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EXPONENTIATED WEIBULL DISTRIBUTION 
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1. INTRODUCTION 

A new family of distributions, namely the exponentiated exponential distribu-
tion was introduced by Gupta et al. (1998). The family has two parameters (scale 
and shape) similar to the Weibull or gamma family. Properties of the distribution 
were studied by Gupta and Kundu (2001). They observed that many properties of 
the new family are similar to those of the Weibull or gamma family. Hence the 
distribution can be used as an alternative to a Weibull or gamma distribution. The 
two-parameter Weibull and Gamma distributions are the most popular distribu-
tions used for analyzing lifetime data. The gamma distribution has wide applica-
tion other than that in survival analysis. However, its major drawback is that its 
survival function cannot be obtained in a closed form unless the shape parameter 
is an integer. This makes the Gamma distribution a little less popular than the 
Weibull distribution, whose survival function and failure rate have very simple 
and easy-to-study forms. In recent years the Weibull distribution has become ra-
ther popular in analyzing lifetime data because in the presence of censoring it is 
very easy to handle. 

In this paper we consider the exponentiated Weibull family that was intro-
duced by Mudholkar and Srivastava (1993). It has a scale parameter and two 
shape parameters. The Weibull family and the exponentiated exponential family 
are found to be particular cases of this family. The distribution has been com-
pared with the two-parameter Weibull and gamma distributions with respect to 
failure rate. The maximum likelihood estimators of the parameters and their as-
ymptotics have been discussed. Finally the distribution has been fitted to a real 
life data and the fit has been found to be good. 

2. EXPONENTIATED WEIBULL DISTRIBUTION 

The exponentiated Weibull (EW) distribution is defined in the following way. 
It has distribution function given by 

( ) [1 exp{ ( ) }]G z z , 0,    , , 0z , (1) 
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and therefore its probability density function (pdf) is of the form 

)(zg 1 1[1 exp{ ( ) }] exp{ ( ) },z z z  0z . 

The corresponding survival function is 

( ) 1 [1 exp{ ( ) }]S z z  

and the failure rate is 

1 1 exp{ ( ) }[1 exp{ ( ) }]
( )

(1 [1 exp{ ( ) }] )

z z z
r z

z
. 

Here ( , )  denote the shape parameters and  is the scale parameter. For 

1,  it represents the exponentiated exponential (EE) family, and for 1,  it 

represents the Weibull family. Thus, EW is a generalization of the exponentiated 
exponential family as well as the Weibull family. EW distribution also has a very 
nice physical interpretation. If there are n components in a parallel system and the 
lifetimes of the components are independently and identically distributed as EW, 
then the system lifetime is also EW. 
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Figure 1 – Showing the EW pdf for  =0.5,  =2, when  = 0.5, 1, 2, 4. 
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Figure 2 – Showing the failure rate curves for  =0.5,  =2, when  = 0.5, 1, 2, 4. 
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Figure 1 shows that the density function of EW is unimodal and, for fixed  
and , it becomes more and more symmetric as  increases. 

Figure 2 shows that the failure rate is a non-decreasing function of  for fixed 
 and . 

We observe that for the EW distribution, 
(i) if 1,  the failure rate is constant;  

(ii) if  = 1, the failure rate is increasing for  >1 and decreasing for  <1; 
(iii) if  = 1, the failure rate is increasing for  >1 and decreasing for  <1. 
Let us consider the Gamma and Weibull distributions with scale parameter  

and shape parameter  =  : 

1( ) exp( ),   0
( )

Gf x x x x  

1( ) exp{ ( ) },   0Wf x x x x . 

A comparison of the failure rates of the three distributions are given in the ta-
ble below. 

TABLE 1 

Failure rate of the distributions 

Parameter Gamma Weibull EW 

1  Constant Constant Constant 

  = 1 Increasing from 0 to  for 

 >1 and decreasing from  

to  for  <1 

Increasing from 0 to   for 

 >1 and decreasing from  
to 0 for  <1  

Increasing from 0 to  for 

 >1 and decreasing from  
to 0 for  <1 

1  Increasing from 0 to for 

 >1 and decreasing from 

 to  for <1 

Increasing from 0 to  for 
 >1 and decreasing from 

 to 0 for <1  

Increasing from 0 to  for 

 >1 and decreasing from 

 to  for <1  

, 1  Increasing from 0 to  Increasing from 0 to  Increasing from 0 to  

, 1  Decreasing from  to  Decreasing from  to 0 Decreasing from  to 0  

 
Thus, the failure rate of EW behaves more like the failure rate of the Weibull 

distribution than the Gamma distribution. 
Now we consider the moments of the EW distribution. From the formulas 

