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SIMULTANEOUS TRANSFORMATION INTO INTERVAL SCALES 
FOR A SET OF CATEGORICAL VARIABLES 

A. Zanella, G. Cantaluppi1

1. INTRODUCTION

Nowadays the statistical study of a “structure” underlying a conceptual notion, 
assessed through the use of conventional rating scales, so far widely spread in the 
area of sociology and psychology, is acquiring a major interest for managerial sci-
ences too, particularly, in connection with notions such as business excellence, 
quality system effectiveness, customer satisfaction, etc.; in the former context the 
recourse to a linear structural model with latent variables (LISREL) has become a 
current methodology. 

In such a model the so-called manifest variables, which link a concept to em-
pirical manifestations, play an essential role. Now the usual statistical analysis of a 
LISREL model assumes that the manifest variables, related to a certain concept, 
are measured on metric scales, that is, on an interval or on a ratio scale, while of-
ten the values of the above variables, typically obtained from the answers to a 
questionnaire by a group of respondents, are in fact expressed on conventional 
rating scales, which are at most ordinal scales only. 

The former method is often used in practice for assigning numbers to the 
qualitative modalities of ordered categorical variables. The problem of associating 
meaningful numbers to objects or events on the basis of qualitative observations 
of attributes was extensively dealt with by Amato Herzel (1974 a, b), who called 
the process “quantification” and underlined the importance that it can at times 
have in statistical inference for a better description and understanding of a phe-
nomenon under study. 
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Herzel’s point of view can be summarized as follows. In an empirical investiga-
tion based on observations of ordered categorical variables, it may result that the 
reading of the aimed at objective would be more direct and easier if the variables 
were quantitative: for example if we are interested in assessing whether two as-
pects of the experimental units under study are connected, it would be easy to 
calculate the correlation coefficient to get a first idea of the state of things. 

In general with respect to a given inference objective, which would require to 
obtain the numerical value of a particular statistical index in the case of quantita-
tive variables, Herzel suggests to look for a transformation of the qualitative mo-
dalities into real values, which will be treated as belonging to an interval scale, so 
that, for the observed empirical frequencies, the index of interest assumes an ex-
treme value (maximum or minimum). In the example of the correlation coeffi-
cient mentioned above, we should find out the transformation of each of the two 
categorical variables which allows one to obtain the maximum correlation coeffi-
cient between the numerical values corresponding to the original ordered catego-
ries, in particular under the conditions that their variances are 1 and the ordering 
is preserved. Herzel’s proposal might be seen in the light of the axiomatic theory 
of measurement and the corresponding representation theorem which states how 
ordinal scales can be rationally constructed so that the properties of ordered cate-
gories can be faithfully represented by real numbers, e.g. see Krantz et al. (1971), 
Ch. 1. 

If we can assume that the qualitative modalities of an attribute characterizing 
the elements of a finite set A under study is totally ordered, the representation 
theorem indicates how to construct a map : A  from A to the real line ,
which allows assigning numbers to the ordered qualitative modalities. However 
the theorem shows that the “faithful” assignment of numbers through the func-

tion ( ) is indeterminate, since an ordinal scale is obtained even if the numbers 

( ) are transformed by means of a strictly increasing function f( ); then Herzel’s 
proposal could be interpreted as aiming to make use of the said indeterminacy to 

obtain a possible transformation f( ) which most emphasizes the underlying trait 
which is of particular interest for the case under study. 

The present paper concerns ordinal scales for a set of K qualitative ordered 
categorical variables (attributes). It is implicitly assumed that the I modalities of 
each categorical variable are totally ordered so that the representation theorem 

allows us to consider the corresponding conventional integer values i  1, 2, ..., I
as a possible version of an ordinal scale. However we do not follow Herzel argu-
ment to obtain a data transformation into an interval scale but we complete the 
axiomatic framework, which justifies the original ordinal scales, by Thurstone’s 
psychometric axiom which, for a psychological categorical variable, describing 
attitude, preference, etc., postulates the existence of a latent, that is not directly 
observable random variable. As we shall later explain in detail, this allows one to 

assign a value on an interval scale to each modality i  1, 2, ..., I of a categorical 
variable by transforming the cumulative probability (or relative frequency) of ob-
taining results not larger than i by means of the inverse of the distribution func-
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tion of the corresponding latent variable. More precisely this contribution exam-
ines some implications and an extension of the method proposed by Jones 
(1986), see also Bock and Jones (1968), referring to the former basic structure, to 
simultaneously transform a set of observed categorical variables into interval 
scales, under the assumption that there exists a normal latent random variable 
corresponding to each of the categorical variables. 

The paper in particular shows that the method does not allow to have a direct 
validation of a specific type of probability distribution assumed for the latent 
variables.

In this note we present the model which we believe to be at the basis of Jones’ 
method – to which so far, if we are not wrong, little attention has been paid, 
however see Zanella et al. (2000) –, we discuss its implications and propose an ex-
tension to other families of latent random variables, besides the Normal one, 
when their probability distributions can be reduced to the location-scale type. 

2. JONES’ MODEL AND ITS EXTENSION 

2.1. Transforming the conventional scores into values on an interval scale 

Suppose we observe a K-dimensional random categorical variable X (X1, X2,
..., XK) , whose components assume the same number of ordered modalities I,

denoted by the conventional integer values xki  1, 2, ..., I, k  1, 2, ..., K, for sim-
plicity.

Let P(Xk i) pki, with 
1

I

i
pki  1, k, be the corresponding marginal 

probabilities and put 

Fk(i) kjj i
p  (1) 

to express the cumulative probability that we can observe a conventional value xk

for Xk not larger than i for Xk.
Furthermore assume that to each categorical variable Xk there corresponds an 

unobservable latent variable Zk, which is represented on an interval or a ratio 
scale, with a continuous distribution function of the type: 

P[(Zk k)/ k  ( k k)/ k] k[(( k k)/ k), ] k( k, ), (2)

where k and k  0 are respectively a location and a scale parameter, which may 
depend on some other real positive parameters, 1, ..., K, summarized by vector 

: k k( ), k k( ), that is for any but fixed  we assume a location scale 
family of distributions; when no ambiguity arises we shall preserve the simplified 
notations k, k. In (2): 

k  ( k k)/ k (3)
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k  1, 2, ..., K, are real variables describing the possible values on the right side, 
which for a fixed  are invariant for any scale-location change corresponding to a 
linear transformation of the type: 

k ka b (4)

with b and a  0 real values, where a expresses the change of unit measurement of 

k and b a displacement of b new units of the origin of measurements. In fact note 
that the new measurement system implies that: 

k a k b, k a k, (5)

when we assume that k, k are expressed in the same units as k and, in addition, 
the positive quantities k do not depend on the origin of measurements. Thus ac-
cording to (3) it follows from (4) that: 

( )
[ ( )]/ ( )/ ( )/ ,k

k kk k k k k k k k k

b
a b a

a

in consequence of (5), which proves the invariance stated above. Correspondingly 
for a fixed  we can identify k( k, ) in (2) with the standard element of the family 

defined by putting k  0, k  1, i.e. b k k, a  1 k in (5). 

