tt  and 

s
s

2
2

2
2

( ) log
γβ

β
+

Λ = ) with joint 

PDF 

a a
a a

X Yf t s c a a t s
t s

t s
a a

1 2

1 2 1 2

1 2

1 2

1 1
1 1

( , ) 1 2 1 2 1 2
1 2

1 2
1 2

1 2

1 1
( , ) ( )

exp log log ,

γ γ
γ γ

γ γ

φ γ γ β β
β β

β βφ
β β

+ +
− −    

=    + +   
 + +

                     −   
 

 

we have 

X
t s

t s a a a
tt

1 2

1

1
1 2 1

1 1 2
21

1
( , ) 1 log

γ γ

γ
γ β γη φ

ββ

−  + −
= + + − +  

  

 
and 
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Y
s t

t s a a a
ss

1

2

2 1
2 1 2

2 1 2
12

1
( , ) 1 log .

γγ

γ
γ β γη φ

ββ

−  + −
= + + −   +  

  

 
THEOREM 6. For a non negative random vector, the relationships   

1 2 1
1 1

1 2 1 2 1

( )
( , ) ( ) ( ) 1

( ) ( ) ( )
′ 

= − − − 

φ λη α λ
α α φ λX

a a tt s s t
s t a a t

 (11) 

and 

Y
a a s

t s t s
s t a a s

1 2 2
2 2

1 2 1 2 2

( )
( , ) ( ) ( ) 1

( ) ( ) ( )
φ λη α λ

α α φ λ
  ′

= − − − 
 (12) 

hold if and only if X Yf t s( , )( , )  is (8). 

 
PROOF. Assume that equations (11) and (12) holds, then using (4) we obtain 

φ λλ
α φ λ

φ λα λ
α α φ λ

  ′ 
= − − −   −    

  ′ 
                    − − −     −    

∫

∫

1 2 1
( , ) 1 1

1 2 1 2 10

1 2 2
2 2

1 2 1 2 20

( )( , ) exp ( ) 1
( ) ( )

( )exp ( ) ( ) 1 ,
( ) ( ) ( )

t

X Y

s

a a xf t s C a x dx
a x a a x

a a yt y dy
y t a a y

 
 

Equivalently, we have 

t

X Y

s

a x x
f t s C a x dx

a x x

a t y y
t y dy

a y t a y

1 1 1
( , ) 1 1

1 1 10

2 2 2 2
2 2

2 2 2 2 20

( ) ( )
( , ) exp ( )

[1 ( )] ( )

( ) ( ) ( )
exp ( ) ( )

[1 ( )] ( ) ( )

φ λ λλ
φ φ λ

φ α λ λα λ
φ α φ λ

  ′
= − − −  + Λ −  

  ′
                     − − −  + Λ −  

∫

∫  
 

which on further simplification yield 

( )
[ ]

X Yf t s C t s a t a s

a t a s a a t s
( , ) 1 2 1 1 2 2

1 1 2 2 1 2 1 2

( , ) ( ) ( ) [1 ( )][1 ( )]

exp ( ) ( ) ( ) ( ) ,

λ λ φ φ φ

φ

∗= + Λ + Λ −

                    − Λ − Λ − Λ Λ
  

reduces to the model (8).  The first part is direct. 

2.2. Sarmanov family of bivariate distributions 

Assume that Xf t( )  and Yf s( )  are univariate PDF’s with supports defined on XA R⊆  and 
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YA R⊆ . Let X t( )φ  and Y t( )φ  be bounded nonconstant functions such that 

X Xx f x dx( ) ( ) 0φ
∞

−∞

=∫  and Y Yy f y dy( ) ( ) 0φ
∞

−∞

=∫ .  Then the function defined by 

[ ]X Y X Y X Yf t s f t f s t s( , )( , ) ( ) ( ) 1 ( ) ( )ωφ φ= +  (13) 

is a bivariate joint density with specified marginals Xf t( )  and Yf s( ) , provided  ω  is a real 

number which satisfies the condition X Yt s1 ( ) ( ) 0ωφ φ+ ≥  for all t  and s . This is called the 
Sarmanov family of bivariate distributions. For various applications of this family, we refer to 
Willett and Thomas (1985, 1987) and Lee (1996). When X Xt F t( ) 1 2 ( )φ = −  and 

Y Ys F s( ) 1 2 ( )φ = −  the Sarmanov family becomes the Farlie-Gumbel-Morgenstern (FGM) family 
(see Bairamov et al., 2001). 