3.381(4) in Gradshteyn and Ryzhik (1965) and the binomial expansion, the k-th 
moment of exponentiated Weibull variable Z with distribution function (1) is ob-
tained as 

1 1

0

1
1

0

1
1 ( 1) ( 1) ,   if  

E( )

1 ( 1) ( 1) ,   if  , for 0,1, 2,...,
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 (2) 

where ( 1)( 2)....( 1)a iP a a a a i , and N is the set of natural numbers. 
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Since (2) is a convergent series for all k  0, all moments exist. 
In particular, 

11 1
1

0

1
1

1 1

0

11
1 ( 1) ( 1) ,   if  

E( )
1

1 ( 1) ( 1) ,   if  
!

i

i

ii

i

i N
i

Z
P

i N
i

 

and 

21 1
2

02

2
1

2 1

0

12
1 ( 1) ( 1) ,   if  

E( )
2

1 ( 1) ( 1) ,   if  
!

i

i

ii

i

i N
i

Z
P

i N
i

 

The variance of Z can be easily obtained from the above. 
For  =2, we get the exponentiated Rayleigh distribution. From formula 3.462 

in Gradshteyn and Ryzhik (1965), the moment generating function of the expo-
nentiated Rayleigh distribution is obtained as 

E
2 2 11

2
0

1 ( 1)
[exp( )] exp ,  if 

1 8( 1) 2( 1)

i

i

t t
tZ D N

i i i i
 

                 
2 2 1

1
2

0

( 1)
exp ,  if 

! 1 8( 1) 2( 1)

i
i

i

P t t
D N

i i i i
, 

where 
2 2

2( ) ( /2 )exp [( /2 )exp (1 ( / 2 ))]
4 2

a a
D a a a  (See 

formula 9.254 in Gradshteyn and Ryzhik (1965), and  (.) is the standardized 
normal distribution function. 

3. MAXIMUM LIKELIHOOD ESTIMATORS AND FISHER’S INFORMATION MATRIX 

In this section we discuss the maximum likelihood estimators of the parame-
ters of the EW distribution and their asymptotic properties. 

Let 1 2, , ...., nZ Z Z  be a random sample of size n from the EW distribution given 

by (1). Then the log likelihood function (LL) comes out to be 

( , , ) ln ln ln ( 1) ln

( 1) ln[1 exp{ ( ) }] ( )

i

i i

L n n n z

z z
 (3) 
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Therefore the MLEs of , ,  which maximize (3) must satisfy the normal 

equations given by 

, ,( ) ln[1 exp( ( ) )] 0i

n
L z  (4) 

( )
1 1

( )
, ,( ) ( 1) 0

1

i

i

z

i iz

n e
L z z

e
 (5) 

1

, ,( ) ln ln

exp{ ( ) }
( 1) ln( ) ln( ) 0

1 exp{ ( ) }

i

i
i i i i

i

n
L n z

z
z z z z

z

 (6) 

From (4) we obtain the MLE of  as a function of ,( ) , say ˆ ,( ) given by 

ˆ ˆ ,( )
ln[1 exp( ( ) )]i

n

z
 (7) 

Multiplying (5) by /  we get 

exp{ ( ) }
[( 1) ] 0

1 exp{ ( ) }
i

i i

i

z
n z z

z
 (8) 

Subtracting ln  times (8) from (6) we have 

ln i

n
z

exp{ ( ) }
[( 1) ln ln ] 0

1 exp{ ( ) }
i

i i i i

i

z
z z z z

z
 (9) 

Using (7) in (8) and (9) we get two equations, which are satisfied by the MLEs 
ˆ  and ˆ  of and , respectively. 

Because of the complicated form of the likelihood equations, algebraically it is 
very difficult to prove that the solution to the normal equations give a global ma-
ximum or at least a local maximum, though numerical computation during data 
analysis showed the presence of at least local maximum. However, the following 
properties of the log-likelihood function have been algebraically noted: 

(a) for given ( , ),  L  is a strictly concave function of . Further, the optimal 

value of , given by (7), is a concave increasing function of  for given ; 

(b) for given( , ),  and 1,  L  is a strictly concave function of . 

To obtain confidence interval we use the asymptotic normality results. We ha-

ve that, if ˆ ˆˆ ˆ( , , )  denotes the MLE of ( , , ) , then 

1
3

ˆ( ) (0, ( ))n N I  (10) 
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where 1( )I  is Fisher’s information matrix given by 

2 2 2

2

2 2 2

2

2 2 2

2

E E E

1
( ) E E E

E E E

L L L

L L L
I

n

L L L

 

We give below expressions for some elements of the Fisher’s Information ma-
trix, which may be useful in practice. 