By inversion of (2) and with regard to (1) by putting the second member equal 
to Fk(i) define: 

{[ ki( ) k( )] k( )} k
1[Fk(i), ] ki, (6)

when needed with a suitable conventional or approximate definition of ki for 

Fk(i)  0 or 1. Later on we shall examine the case when ki i, k, that is there 
exists a unique value i corresponding to each category i regardless of the random 
variable Xk. In this case it seems natural to substitute i, measured on a metric 
scale, for the conventional score i; with this assumption (6) becomes 

{[ i( ) k( )] k( )} 1[Fk(i), ] ki, (7)

k  1, 2,..., K; i  1, 2,..., I.
The following Fig. 1 illustrates for the normal case the interpolation of the 

cumulative probabilities Fk(i) – which can be estimated through the observed 
cumulative proportions – obtained from the distribution function of the standard 
element of the assumed family (2) of continuous latent distributions and the cor-

responding new scores i representing the modalities i, i  1, 2, ..., I, on an inter-
val scale given by the inversion formula (7). 

For concreteness we shall refer to the real case presented by Jones (1986), who 
examines the conventional preference scores, ranging from 1 to 9, which we 
might as well interpret as a degree of customer satisfaction, obtained from a sam- 



Simultaneous transformation into interval scales for a set of categorical variables 405

Figure 1 – Transforming the conventional scores i into values i on an interval scale by inverting the 
cumulative distribution function of the unitary element of the latent family of distributions, ref. (8) 

below for k  1.18. 

ple of 255 army enlisted men with respect to 12 food items, or categories, k  1, 

2, ..., 12, i  1, 2, ..., 9, and treated by the author assuming 12 underlying normal 
distributions. Later on we shall simulate some data corresponding to Jones’, see 
§ 4. Theorem 1 shows that if Jones’ model (7) is valid, the unique values i can be 

defined as i
1

,
K

ikik
K i  1, 2, ..., I, which are the arithmetic means 

respectively obtained for each modality i by taking the average of the theoreti- 

cal values ki, k  1, 2, ..., K, over the K categorical variables. If we should estab-

lish a diet by choosing some of the 12 food items, with scores, say, i1, i2, ..., is
{1, 2, ..., I} and we could assume that customer satisfaction scores are additive, 
the scale unification leading to an interval scale would allow us to represent the overall 

customer satisfaction of a subject as the sum i1 i2 ... is of the trans-
formed scores assigned to the s food items of the diet. Note that this advantage 
of scale unification would likewise ensue in general when we are concerned with 
the evaluation of a subset of K attributes of a good or a service. 

We can finally note that, if Jones’ model (7) holds, the unified scale would al-
low us to study the possible dependence between any pair of categorical variables 

Xi, Xi , i i  by having resort to the correlation coefficient  obtained from the 
corresponding scores transformed to an interval scale by using the model. 

Table 1 illustrates graphically the transformation of conventional scores i, i  1, 

2, ..., 9, with reference to Jones’ example, into values i i  on an interval scale 

which hold for any categorical variables Xk, k  1, 2, ..., K, if Jones’ model is true. 

2.2. Generalization of Jones’ model 

Jones (1986) treats the case when k( ) is the distribution function of the 
Normal standard deviate and  is not present. 
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TABLE 1 

Percentage point averages related to class i, i  1,2,..., 9, 
for the latent variables referring to the Normal and Logistic-Weibull distribution functions. 

i 1 2 3 4 5 6 7 8 9 

Normal i i 1.979 1.683 1.335 0.936 0.495 0.089 0.886 1.876 3.000 

Logistic- 
Weibull i i 0.181 0.300 0.428 0.615 0.862 1.225 1.725 2.236 3.000 

To illustrate the generalization here proposed we consider a Logistic Weibull 
family of distributions, see Zanella (1998), (1999), with the following definition: 

3 ( )2
exp ( ),

3 ( )

k

ki k k
k k

k ki k k

ln F i (8)

k  0, for given k, k  0, with conventional value 0 if  ( ki k) k is such 

that  0, conventional value 1 if 3 , which are based on the limits for  0 ,

 3 . We shall examine the case k  0, k  1, 2, ..., K, which according to (7) 
leads to: 

1

1

1 exp{ 2[ ln(1 ( ))] }
3

1 exp{ 2[ ln(1 ( ))] }

k

k

ki k k
ki

k k k

F i

F i
, (9) 

with conventional values of ki k  (0, 3): 0 for  0, 3 for  3. 

Fig. 2 and Fig. 3 respectively give plots of relationship (8) for k  0, k  1, k

 1.18, 2.72 and the corresponding probability densities. 
For other values of the location parameter k the graphs are the same but with 

the origin placed at k.
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Figure 2 – Logistic-Weibull probability distribution function, k  0, k  1. 

Figure 3 – Logistic-Weibull probability density function, k  0, k  1. 

3. NECESSARY AND SUFFICIENT CONDITIONS SO THAT JONES’ MODEL HOLDS 

This section presents the main results of the paper; a preliminary version of 
Theorem 1 is given in Zanella and Cerri (2000). 