 
THEOREM 7. For a non negative random vector X Y( , )  

X Y
X X

X Y

t s
t s t

t s
( ) ( )

( , ) ( )
1 ( ) ( )

ωφ φη η
ωφ φ

′
= −

+
 

(14) 

and 

X Y
Y Y

X Y

t s
t s s

t s
( ) ( )

( , ) ( )
1 ( ) ( )

ωφ φη η
ωφ φ

′
= −

+
 (15) 

if and only if X Yf t s( , )( , )  is (13). 

 
The proof is similar to Theorem 1. 
 
EXAMPLE 8. Bivariate distributions with the beta marginals. In this case, we have 

X
a

t t
a b

1

1 1

( )φ = −
+

 and Y
a

s s
a b

2

2 2

( )φ = −
+

. Then (14) and (15) becomes 

X

as
a bt a b a

t s
t t a at s

a b a b

2

2 21 1 1

1 2

1 1 2 2

( 2) 1
( , )

(1 )
1

ω
η

ω

 
− ++ − − +  = −

−   
+ − −  + +  

  

and 

Y

at
a bs a b a

t s
s s a at s

a b a b

1

1 12 2 2

1 2

1 1 2 2

( 2) 1
( , ) .

(1 )
1

ω
η

ω

 
− ++ − − +  = −  

−   
+ − −  + +  

  

 
EXAMPLE 9.  Bivariate distributions with the gamma marginals.  In this case, we have 



 
 
 
 
 
 
 
 

162  S. M. Sunoj, T. B. Sreejith and J. Navarro 

 

t
X t e

1

1

1
( ) 1

α

φ
λ

−
−  

= − + 
 

and  s
Y s e

2

2

1
( ) 1

α

φ
λ

−
−  

= − + 
 

.  

Then 

t s

X

t s

e e

t s
t

e e

2

1 2

2

2
1

1

1 2

1 2

11
( , )

1
1 1

α

α α

λω
λαη λ

λ λω
λ λ

− −

− −

   −   + −  = − +
       + − −     + +     

  

and 

s t

Y

t s

e e

t s
s

e e

1

1 2

1

1
2

2

1 2

1 2

11
( , )

1
1 1

α

α α

λω
λαη λ

λ λω
λ λ

− −

− −

   −   + −  = − +
       + − −     + +     

  

 
EXAMPLE 10.  FGM family.  In this case, we have X Xt F t( ) 1 2 ( )φ = −  and 

Y Ys F s( ) 1 2 ( )φ = − . Then 

( )
( )( )

X Y
X X

X Y

f t F s
t s t

F t F s
2 ( ) 1 2 ( )

( , ) ( )
1 1 2 ( ) 1 2 ( )

ω
η η

ω
−

= +
+ − −

  

and 

( )
( )( )

Y X
Y Y

X Y

f s F t
t s s

F t F s
2 ( ) 1 2 ( )

( , ) ( ) .
1 1 2 ( ) 1 2 ( )

ω
η η

ω
−

= +
+ − −

  

2.3. Ali-Mikhail-Haq family of bivariate distributions 

The family of bivariate distributions proposed by (Ali et al., 1978) is given by 

X Y
X Y

X Y

F t F s
F t s

F t F s( , )
( ) ( )

( , ) , 1 1 ,
1 ( ) ( )

α
α

= − ≤ ≤  
−   

where XF t( )  and YF s( )  are the marginal distribution functions of X  and Y , 

X XF t F t( ) 1 ( )= −  and Y YF s F s( ) 1 ( )= − .  The above family of bivariate distributions is indexed 
by a single parameter and contains Gumbel Type I distributions as well as the case of independent 
rv’s. The parameter α  is essentially a parameter of association between X  and Y . A special case 
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of the above model is Gumbel bivariate logistic distribution given by X Y t sF t s
e e( , )

1
( , ) .