For 2,  

E
2

2

L
= -

2

n
 

2

E
L

= 
( ) (1) ( 1) (1)

1

n
 

                 = { ( ) (1)} { ( 1) (1)}
1

n
, 

using formula 4.293(8) in Gradshteyn and Ryzhik, 1965, 

2
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E
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2
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2

( 1)1
{ (1) ( 1)} { ( 1) (1)}

( 2)

n
 

  –
2

2

2
[ (1) ( ) { ( ) (1)} ]

n
– 

    
2

( 1) ( 1) ( ) (1) ( 1) (1)

1

n
 

  – 
2

( 1)
[ ( 1) (1)]

n
, 

where (.) is the digamma function and (.) is its first order derivative. 

For 0   2, 

E
2

2

L
=

2

n
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E
2L

= 2

0

exp( 2 )(1 exp( ))
n

x x x dx  

E
2

2

L
= 2 3

2 2
0

( 1)
exp( 2 )(1 exp( ))

nn
x x x dx  

                  2

2
0

( 1)
exp( )(1 exp( ))

n
x x x dx  . 

 being unknown, we estimate 1( )I  by 1 ˆ( )I  and can use this to obtain as-

ymptotic confidence intervals for ,  and . 

4. DATA ANALYSIS 

In this section we use uncensored data set from Nichols and Padgett, 2006. 
The data gives 100 observations on breaking stress of carbon fibres (in Gba): 
 

3.7 2.74 2.73 2.5 3.6 
3.11 3.27 2.87 1.47 3.11 
4.42 2.41 3.19 3.22 1.69 
3.28 3.09 1.87 3.15 4.9 
3.75 2.43 2.95 2.97 3.39 
2.96 2.53 2.67 2.93 3.22 
3.39 2.81 4.2 3.33 2.55 
3.31 3.31 2.85 2.56 3.56 
3.15 2.35 2.55 2.59 2.38 
2.81 2.77 2.17 2.83 1.92 
1.41 3.68 2.97 1.36 0.98 
2.76 4.91 3.68 1.84 1.59 
3.19 1.57 0.81 5.56 1.73 
1.59 2 1.22 1.12 1.71 
2.17 1.17 5.08 2.48 1.18 
3.51 2.17 1.69 1.25 4.38 
1.84 0.39 3.68 2.48 0.85 
1.61 2.79 4.7 2.03 1.8 
1.57 1.08 2.03 1.61 2.12 
1.89 2.88 2.82 2.05 3.65 

 
Both exponentiated exponential distribution and exponentiated Weibull distri-

bution were fitted by the method of maximum likelihood. A quasi-Newton algo-
rithm in R (Ihaka and Gentleman, 1996) was used to solve the likelihood equa-
tions, and the following estimates were obtained: 

For EE distribution with scale parameter  and shape parameter , 

ˆ ˆ0.50345, 2.5808 , with 167.044.L  

For EW distribution given by (1), 



 M. Pal, M.M. Ali, J. Woo 146 

ˆˆ ˆ1.17262, 0.35756, 2.57902,  with 141.369L , 

where L denotes the negative logarithm of the maximized likelihood. 
Thus, it follows by the standard likelihood ratio test that the exponentiated 

Weibull distribution is a much better model than the exponentiated exponential 
model for the given data. This observation is confirmed by the probability plots 
corresponding to the two fits, shown in Figure 3. 
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Figure 3 – Probability plots for the models based on the exponentiated exponential distribution (top) 
and the exponentiated Weibull distribution (bottom). 
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RIASSUNTO 

La distribuzione di Weibull esponenziata 

In questo lavoro studiamo la famiglia di distribuzioni chiamata “famiglia di Weibull  
esponenziata”. La distribuzione ha tre parametri (uno di scala e due di forma), e la distri-
buzione di Weibull e la distribuzione esponenziale esponenziata, discusse da Gupta et al. 
(1998), sono casi particolari di tale famiglia. La funzione di sopravvivenza, il tasso di fal-
limento e i momenti delle distribuzioni sono stati ottenuti utilizzando alcune particolari 
formule. Il comportamento del tasso di fallimento è stato studiato e confrontato con quel-
li delle distribuzioni Weibull e Gamma. La distribuzione è stata adattata a dati reali e  
l'adattamento si è dimostrato buono. 

SUMMARY 

Exponentiated Weibull distribution 

In this paper we study the family of distributions termed as exponentiated Weibull dis-
tribution. The distribution has three parameters (one scale and two shape) and the 
Weibull distribution and the exponentiated exponential distribution, discussed by Gupta, 
et al. (1998), are particular cases of it. The survival function, failure rate and moments of 
the distributions have been derived using certain special formulas. The behavior of the 
failure rate has been studied and compared with those of the Weibull and Gamma distri-
butions. The distribution has been fitted to a real life data set and the fit has been found 
to be very good.  