3.1. Necessary conditions to ensure Jones’ model 

Theorem 1. (Necessary conditions for Jones’ model) 
With reference to the family of distribution functions (2) suppose that: a) for 

fixed values k, the values ki are percentage points – assumed to be distinct and 

thus by hypothesis increasing for i  1, 2, ..., I – of the standard element of the 
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distribution functions relative to each latent variable Zk, k  1, 2, ..., K, which are 
not functions of a single random variable Z, and that b) there exist some values 

of the location and scale parameters *
k, *

k, say, and some unifying transformed 

scores i, i  1, 2, ..., I, so that Jones’ model (7) holds, which means that the fol-
lowing systems of linear equations are satisfied: 

* * *
1 1

* * *
2 2

* * *

k k k k

k k k k

I k k k kI

, (10) 

k  1, 2, ..., K.

i. It follows that it must be: 

i ( )  i i  1, 2, ..., I, (11) 

where 
1

K

i
k

ki K, i  1, 2, ..., I,

i.e. the unifying scores must coincide with a linear function of the average i  of 

the percentage points ki over the K latent variables,  being the arbitrary 

functions of *
k, *

k defined below in (16). 

ii. It also ensues that the averages i  must also satisfy the K linear equations: 

/i
*
k  ( *

k
*
k ) ki (12) 

i  1, 2, ..., I and k  1, 2, ..., K, that is, from a geometric point of view, the points 

( ki, ),i i  1, 2, ..., I, must align on K straight lines if (and only if): 

*
1

1K

k kK
 1,

*

*
1

K
k

k kK
 0, (13) 

with *
k  0. 

iii. Suppose that the latent variables Zk, k  1, 2, ..., K, have distribution func-
tions of the location-scale type defined by (2) and that, for some fixed values k,
the necessary relationships (11), (12), (13) required by the unifying model are sat-

isfied. Now define a location-scale transformation k k
*
k , k

*
k,

with  0 and  some real values. It is shown that the transformed random 

variables kZ Zk , k  1, 2, ..., K, can still satisfy Jones’ model and define 

some other unifying scores as: 
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i i , (14) 

i  1, 2, ..., I, which thus are defined except for a location-scale transformation.

Proof. i. Consider the ith equation of each of the K systems (10) obtaining: 

*

* *
i k

k k

ki, i  1, 2, ..., I. (15) 

If we take the average of both sides on varying k we get: 

*

* *
1 1

1K K
k

i i
k kk kK K

and defining 

*

* *
1 1

1
,  ,

K K
k

k kk kK K
 (16) 

,i i

from which it follows: 

)/(i i .

We remark that, by the way, if we now insert this expression into (15) and take 
once more the average of both sides on varying k we obtain: 

*

* * *
1 1 1

1 1
, 1, 2, ..., ,

K K K
k

i i
k k kk k k

i I
K K K

which is identically satisfied since, in force of (16), the first expression in round 
brackets has value 1, the second expression has value 0. 

ii. Note that relationships (12) are obtained by those defining systems (10) 

when we take into account the necessary condition (11), that for  1,  0, 

i.e. for (13), gives i i . Let us consider the i-th equation of any of the K sys-

tems (10); with vector-matrix notation we have the I systems: 
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*
1

* * * *
1 1 1 1

1 *
2

2* * * *
2 2 2 2

*

** * *

1 1 1
1

1 1 1
1

   

1 1 1
1

i

i

Ki

K

KK K K

K K K

K K K

K K K

(17)

that is 

MK i ,

i  1, 2, ..., I, where MK is the K K square matrix on the first side, i,  are K  1 

column vectors so that their transpose are i  [ 1i, 2i, ..., Ki],  [ *
1

*
1, *

2
*
2,

..., *
K

*
K ], and note that, in particular,  is a vector whose components do not 

depend on the index i. If MK should be non singular and, thus, admitting an in-

verse 1
KM , we should have: 

i
1

KM

for i  1, 2, ..., I, that is the percentage points ki would be the same whichever is 

i  1, 2, ..., I, which implies ki k, k  1, 2, ..., K, and i , i. Since ki are 

arbitrary for varying i, this would lead, according to (1), to 

P[(Zk
*
k)/ *

k Z*
k ( *

k)/ *
k k]  ,kjj i

p i, (18) 

for any k and k  1, 2, ..., K , which would mean that the random variables 

(Zk
*
k)/ *

k Z*
k, k  1, 2, ..., K , could be reduced to a single random variable Z,

k. This is owing to the fact that being relationships (18) simultaneously satisfied 

for k  1, 2, ..., K implies that the probabilities of all Z*
k are ruled by the same dis-

tribution function and thus all of them have the same probability of belonging to 
a given arbitrary interval. It ensues that there they can differ only on a set of 
probability zero. 

Now the former case is excluded by hypothesis and the equations of a system 
(17) must be compatible but with the rank of matrix MK less than K. For obtain-
ing this condition in explicit form notice that matrix MK has the following struc-
ture:
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*
*1
1

*
* 2
2

*

*

1
0 0

0 01 1 1
1

0 0 1 1 1 0 0

1 1 1 0 01
0 0

K

K

K

K
K

K
K

K

K

M =

     = Diag(1 K *
1,1 K *

2,...,1 K *
K)  [uu  Diag(K *

1, K *
2, ..., K *

K )] (19) 

where u is a K  1 vector with elements all equal to 1. 
The matrix MK is non-singular and it admits an inverse if the same holds for 

the matrix within brackets, say M*, on the right side of the second expression 
(19). As it is known by matrix algebra (see for instance Bodewig (1959) p. 39), the 
inverse of M* is 

* *
1 1

* ** * * *
2 2 1 2

* *

1 1
0 0

1 1
0 0

[1 , 1 , ..., 1 ]

1 1
0 0

K

K K

K K

K Kc K K K

K K

M  (20) 

with

*
1

*
2 *

1

*

1
0 0

1
0 0 1

1 1 1 1

1
0 0

K

k k

K

K

Kc
K

K

u u

which shows that M* is singular – and thus its rank is less than K – if and only if: 

*
1

1
1.

K

k kK
 (21) 
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If (21) is satisfied and thus the rank of M* and of M is less than K, in order to 

have a solution for the systems (17) there must exist values 1i, 2i, ..., Ki, i  1, 2, 
..., I, so that for a given i they can satisfy all equations (17). If we consider a set of 
such values and sum up all K equations (17) we find: 

*

1 2 *
1 1 1 1

1 1 1
1 1 1

K K K K
k

i i Ki
k k k kk k k kK K K

, (22) 

which in force of (21) implies 

*

*
1

0
K

k

k k

 (23) 

from which dividing by K we finally see that condition (13) is as well necessary as 
sufficient.

In conclusion the property (12) of comma ii. has been proved. 

iii. It is assumed that according to (12): 

P[(Zk
*
k)/ *

k ( i
*
k)/ *

k ki] k[Fk(i), ], (24) 

i  1, 2, ..., I, k  1, 2, ..., K. Remember that in the statement of point iii. under 

consideration some new variables k kZ Z  are defined with ,  any 

real values. By replacing Zk by the corresponding expressions Zk ( )/kZ  we 

obtain from (24): 

*
* * * *

*

( ) ( ) ( )
/ / [ ( ), ],k i i k

k k k k ki k k

k

Z
P F i

i  1, 2, ..., I, k  1, 2, ..., K , where i  are the percentage points of kZ  corre-

sponding to * *( )/ki i k k  and it can be easily shown that they have values 
* *

, ( )i k ki k  which justifies all equalities given above in brackets (re-

member (4), (5) for the location-scale parameters transformation). Thus the 
equality expression on the left side ensures the existence of a unique percentage 

point i  whichever is k and it follows that the unifying percentage point i  must 

be:

i i
~,

which establishes (14). 
Thus the theorem has been completely proved. 
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3.2. Sufficient conditions to ensure Jones’ model 

With reference to families of distributions defined by relationships (2), which 
mean that they can be reduced to be of the location scale-type for any chosen 

values of k, k  1, 2, ..., K, it will be shown as one can construct percentage 

points ki, i  1, 2, ..., I, k  1, 2, ..., K, which are increasing with i and satisfy 
Jones’ model requirements. 