1 − −=
+ +

 

A simple way of describing the model would be through the joint distribution X YF u v( , )( , )  for 

the rv’s U V( , ) , where XU F t( )=  and YV F s( )= , and we obtain the copula 

U V
u v

F u v
u v( , )( , )

1 α
=

−
 (16) 

where u u1= −  and v v1= − . It can be verified that, for the model (16), the joint density is 
given by 

U V
u v u v

f u v
u v( , ) 3

(1 )(1 ) 2
( , )

(1 )
α α α

α
− − +

=
−

 (17) 

for u0 1< <  and v0 1< < . 
 

THEOREM 2.4. For a non negative random vector X Y( , ) , the relationships 

U
v v v

u v
u v u v u v

3 (1 ) 2
( , )

1 (1 )(1 ) 2
α α α αη
α α α α

− +
= −

− − − +
  

and 

V
u u u

u v
u v u v u v

3 (1 ) 2
( , )

1 (1 )(1 ) 2
α α α αη
α α α α

− +
= −

− − − +
  

are satisfied if and only if U Vf u v( , )( , )  is the model (17). 

 
The proof is similar to Theorem 2.1. 

2.4. Local dependence function and RCST 

Let X Y( , )  be a bivariate random vector in the support of i ia b a b b a i1 1 2 2( , ) ( , ), , 1,2 ×   >   = , 

where i ia b( , )  is an interval on the real line with an absolutely continuous distribution function 

X YF t s( , )( , ) , and PDF X Yf t s( , )( , ) . Assume that mixed partial derivative of X Yf t s( , )( , )  exists.  

The local dependence function (see Holland and Wang, 1987) of X Y( , )  is given by, 

X Yf t s f t s
t s

2

( , )( , ) log ( , ) .γ ∂
=  

∂ ∂
  

The relation between local dependence function and RCST is 

X X X Yf t s t s t s f t s
s t ( , )( , ) ( , ) , where ( , ) log ( , )γ η η∂ ∂

= −         = −  
∂ ∂

  

or 
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Y Y X Yf t s t s t s f t s
t s ( , )( , ) ( , ) , where ( , ) log ( , ) .γ η η∂ ∂

= −        = −  
∂ ∂

  

 
THEOREM 11. For a non negative random vector X Y( , )  with continuous RCST functions, the 

following conditions are equivalent:  
 

(i). X Y( , ) follows a bivariate distribution with joint PDF ts
X Yf t s a t b s e( , )( , ) ( ; ) ( ; ) θθ θ= , for 

some appropriate functions a t( ; )θ  and b s( ; )θ ;  

(ii). X
a t

t s s
a t

( ; )
( , )

( ; )
θη θ
θ

′
= − −   and Y

b s
t s t

b s
( ; )

( , )
( ; )

θη θ
θ

′
= − − ; and  

(iii). f t s( , )γ  is a constant. 

 
PROOF.  The sequence of relationships from (i) to (ii) and (iii) is direct.  The proof of (i) from 

(iii) can be obtained from (Jones, 1998).  
 
 

3. CONDITIONALLY SPECIFIED RCST FOR X  GIVEN Y s=  AND FOR Y  GIVEN 
X t=  

In this specification we consider conditioning on events of the forms X t{ }=  and Y s{ }= .  

Then, let X Y( , )  be a bivariate random variable with support S (0, ) (0, )= ∞ × ∞ .  Suppose 

X Y sf t s( | )( | )=  and Y X tf s t( | )( | )=  be the conditional PDF of X Y s( | )=  and Y X t( | )=  

respectively, then a direct extension of RCST (2) and (3) to the these conditional rv’s are given by 

X Y s X Y st s f t s
t( | ) ( | )( | ) log ( | )η = =

∂
= −

∂
 (18) 

and  

Y X t Y X ts t f s t
s( | ) ( | )( | ) log ( | )η = =

∂
= −

∂
 (19) 

Integrating both sides of (18) with respect to t  over the integral 0  to t  , we get 

t

X Y s X Y sf t s C s x s dx( | ) 1 ( | )
0

( | ) ( ) exp ( | ) ,η= =

 
= −   

 
∫  (20) 

where C s1( )  is constant of integration determined by X Y s
X

f x s dx( | )( | ) 1= =∫ . This implies that 

the conditionally specified RCST X Y s t s( | )( | )η =  uniquely determines the conditional PDF 

X Y sf t s( | )( | )= .  Similarly by using (19), the conditional PDF Y X tf s t( | )( | )=  is determined by 
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s

Y X t Y X tf s t C t y t dy( | ) 2 ( | )
0

( | ) ( ) exp ( | ) ,η= =

 
= −   

 
∫  (21) 

where C t2( )  is constant of integration determined by Y X t
Y

f y t dy( | )( | ) 1= =∫ . 

 
REMARK 12. Based on the definitions of conditional distributions, 

X Y s X Y Yf t s f t s f s( | ) ( , )( | ) ( , ) / ( )= =  and Y X t X Y Xf s t f t s f t( | ) ( , )( | ) ( , ) / ( )= = , it can be easily seen 

that X Y s Xt s t s( | )( | ) ( , )η η= =  and Y X t Ys t t s( | )( | ) ( , )η η= = , and therefore the characterization result 

in Theorem 2.1 can be obtained from Theorem 2.1 in (Navarro and Sarabia, 2011). 
 
THEOREM 13. A necessary condition for the existence for a random vector X Y( , )  with support 

X YS S×  satisfying (20) and (21) is that 

s t

Y X t X Y sy t dy x s dx u t v s( | ) ( | )
0 0

( | ) ( | ) ( ) ( )η η ∗ ∗
= =− = +∫ ∫  (22) 

holds for all s t( , )  in X YS S× .  Moreover, in this case, the PDF of X Y( , )  can be obtained as 

s

X Y Y X tf t s C u t y t dy*
( , ) ( | )

0

( , ) exp ( ) ( | ) ,η =

 
= −   

 
∫  (23) 

or 

t

X Y X Y sf t s C v s x s dx* *
( , ) ( | )

0

( , ) exp ( ) ( | ) ,η =

 
= −   

 
∫  (24) 

where C  and C *  are normalizing constants. 
 
PROOF. If X Y( , )  exists and satisfies (20) and (21), then the densities X Y sf t s( | )( | )=  and 

Y X tf t s( | )( | )=  satisfy the compatibility condition (1.20) in Theorem 1.2 of (Arnold et al., 1999, p. 

8), that is, 

X Y s

Y X t

f t s
u t v s

f s t
( | )

( | )

( | )
( ) ( ) ,

( | )
=

=

=  

 

 

using (20) and (21), it becomes 

t

X Y s

s

Y X t

C s x s dx

u t v s

C t y t dy

1 ( | )
0

2 ( | )
0

( ) exp ( | )

( ) ( ) .

( ) exp ( | )

η

η

=

=

 
− 

  =  
 
− 

 

∫

∫
  



 
 
 
 
 
 
 
 

166  S. M. Sunoj, T. B. Sreejith and J. Navarro 

 
Equivalently, 

t s

X Y s Y X t
v s

x s dx y t dy u t C t
C s( | ) ( | ) 2

10 0

( )
exp ( | ) ( | ) ( ) ( ) .

( )
η η= =

  
− − =        

∫ ∫   

Taking logarithm on both sides, we get 

t s

X Y s Y X t
v s

x s dx y t dy u t C t u t v s
C s( | ) ( | ) 2

10 0

( )
( | ) ( | ) log ( ) ( ) ( ) ( )

( )
η η ∗ ∗

= =

   
− − = = +       

∫ ∫  

which gives (22), where 

( )u t u t C t2( ) log ( ) ( )∗ =  (25) 

and 

v s
v s

C s1

( )
( ) log .