Theorem 2. (Sufficient conditions for Jones’ model) 

For fixed values k, k  1, 2, ..., K, consider K families of continuous distribu-

tion functions of the type defined by (2) and choose some real values *
k, *

k, in a 

way that *
k  0 are finite: 1

K
k (1 K *

k )  1 with K *
K  1, 1

K
k ( *

k K *
k )  0, 

and some values Ki( K), i  1, 2, ..., I, that are assumed to be distinct and strictly 
increasing, which fix the percentage points for the standard element of the K-th 
family of distributions. 

It is shown that one can construct other percentage points ki, k  1, 2, ..., 

K  1, i  1, 2, ..., I, increasing with i which allow a unified representation of all 

percentage points as is expressed by systems (10), with i i , and consequently 

equations (12) are also satisfied. 

Proof. For any i  1, 2, ..., I, consider system (17) and note that the K-th equa-

tion is always satisfied after we were able to find out some values ki, k  1, 2, ..., 

K  1 which satisfy the first (K  1) equations. This follows from (22) since by 
hypothesis assumptions (21) and (23) hold true. 

Now consider the following systems which are obtained from (17) when we con-

sider the first (K  1) equations only and remember that Ki, i  1, 2, ..., I, are fixed: 

*
1

* * * * *
1 1 1 1 1

1 *
2

2* * * * *
2 2 2 2 2

1 *
1

* ** * *
1 11 1 1

1 1 1
1

1 1 1
1

1 1 1
1

Ki

i

Ki
i

K i

KiK

K KK K K

K K K K

K K K K

KK K K

.  (25) 

The (K  1) (K  1) matrix MK–1, say, of the former systems has exactly 

the same form as (17), where, however, the terms in K *
k  are lacking and u

is a 1 (K  1) vector of unitary values. Since by hypothesis we have 

1

* *1

1 1
0 1 1

K

k
k KK K

 it follows from (19) and (20), with c
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1
1

*
1

1
1

K

k kK
, that the inverse 1

1KM  of 1KM  is well-defined and multiplying 

both members of (25) by it we can obtain the unique solutions: 

1i

2i

K-1i

1

K *
1

0 0

0
1

K *
2

0

0 0
1

K *
K-1

c~

1

K *
1

1

K *
2

1

K *
K-1

1 K *
1 1 K *

2  1 K *
K-1

 Diag(K *
1, K *

2, …, K *
K-1)

*
1

*
1

Ki

K *
1

*
2

*
2

Ki

K *
2

*
K-1

*
K-1

Ki

K *
K-1

 = 

=

*
1

*
1

Ki

K *
1

*
2

*
2

Ki

K *
2

*
K-1

*
K-1

Ki

K *
K-1

c~

1

K *
1

1

K *
1

1

K *
1

1

K *
2

1

K *
2

1

K *
2

1

K *
K-1

1

K *
K-1

1

K *
K-1

*
1

*
1

Ki

K *
1

*
2

*
2

Ki

K *
2

*
K-1

*
K-1

Ki

K *
K-1

 , 

that is, since c K *
K  and 1

1
K
k

*
k

*
k

*
K

*
K respectively and in force of 

the conditions (21), (23): 

* * *
1

1 * *
1 1

* * *
2

2 * *
2 2

* * *
1

1 * *
1 1

     

     

     

K K
i Ki

K K
i Ki

K K K
K i Ki

K K

 (26) 

which show how the percentage points ki are increasing functions of Ki, that is 

they increase with Ki for i  1, 2, ..., I, and any k  1, 2, ..., K  1, because this is 

assumed to be true for Ki, i  1, 2, ..., I.
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Now remember that the values (26) are solutions of the first (K  1) equations 
of systems (17), but, since we assumed that conditions (21), (23) are satisfied, ex-
pression (22) must have a zero value, which implies that also the K-th equations 

are satisfied, that is for any i the values 1i, 2i, ..., K 1i, (26), together with Ki, sat-

isfy the K-th equation of system (17). If we introduce the averages i  of the per-

centage points ki which are solutions of systems (17) the latter are equivalent to 
relationships (12), that is to 

i / *
k

*
k / *

k ki

i  1, 2, ..., I, k  1, 2, ..., K, which ensure that relationships (10) hold with i  as 

unifying percentage points. 
Thus the proof of the theorem is completed. 

4. EXPLAINING THE MEANING OF JONES’ MODEL AND CORRESPONDING SIMULATION 

RESULTS

4.1. A summary of Jones’ model main aspects 

As we stated in §1, according to the methods proposed and used by Thurstone 
in the case of the normal distribution, here it is assumed in general that, to each 
stimulus corresponding to an attribute which gives rise to an observed ordinal 

categorical variable, there corresponds a latent variable Zk, k  1, 2, ..., K, of the 
continuous type with a distribution function described by (2). We explained 
Jones’ model on the basis of the following hypotheses by having regard to the 
Logistic-Weibull family (9) for the general case: 

a) the K latent random variables Zk can not be reduced to one single variable Z

(see Theorem 1, i.) so that in general there is a latent random vector Z  (Z1, Z2,

..., ZK) ;
b) the corresponding marginal distributions relative to the random variables Zk,

are subjected to the two parametric constraints (13), which are repeated below for 
clarity, that is: 

*

* *
1 1

( )1
1,  0

( ) ( )

K K
k

k kk kK K
, (13) 

which impose two structural relationships on the location and scale parameters, 
*
k ( ) and *

k ( ) respectively for a specific value ;
c) if we refer to the marginal latent variables Zk and, for each of the latter to the 

standard element of the distribution functions attached to it, we should have to 
note that when Jones’ model is valid the percentage points ki, which establish the 
latent thresholds corresponding to the conventional scores i of the observed cate-

gorical variable Xk, i  1, 2, ..., I, k  1, 2, ..., K, are defined in such a way that: 



A. Zanella, G. Cantaluppi 416

- the percentage points, with respect to the pertinent standard element, of one 
of the latent random variables Zk can assume whatever value – for simplicity as-
sume that is the case for ZK – so that Ki, which we shall call leading percentage points,
can take on arbitrary values within the domain 1 of the corresponding standard 
element k( k, ), which, recall, is based on a fixed value K ; thus 1 is split up 

into I  1 parts by the points K1, K2, ..., KI, which correspond to the conven-

tional scores i  1, 2, ..., I;
- by (26) we have that the other percentage points ki are linear functions – we 

shall call them constrained percentage points – of the leading values Ki and for each k
and fixed k they split up the domain 1 of the k-th standard element k( k, )

into I  1 parts by the points k1, k2, ..., kI, which correspond to the conven-
tional scores of the kth categorical variable; 

- altogether the percentage points ki, i  1, 2, ..., I, k  1, 2, ..., K, satisfy the K
alignment conditions (10), see next Fig. 4. 

d) When we consider the conventional scores i, i  1, 2, ..., I, assigned to the K
categorical variables by a sample of n independent subjects, we assume that we 
are concerned with a simple random sample of n elements (stochastically inde-
pendent) from the K-dimensional random vector Z with marginal distribution 
functions of the type (2). 

The latent mechanism which corresponds to the realization of said sample ac-
cording to Jones’ model is the following: the random assignment of score i to the 
categorical variable Xk on behalf of a respondent implicitly corresponds to the ran-

dom selection of a value, say ki s, s  {1, 2, ..., n}, according to the probabilistic law 
established by the relevant latent standard distribution k( k, k) and to its implicit 

comparison either with the constrained percentage points ki, i  1, 2, ..., I, if k K

or with the leading percentage points Ki if k K, in order to allocate ki s to the i-th

element of the partition in I  1 elements that we saw is induced by the model. 

4.2. A Montecarlo simulation of Jones’ model 

A Monte Carlo simulation procedure, run on a Personal Computer Acer Veri-
ton 7600G, was set up, which is appropriate to obtain results comparable with 
the ones of the real case presented by Jones (1986) and to check the interpreta-
tion of Jones’ model outlined above. 

1) A 12-dimensional Normal distribution was considered with all marginal uni-
variate components Zk following a normal standard distribution, i.e. of type 

N(0,1); the correlation matrix R, 12  12, was assumed to be of the form: 

1

1

1

R  (27) 
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with , which represents a constant correlation coefficient between pair of components, 

so that  (1 11)  1 in order that R is non-singular and thus positive definite. 

In the example given here we put  0.9. To obtain sequences of random vec-

tors zj, 12  1, ruled by the 12-dimensional normal distribution considered above 

( j  1, 2, ..., 500 in the example) we used the following procedure. Assuming that 

Z°  (Z1°, Z2°, ..., ZK°)  is a random vector of independent normal random variables 
with standard distribution we considered a transformation A, that is a matrix A,

12  12, for which: 

E(A Z°Z° A) A A R

where E( ) is the expected value and the assumed stochastic independence ensures 

that E(Z°Z° ) I12, with I12 the identity matrix of dimensions 12, while A A repre-

sents the Cholesky decomposition of R, (27), with A  an upper triangular matrix. 

Once the elements of A  are determined, the random vector A Z° will follow 
the required probabilistic law. Correspondingly by the software GAUSS for Win-
dows NT/95, Version 3.2.38, Copyright 1984-1999, Aptech Systems, Inc. Maple 

Valley, WA, we produced 12  500 pseudorandom values from a normal standard 
distribution and in sequence from each vector relative to sub-group of 12, zj° say, 

we could obtain vectors zj A  zj°, j  1, 2, ..., 500, representing a pseudorandom 
sequence of 500 elements, drawn from the desired multinormal distribution. 

2) In order to comply in the reading of the simulation results with the need of 
specifying the latent structural constraints (13) – in the example  is absent – we 

considered the values *
k , *

k , listed in the Table 2, in comparison with their esti-
mates obtained by fitting the regression models (12) – which express the align-
ment of the percentage points discussed above – by the constrained least-squares 
method to the empirical percentage points resulting from simulation (see below). 
Note that these estimates allow us to recover the latent parametric structure 
through the standard elements of the marginal distributions, which appear to be 
invariant but only with respect to linear transformations of the location and scale 
parameters, see § 2. Table 2 indicates the values of the leading percentage points 
also required for a complete specification of the model. 

3) Table 3 presents the theoretical percentage points ki, k  1, 2, ..., 12, i  1, 
2, ..., 9, as they are defined by Jones’ model according to the equation systems 
(12), which are satisfied in force of the structural relationships (13) ensured by the 

chosen values *
k , *

k . The latter led to the values given in Table 3, calculated 
through relationships (26) by using the leading percentage points 12i also given in 
Table 2. These theoretical percentage points are shown in Table 3 in comparison 
with those obtained by means of the 500 simulated vector data. This was done by 

considering for each component Zk the cumulative proportions, say ˆ ( ),kF i  of 

simulated cases leading to values zki not larger than ki and by taking as corre-

sponding estimate ˆ
ki  the value of 1 ˆ[ ( )]kF i  where 1 ( ) denotes the inverse 

of the distribution function of the standard normal distribution. 
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TABLE 2 

Latent parametric structure assumed in the Monte Carlo simulation: values assumed for * ,k
*
k  and corresponding 

estimates *ˆ ,k
*ˆ ,k  obtained by the constrained least-squares method – Leading percentage points Ki

k 1 2 3 4 5 6 7 8 9 10 11 12 
*
k 0.80 0.50 0.60 0.40 0.60 0.80 0.90 0.30 1.00 1.00 0.30 0.37
*ˆ k 0.62 0.47 0.54 0.33 0.52 0.61 0.80 0.26 0.95 0.94 0.25 0.35
*
k   1.83 1.00 0.87 0.93   0.86   1.88   0.99   0.83 1.00 1.01   0.83   0.89 
*ˆ k   1.66 1.03 0.89 0.94   0.88   1.68   0.95   0.82 1.06 1.07   0.83   0.87 
* */k k 0.44 0.50 0.69 0.43 0.70 0.43 0.91 0.36 1.00 0.99 0.36 0.42

1 2 3 4 5 6 7 8 9 Leading percentage 
points, relative to 

the standard normal 

distribution, 12i

2.333 1.667 1.000 0.333 0.333 1.000 1.667 2.333 3.000 

TABLE 3 

Theoretical percentage points k, k  1, ..., 12 corresponding to the marginal normal latent distributions 