( )
∗  

=   
 

  

From (21) and (25), if it exists, the joint PDF of X Y( , )  becomes 

s

X Y X Y X t X Y X t

s

X Y X t

f t s f t f s t f t C t y t dy

u t
f t y t dy

u t

( , ) ( | ) 2 ( | )
0

( | )
0

( , ) ( ) ( | ) ( ) ( ) exp ( | )

exp( ( ))
( ) exp ( | )

( )

η

η

= =

∗

=

 
= = − 

 
 

                                                 = − 
 

∫

∫
  

Then, using that u t( )  is proportional to Xf t( )  (see (Arnold et al., 1999, p.8), we have 

s

X Y Y X tf t s K u t y t dy( , ) ( | )
0

( , ) exp( ( )) exp ( | ) ,η∗
=

 
= −   

 
∫   

thus obtains the form (23).  In a similar fashion, we can obtain (24).  
 

EXAMPLE 14. Suppose that X Y s t s( | )( | )η =  and Y X t s t( | )( | )η =  satisfies the relationships 

X Y s
t

t s s t
t

1
( | ) 1 1

1

( )
( | ) ( ) ( )

( )
λη α λ
λ=

′
= −  and Y X t

s
s t t s

s
2

( | ) 2 2
2

( )
( | ) ( ) ( )

( )
λη α λ
λ=

′
= − , where 

s a a s1 1 2 2( ) [1 ( )]α φ= + Λ  and t a a t2 2 1 1( ) [1 ( )]α φ= + Λ . Then we can easily show that it satisfies 

relationship (22) with u t t a t1 1 1( ) log ( ) ( )λ∗ = − Λ  and v s a s s2 2 2( ) ( ) log ( )λ∗ = Λ − .  Now using 

(23) or (24), we have the model (7). 
 
Obviously, from Remark 3.1, Theorem 3.1 can be used to obtain a compatibility condition for 

the bivariate RCST. 
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4. CONDITIONALLY SPECIFIED RCST FOR X Y s( | )>  AND FOR Y X t( | )>  

In the case of bivariate survival models, instead of conditioning on a component failing at a 
specified time, it is sometimes more natural to condition on the component’s having survived 
beyond a specified time (see Navarro and Sarabia, 2011). Then the conditional RCST for 

X Y s( | )>  and Y X t( | )>  are defined as 

X Y s X Y st s f t s
t( | ) ( | )( | ) log ( | )η > >

∂
= −

∂
 (26) 

and  

Y X t Y X ts t f s t
s( | ) ( | )( | ) log ( | )η > >

∂
= −

∂
 (27) 

where X Y s
t

P X t Y s f x s dx( | )( | ) ( | )
∞

>> > = ∫  and Y X t
s

P Y s X t f y t dy( | )( | ) ( | )
∞

>> > = ∫  are the 

conditional SF’s of X Y s( | )>  and Y X t( | )>  respectively and assume that 

P X t Y s
u t v s

P Y s X t
( | )

( ) ( )
( | )

> >
=

> >
 with u t( )  and v s1/ ( )  are two SF’s (see Navarro and Sarabia, 

2011). The conditional RCST functions given in (26) and (27) where used in (Navarro, 2008) to 
study ordering properties between series systems. Integrating both sides of (26) with respect to t  
over the limit 0   to t , we get 

t

X Y s X Y sf t s D s x s dx( | ) 1 ( | )
0

( | ) ( ) exp ( | )η> >

 
= − 

 
∫  (28) 

where D s1( )  is constant of integration determined by 
X

X Y s
S

f x s dx( | )( | ) 1> =∫ .  Similarly from 

(27), we have 

s

Y X t Y X tf s t D t y t dy( | ) 2 ( | )
0

( | ) ( ) exp ( | ) ,η> >

 
= −   

 
∫  (29) 

where D t2( )  is constant of integration determined by 
Y

Y X t
S

f y t dy( | )( | ) 1> =∫ . Therefore, like the 

conditional RCST for X Y s( | )=  and Y X t( | )= , the conditional RCST for X Y s( | )>  and 

Y X t( | )>  uniquely determines the conditional PDF’s X Y sf t s( | )( | )>  and Y X tf s t( | )( | )>  through 

the relationships (28) and (29).   
 

THEOREM 15. The RCST functions X Y s t s( | )( | )η >  and Y X t s t( | )( | )η > are the conditional RCST 

functions of a non negative random vector X Y( , )  with support X YS S× if and only if 
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x

X Y s
t

y

Y X t
s

z s dz dx
u t
v s

z t dz dy

( | )
0

( | )
0

exp ( | )
( )
( )

exp ( | )

η

η

∞

>

∞

>

 
− 

  =
 
− 

  

∫ ∫

∫ ∫
  

holds for X YS S× .  Moreover, in this case, the SF of X Y( , )  can be obtained as 

x

X Y X Y s
t

F t s cv s z s dz dx( , ) ( | )
0

( , ) ( ) exp ( | )η
∞

>

 
= − 

 
∫ ∫   

or as 

y

X Y Y X t
s

F t s c u t z t dz dy( , ) ( | )
0

( , ) * ( ) exp ( | ) ,η
∞

>

 
= −   

  
∫ ∫   

where c  and c *  are constants of integration. 
 
PROOF. The proof is a consequence of Theorem 11.1 in (Arnold et al., 1999) and (28) and (29). 
 
EXAMPLE 16. The model in (8) is characterized by 

X Y s
t

t s s t
t

1
( | ) 1 1

1

( )
( | ) ( ) ( )

( )
λη α λ
λ>

′
= −   

and 

Y X t
s

s t t s
s

2
( | ) 2 2

2

( )
( | ) ( ) ( ) .

( )
λη α λ
λ>

′
= −    

 
EXAMPLE 17. The functions X Y s t s s( | )( | ) ( )η θ> =  and Y X t s t t( | )( | ) ( )η τ> =  are the 

conditional RCST functions of a random vector X Y( , )  with support (0, ) (0, )∞ × ∞  if and only 

if s s( )θ α γ= +  and t t( )τ β γ= +  where , 0α β >  and 0γ ≥ . In this case they characterize 
the Gumbel’s type I bivariate exponential distribution with SF 

X YF t s t s ts( , )( , ) exp( )α β γ= − − −  for t s, 0 ≥ . 

 
Other examples can be obtained from that included in (Arnold et al., 1999). 
 
The FGM family specified by the joint SF of a two dimensional random vector X Y( , ) , 

( ) ( )X Y X Y X YF t s F t F s F t F s( , )( , ) ( ) ( ) 1 1 ( ) 1 ( ) , 1 1ω ω = + − − − ≤ ≤   (30) 

with specified marginal distributions through XF t( )  and YF s( ) .   
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THEOREM 18. The relationships 

( )
X Y

X Y s X
X Y

f t F s
t s t

F t F s( | )
2 ( ) ( )

( | ) ( )
1 2 ( ) 1 ( )

ωη η
ω> = −

+ −
 (31) 

and 

( )
Y X

Y X t Y
Y X

f s F t
s t s

F s F t( | )
2 ( ) ( )

( | ) ( )
1 2 ( ) 1 ( )

ωη η
ω> = −

+ −
 (32) 

hold if and only if X Y( , ) follows the FGM family with joint PDF (30). 
 