(in parentheses) and their estimates ˆ
ki  obtained from a random vector sample of 500 units drawn by Monte Carlo 

simulation as specified above. The food items are those indicated in Jones (1986) 

Food Item i 1 2 3 4 5 6 7 8 9 

Sweetbreads 1 0.978 0.656 0.342 0.030 0.337 0.619 1.003 1.282 1.728 

( 0.900) ( 0.576) ( 0.252) (0.072) (0.396) (0.720) (1.044) (1.368) (1.692) 

Cauliflower 2 2.409 2.097 1.799 1.195 0.631 0.075 0.490 1.216 1.728 

( 2.947) ( 2.354) ( 1.761) ( 1.168) ( 0.575) (0.018) (0.611) (1.204) (1.797) 
Fresh
pineapple 3 2.878 2.512 1.977 1.555 0.856 0.197 0.490 1.329 1.977 

( 3.502) ( 2.820) ( 2.139) ( 1.457) ( 0.776) ( 0.094) (0.587) (1.269) (1.951) 

Parsnips 4 2.512 2.144 1.774 1.136 0.565 0.015 0.719 1.433 2.097 

( 3.061) ( 2.423) ( 1.786) ( 1.148) ( 0.511) (0.127) (0.765) (1.402) (2.040) 

Baked beans 5 1.977 1.447 0.856 0.166 0.607 1.293 1.977 2.512 2.652 

( 2.147) ( 1.458) ( 0.768) ( 0.079) (0.611) (1.300) (1.990) (2.679) (3.369) 

Wieners 6 0.946 0.668 0.342 0.010 0.269 0.625 0.954 1.341 1.665 

( 0.876) ( 0.560) ( 0.245) (0.070) (0.386) (0.701) (1.017) (1.332) (1.647) 
Chocolate 
cake 7 1.522 1.063 0.440 0.181 0.800 1.432 2.144 2.512 2.878 

( 1.562) ( 0.963) ( 0.364) (0.235) (0.833) (1.432) (2.031) (2.630) (3.229) 

Salmon loaf 8 2.326 1.881 1.237 0.496 0.207 0.986 1.728 2.197 2.878 

( 2.586) ( 1.872) ( 1.158) ( 0.443) (0.271) (0.986) (1.700) (2.414) (3.129) 

Blueberry pie 9 2.878 2.409 2.054 1.665 1.117 0.553 0.010 0.674 1.305 

( 3.447) ( 2.854) ( 2.261) ( 1.668) ( 1.075) ( 0.482) (0.111) (0.704) (1.297) 

Turnips 10 2.878 2.326 2.054 1.572 1.071 0.542 0.045 0.631 1.282 

( 3.413) ( 2.825) ( 2.238) ( 1.651) ( 1.064) ( 0.477) (0.110) (0.697) (1.284) 

Liver 11 2.326 1.881 1.216 0.462 0.181 0.970 1.607 2.409 2.652 

( 2.586) ( 1.872) ( 1.158) ( 0.443) (0.271) (0.986) (1.700) (2.414) (3.129) 

Spaghetti 12 1.977 1.626 1.071 0.412 0.202 0.946 1.685 2.257 2.878 

( 2.333) ( 1.667) ( 1.000) ( 0.333) (0.333) (1.000) (1.667) (2.333) (3.000) 

2.134 1.726 1.264 0.710 0.136 0.457 1.069 1.649 2.143 

The results of Table 3 appear to be very satisfactory since they confirm thor-
oughly, from a descriptive point of view, Jones’ model under study. In particular 
this is seen, with regard to the basic “alignment conditions” (12), which we tran-
scribe below in the equivalent form: 
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i
*
k

*
k ki (29) 

i  1, 2, ..., I, k  1, 2, ..., K, and which require that the unifying percentage 

points, represented by the arithmetic means i 1
/ ,

K

k ki
K  must belong to K,

in the simulation example K  12, different straight lines on varying ki, i  1, 2, 

..., I, I  9 in the example. These conditions result in being true not only for the 
theoretical values ki, which have to be the case by construction, but they hold 
with a good approximation even when we consider the corresponding estimates 
ˆ

,ki
ˆ

ki  obtained by simulation. 

This is shown by Table 4, which presents the intercepts ^ *
k and the slopes ^ *

k

obtained from the fitting by the ordinary least-squares criterion to the mean 

values
ˆ

ki  of the 12 linear models in ki summarized in (29). The corresponding 

coefficients of determination R2 are very close to 1 and thus ensure a good align-
ment.

TABLE 4 

Ordinary least-squares estimates of the slopes and intercepts of the 12 straight lines (29) to which the percentage 

points arithmetic means ˆ
i 1

K
k

^
i K, i  1, 2, ..., 9, are constrained by Jones’ model on varying ^

ki and

corresponding coefficient of determination R2

Food Item intercept *ˆ( )k  slope *ˆ( )k det. coeff. R2

Sweetbreads 0.61642 1.65358 0.9967 

Cauliflower   0.46952 1.02168 0.9965 
Fresh pineapple   0.53342 0.88222 0.9953 
Parsnips   0.33152 0.93217 0.9961 
Baked beans 0.51794 0.87296 0.9889 

Wieners 0.61058 1.67859 0.9986 

Chocolate cake 0.80085 0.94719 0.9932 

Salmon loaf 0.25872 0.81618 0.9978 
Blueberry pie   0.94721 1.05385 0.9946 
Turnips   0.93718 1.07068 0.9955 
Liver 0.24998 0.82684 0.9960 

Spaghetti 0.35090 0.87043 0.9994 

Figure 4 gives a graphical picture of some of the straight lines summarized in 

Table 4 with the points of coordinates (
ˆ

,i
ˆ

ki ), i  1, 2, ..., 9, which were ob-

tained as a result of the considered Monte Carlo simulation. 
4) As mentioned before in order to recover the latent parametric structure of 

Jones’ model we had resort to the constrained least-squares criterion to obtain the 

estimates * *ˆ ˆ,k k  given in Table 2. Regarding the empirical percentage points 

ˆ
ki , obtained by simulation in the present study, and their arithmetic means 

ˆ
i

1
ˆ /

K

k ki
K  we considered the regression models (29) looking for values * *ˆ ˆ,k k

which minimize: 
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Figure 4 – Example of the alignment of the unifying percentage points ˆ
i  considered as a function 

of the percentage points ^
ki relative to the various categories, i  1, 2, ..., 9, k = 6, 8, 10. 