PROOF. Assume that (31) holds, then using (28) we have the conditional PDF 

( )X X Y
X Y s

Y

D s f t F t F s
f t s

F s
1

( | )

( ) ( ) 1 2 ( ) 1 ( )
( | )

[1 ( )]

ω
ω>

 + − =
−

  

Now applying the boundary condition X Y sf x s dx( | )
0

( | ) 1
∞

> =∫ , we obtain  

( )Y X Y X X
Y

D s
F s f x dx F s F x f x dx

F s
1

0 0

( )
1 ( ) ( ) 2 ( ) ( ) ( ) 1

[1 ( )]
ω ω

ω

∞ ∞ 
− + =  , −  

∫ ∫   

thus obtains YD s F s1( ) 1 ( )ω= − , and therefore  

[ ]X Y s X X Yf t s f t F t F s( | )( | ) ( ) 1 (2 ( ) 1) ( ) ,ω> = + −   (33) 

the conditional PDF of X Y s( | )>  for FGM model given in (30).  Integrating (33) between the 
limits t  to ∞ , we get 

( )X Y s Y X Y X X
t t

F t s F s f x dx F s F x f x dx( | )( | ) 1 ( ) ( ) 2 ( ) ( ) ( ) ,ω ω
∞ ∞

> = − +  ∫ ∫   

where X Y sF t s( | )( | )>  denote the SF of X Y s( | )> .  On simplification, we further obtain 

X Y s X X YF t s F t F t F s( | )( | ) ( )[1 ( ) ( )] ,ω> = +    

is the conditional SF of FGM with model (30). In a similar manner, using (32) and (29), we can 
obtain the conditional SF of Y X t( | )>  for FGM in (30). The other part is straightforward.   

In Theorem 4.2, if we consider identical marginals, i.e., when X Yf t f s f t( ) ( ) ( )= = , we have 

X YF t F s F t( ) ( ) ( )= =  and X Yt s t( ) ( ) ( )η η η= = . In this case, (31) and (32) are reduced to a 
single relationship in either t or s, which are illustrated in the following examples. 

 
EXAMPLE 19. Uniform [0,1]  marginals.  In this case f t F t t( ) 1, ( )= =  and t( ) 0η = , then 
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X Y s Y X t
t

t s s t
t t( | ) ( | )
2

( | ) ( | )
1 (2 1)

ωη η
ω> >= = −

+ −
. 

 

EXAMPLE 20. Exponential marginals, with tf t e( ) λλ −=  we have t( )η λ= , then  

t t

X Y s Y X t t t
e e

t s s t
e e( | ) ( | )

2 (1 )
( | ) ( | ) .

1 (1 2 )(1 )

λ λ

λ λ
ωλη η λ

ω

− −

> > − −

−
= = −

+ − −
  

 

EXAMPLE 21. Pareto marginals, with f t t 2( ) (1 )−= +  and t t 1( ) 2(1 )η −= + , then 

( )X Y s Y X t
t t

t s s t
t t t t t

3

( | ) ( | ) 2 2 1

2 2 (1 )
( | ) ( | ) .

1 1 2 (1 ) (1 )
ωη η

ω

−

> > − −

+
= = −  

+ + + − +
  

 

EXAMPLE 22. Weibull marginals, with 
cc tf t ct e1( ) − −=  and ( )ct t c t1( ) 1 (1 )η −= − − , then 

c c

c c

c c t t

X Y s Y X t t t

c t ct e e
t s s t

t e e

1

( | ) ( | )
1 (1 ) 2 (1 )

( | ) ( | ) .
1 (1 2 )(1 )

ωη η
ω

− − −

> > − −

− − −
= = −  

+ − −
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SUMMARY 

Characterizations of some bivariate models using reciprocal coordinate subtangents 

In the present paper, we consider the bivariate version of reciprocal coordinate subtangent (RCST) 
and study its usefulness in characterizing some important bivariate models.  In particular, 
characterization results are proved for a general bivariate model whose conditional distributions 
are proportional hazard rate models (see Navarro and Sarabia, 2011), Sarmanov family and Ali-
Mikhail-Haq family of bivariate distributions.  We also study the relationship between local 
dependence function and reciprocal subtangent and a characterization result is proved for a 
bivariate model proposed by Jones (1998).  Further, the concept of reciprocal coordinate 
subtangent is extended to conditionally specified models. 
 
Keywords: Reciprocal coordinate subtangent; Reliability measures; Characterizations; 
Conditionally specified models.  