2 * 2

1 1

ˆ ˆ1
( )

K I

i k k ki
k i

Q
K

 (30) 

under the constraints (13): 

*

1 2* *
1 1

1
( ) 1 0, ( ) 0

K K
k

k kk kK K
 (31) 

where, as the simulation concerns the normal distribution, the further parameter 
 is absent. In order to apply the method of Lagrange multipliers we referred to 

the Lagrange function

L Q2 + 1 1( *
1, ..., *

K) + 2 2( *
1, ..., *

K, *
1, ..., *

K),

with 1, 2 the real variables called Lagrange multipliers and solved the non-linear 
system:

*

*

1

2

0

0 , 1, 2, ...,

0

0

k

k

L

L
k K  (32) 

ˆ
i

ˆ
ki
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with the help of the software GAUSS.
Details relative to system (32) and to its solution will be given in a following 

paper. 

We can conclude this section by remarking that the percentage points ˆ
ki

could have been estimated directly, without having recourse to the inverse of the 

normal standard distribution, as zki(nki), where nki  [n ki]  1, with n the sample 

size n  500 in our case, [ ] indicates the integral part, ki is the theoretic known 

probability level of the percentage point ki, k  1, 2, ..., 12, i  1, 2, ..., 9, in the 
simulation, zki(nki) are the ordered observations regarding the k-th latent variable. 

We replaced the estimates zki(nki) for ˆ
ki  to check the alignments resulting 

from Table 4 and we came to quite similar results. 

5. THE EXTENSION OF JONES’ METHOD: AN EXAMPLE 

The preceding Theorem 2 shows that, without further restrictions, the per-
centage points “alignment” required by conditions (10) and (12) might not be suf-
ficient to validate the assumed latent distributions. 

To underline this point we considered the distribution model (9) to examine 

the table of 9  12 empiric cumulative proportions ˆ ( ),kF i  given by Jones (1986) 

and reported in Table 5, pertaining, as we already said, to conventional preference 
scores, ranging from 1 to 9, obtained from a sample of 255 army enlisted men 

with respect to 12 food items, k  1, 2, ..., K  12, i  1, 2, ..., I  9, and treated by 
the author assuming 12 underlying normal distributions. 

TABLE 5 

Empiric cumulative proportions F^ k(i), given by Jones (1986) 

Food Item         i 1 2 3 4 5 6 7 8 9 
Sweetbreads 0.099 0.226 0.333 0.453 0.646 0.798 0.930 0.984 1.000 
Cauliflower 0.059 0.083 0.122 0.224 0.331 0.575 0.858 0.976 1.000 
Fresh pineapple 0.016 0.020 0.028 0.055 0.119 0.277 0.573 0.877 1.000 
Parsnips 0.068 0.188 0.312 0.492 0.680 0.808 0.940 0.984 1.000 
Baked beans 0.016 0.035 0.059 0.126 0.232 0.469 0.752 0.972 1.000 
Wieners 0.000 0.008 0.036 0.071 0.182 0.482 0.842 0.992 1.000 
Chocolate cake 0.000 0.004 0.012 0.039 0.118 0.248 0.539 0.874 1.000 
Salmon loaf 0.032 0.067 0.111 0.202 0.344 0.636 0.889 0.988 1.000 
Blueberry pie 0.008 0.008 0.020 0.075 0.171 0.333 0.611 0.889 1.000 
Turnips 0.075 0.194 0.324 0.514 0.652 0.810 0.937 0.996 1.000 
Liver 0.083 0.146 0.186 0.245 0.336 0.502 0.783 0.964 1.000 
Spaghetti 0.004 0.008 0.039 0.075 0.169 0.409 0.772 0.953 1.000 

In the case of the distribution model (9) (of the Logistic-Weibull type), since it 

assumes that k  0, k  1, 2, ..., 12, relationships (12) become 

i
*
k ki , (33) 

where we recall that i 1
K
k ki K, i  1, 2, ..., I.
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Having regard to the left side of expression (9) referring to the inverse of the 
standard element of the Logistic-Weibull family of distributions, defined by put-

ting k  0, k  1 in (8), we obtained the empiric percentage points 
~

ki, say, by 

replacing Fk(i) with the empiric cumulative frequency ratio F
^

k(i), given in Table 5, 

after we had chosen some positive starting values 0  ( 01, 02, ..., 012) . We set 

up a numerical procedure so that for any given  vector and corresponding 
~

ki

values, (9) leads to find out the values ^ *
k which minimize the expression: 

2 * 2 * 2

1 1

ˆ ˆ[ ( )/ ( )] / ,
K I

k i k ki
k i

Q IK

under the constraint 1
K
k 1 (K *

k )  1, (stepwise constrained least-squares crite-

rion). In fact starting from an initial value 0 we improved minimization on vary-
ing  by using the numerical gradient minimization algorithm available in the 
software GAUSS.

The minimum value Q 2  0.0052 was obtained (in the normal case); the corre-

sponding percentage points 
~

ki are given in Table 6 and the estimates ^ *
k with the 

optimum k are reported in Table 7, while Fig. 5 shows that the alignment condi-
tions are also very well satisfied. 

TABLE 6 

Optimized percentage points for the Logistic-Weibull distribution 

Food Item i 1 2 3 4 5 6 7 8 9 

Sweetbreads 1 0.138 0.292 0.425 0.587 0.904 1.255 1.772 2.250 3.000 
Cauliflower 2 0.280 0.340 0.427 0.616 0.788 1.166 1.716 2.200 3.000 
Fresh pineapple 3 0.358 0.391 0.447 0.590 0.801 1.137 1.583 2.060 3.000 
Parsnips 4 0.095 0.236 0.385 0.630 0.957 1.271 1.830 2.261 3.000 
Baked beans 5 0.229 0.335 0.427 0.616 0.834 1.216 1.659 2.247 3.000 
Wieners 6 0.000 0.218 0.417 0.563 0.852 1.354 1.918 2.449 3.000 
Chocolate cake 7 0.000 0.267 0.399 0.619 0.924 1.215 1.654 2.134 3.000 
Salmon loaf 8 0.205 0.313 0.416 0.591 0.824 1.282 1.815 2.323 3.000 
Blueberry pie 9 0.258 0.258 0.374 0.645 0.904 1.206 1.613 2.068 3.000 
Turnips 10 0.125 0.279 0.446 0.716 0.953 1.319 1.823 2.523 3.000 
Liver 11 0.320 0.450 0.521 0.621 0.765 1.020 1.513 2.104 3.000 
Spaghetti 12 0.167 0.225 0.446 0.587 0.838 1.260 1.801 2.212 3.000 

0.181 0.300 0.428 0.615 0.862 1.225 1.725 2.236 3.000 

TABLE 7 

Parameter estimates for the Logistic-Weibull distribution 

k 1 2 3 4 5 6 7 8 9 10 11 12 
*ˆ k 0.994 1.012 1.037 0.984 1.007 0.956 1.018 0.983 1.029 0.949 1.042 0.998 Logistic-

Weibull ˆ
k 1.206 1.790 2.503 1.184 2.132 2.328 2.725 1.816 2.460 1.261 1.742 2.351 
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Figure 5 – Logistic-Weibull distribution function: example of the alignment of the unifying percent-

age points ˆ
i  considered as a function of the percentage points ˆ

ki  relative to the various catego-

ries, i  1, 2, ..., 9, k = 6, 7, and obtained from Table 5 using the numerical method mentioned 
above which led to the values of Table 6. 

6. CONCLUSIONS AND FURTHER RESEARCH DEVELOPMENTS

1) The paper has shown which are the probabilistic and statistical implications 
of the model proposed by Jones (1986) in the framework of Thurstone psycho-
metric approach to scaling. The latter assumes that stimuli produced by the dis-
criminant process aimed at the evaluation of a given object or a situation are as-
sociated in the “judge” to a latent, that is not directly observable, random vari-
able, which follows over occasions, either with a single judge or over judges, a 
normal distribution. As we saw Jones’ model assumes that regarding an empirical 
manifestation characterized by K aspects or attributes, a judge (subject) is asked to 
assign to each of them a “preference score” on a conventional integer rating scale 

with points i  {1, 2, ..., I}. Thus a K-dimensional categorical variable X  (X1,

X2, ..., XK)  can be attached to the K attributes, with components Xk, k  1, 2, ..., 
K, which are ordinal categorical variables. To these in Jones’ model there corre-

sponds a latent random vector Z  (Z1, Z2, ..., ZK)  whose components orderly 
match with those of X and are assumed to follow the Normal distribution. In § 
4.1 the meaning of Jones’ model when we consider a sample of respondents is 
illustrated.

As we widely discussed in sections 3 and 4 the essential trait of Jones’ model is 

the existence of unifying scores i which together with appropriate values *
k , *

k of
the location and scale parameters satisfy the relationships: 

*
1

*
[ ( )]i k

ki k

k

F i

ˆ
i

ˆ
ki
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i  1, 2, ..., I, k  1, 2, ..., K, where, according to (1), Fk(i) is the cumulative probabil-

ity that we may observe a conventional value xk of Xk not larger than i, 1 ( )
denotes the inverse of the distribution function of the standard normal distribution, 

ki are the percentage points or quantiles corresponding to Fk(i). In Theorem 1 it is 

shown that the unifying scores can be chosen as i i 1
K
k ki K, which thus 

by hypothesis are defined on an interval scale. Since whatever is the attribute, the 

values i  correspond to the conventional rating scores i  1, 2, ..., I, they give a uni-

tary representation of the latter on a same interval scale and can be assumed as a 
metric version of the conventional scores i which is valid for all attributes. Once it 
has been ascertained that such a scale can be constructed, which we actually did, 
both the observations already available and the possible new observations can be 
recorded as values on this interval scale with the advantage that now all algebraic 
operations required by the usual statistical methodology become fully justified. We 
considered appropriate to mention this point again in the final remarks to underline 
the practical relevance of the subject dealt with in the paper. 

Theorem 2 shows that statistical models with Jones’ requirements exist and the 
way they can be constructed. 

2) We recall that in this paper the distributional context of Jones’ model has 
been widened by showing that it can be extended beyond the Normal distribution 
to other types of latent probability distributions, provided that they can be led 
back to location-scale family. The case of the Logistic-Weibull family of distribu-
tions, which seems to be particularly appropriate to describe the preference proc-
ess underlying “customer satisfaction” assessments, is given as an example in §6. 
It is shown as the choice of the levels of some other parameters, which are pre-
sent in the distribution model besides the location-scale parameters, can help to 
ensure that Jones’ model is valid. 

3) As it is specifically discussed in the comments of section 4, Jones’ model 
presupposes a latent parametric structure among the location and scale parame-

ters *
k, *

k, see (13), which ensures the “alignment” of the unifying scores i  con-

sidered in function of the quantile ik, i  1, 2, ..., I, k  1, 2, ..., K, which allows an 
evident geometric image of the model, see Fig. 4,5. Correspondingly in the paper 

the constrained least squares criterion is proposed to estimate the parameter *
k,

*
k and it was used in the included simulation study. 
More details and a discussion on this point will be given in a following paper. 
4) The further development of the research also envisages the setting up of sta-

tistical tests which may be appropriate to check whether Jones’ model is justified 
to interpret a given set of data on the basis of an assumed family of latent prob-
ability distributions and, in view of Theorem 2, which of two or more competing 
latent distribution models has to be considered the best. 

In this regard the asymptotic theory of quantile estimates already available, see 
David (1981), Ch. 9, appears to represent a promising starting point. 
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RIASSUNTO

Trasformazione simultanea su scale ad intervalli di un insieme di variabili categoriche 

Nel contributo sono esaminate alcune implicazioni e un’estensione del metodo propo-
sto, su base euristica, da Jones (1986) con riferimento alla trasformazione simultanea di un 
insieme di variabili qualitative ordinate in scale per intervalli, sotto l’ipotesi che esista, in 
corrispondenza a ciascuna delle variabili qualitative, una variabile latente normale. Nell’ar- 
ticolo – che si collega al problema delle trasformazioni di scale ordinali, ampiamente trat-
tato da Amato Herzel – viene presentato e discusso il modello statistico-probabilistico alla 
base del metodo di Jones e si propone l’estensione dello stesso ad altre famiglie di variabili 
latenti, con distribuzione di probabilità dipendente solo dai parametri di posizione e di 
scala. Si presenta un esempio di applicazione alla famiglia di distribuzioni di probabilità 
del tipo Logistico-Weibull. 

SUMMARY

Simultaneous transformation into interval scales for a set of categorical variables 

The paper – related to the problem of ordinal scale transformations, extensively dealt 
with by Amato Herzel – examines some implications and an extension of the method 
heuristically proposed by Jones (1986) to simultaneously transform a set of observed 
categorical ordinal variables into interval scales, under the assumption that there exists a 
normal latent random variable corresponding to each of the categorical variables. The ar-
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ticle, on the one hand, presents and discusses the statistical-probabilistic model at the ba-
sis of Jones’ method and on the other hand proposes its extension to other families of 
latent variables, besides the Normal distribution, when their probability distributions can 
be reduced to a location-scale type. An example of application to the Logistic-Weibull 
family of distributions is also illustrated. 


