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1. Introduction

In the framework of regression analysis, additive models and their generalizations
(Friedman and Stuetzle, 1981; Stone, 1985; Breiman and Friedman, 1985; Hastie
and Tibshirani, 1986) represent a widespread class of nonparametric models that
are useful when the linearity assumption does not hold. Substantial advantages of
additive models are represented by the fact that they do not suffer of the curse of
dimensionality (Bellman, 1961; Friedman, 1997) and that they present an impor-
tant interpretative feature common to linear models: the variation of the fitted
response surface, holding all predictors constant except one, does not depend on
the value of the other predictor variables. However, when concurvity is present
several issues arise in fitting an additive model. Concurvity (Buja et al., 1989)
can be defined in a broad sense as the existence of nonlinear dependencies among
predictor variables or the existence of non-unique solutions of the system of homo-
geneous equations. Presence of concurvity in the data may lead to poor parameter
estimation (upwardly biased estimates of the parameters and underestimation of
their standard errors), increasing the risk of committing type I error. Concurvity
is not a new problem. A more detailed discussion can be found in Buja et al.
(1989). To overcome this problem several alternative approaches were proposed.
We can distinguish three main strategies:

• A modified GAM algorithm (Buja et al., 1989). This approach extracts
projection parts of the smoothing functions and reparametrizes the system
of normal equations.

• Shrinkage methods to stabilize the model fitting procedure or control the
complexity of each fitted function (Gu et al., 1989; Hastie and Tibshirani,
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1990; Wahba, 1990; Gu and Wahba, 1991; Green and Silverman, 1993; Eilers
and Marx, 1996).

• Partial Generalized Additive Models (Gu et al., 2010). This approach is
based on Mutual Information as a measure of nonlinear dependencies among
predictors.

In order to detect approximate or observed concurvity also some diagnostic
tools were proposed. These tools are based on:

• additive principal components (Donnell et al., 1994)

• the extension of standard diagnostic tools for collinearity to generalized ad-
ditive models (Gu, 1992).

Both these approaches are retrospective, since the additive model must be fitted
before diagnosing the presence of concurvity. They are discussed in more details
in Section 3. The aim of this paper is to compare these existing approaches
to detect concurvity, stressing their advantages and drawbacks, and suggest a
general criterion to detect concurvity, particularly with respect to the case of
a badly conditioned input matrix, which is the most frequent case in real data
applications. The proposed approach is based on the Maximal local correlation
statistics (Chen et al., 2010) that are used to detect global nonlinear relationship
in the input matrix and so to identify the presence of concurvity in a perspective
way. The paper is structured as follows. Section 2 briefly reviews additive general
model and their extensions, in particular generalized additive models. In Section
3 we introduce the concepts of concurvity and approximate concurvity and the
diagnostic tools proposed in literature. Section 4 is focused on the non-parametric
approach we suggest to detect concurvity among the predictor variables. In Section
5 we show the results of the proposed methodology through the use of a simulated
dataset, in section 6 through the Boston Housing data set. Section 7 contains
concluding remarks.

2. Additive models and extension

In multiple linear regression the expected value of the dependent variable Y is
expressed as a linear combination of a set of p independent variables (predictors)
in X, where X = {Xj , j = 1, . . . , p}.

E(Y |X) = β0 + β1X1 + ...+ βpXp = XTβ. (1)

The main characteristics of this model are its parametric form and the hypothesis
of linearity of the underlying relationship. Given a sample of size n, the esti-
mation of the parameters in the model is obtained by least squares. When the
relationship between the outcome and the predictors is characterized by complex
nonlinear patterns, this model can fail to capture important features of the data.
In such cases nonparametric regression is more suitable. The main drawback of
nonparametric regression, the curse of dimensionality (Bellman, 1961; Friedman,
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1997), is that the precision of the estimates obtained via this method is in in-
verse proportion to the number of independent variables that are included in the
model. To overcome this problem the class of additive model were introduced.
The key idea of these models is the fact that the regression surface may have a
simple additive structure. In additive models the form of the multiple regression
model is relaxed: as in linear regression, the additive regression model specifies
the expected value of Y as the sum of separate terms for each predictor, but these
terms are assumed to be smooth functions of the predictors.

E(Y |X) = β0 +

p∑
j=1

fj(Xj), (2)

where the fj are unknown smooth functions fit from the data. Even in this case
the model might have component functions with one or more dimensions, as well as
categorical variable terms and their interaction with continuous variables. Hence,
as set of not necessarily different p smoothing functions (i.e lowess, cubic splines,
etc.) has to be defined for each predictor. Finally the additive model is conceptu-
ally a sum of these non-parametric functional relationships between the response
variable and each predictor.

A substantial advantage of the additive regression model is that it eliminates
the curse of dimensionality, as it reduces the multidimensional problem to the
sum of two-dimensional partial regression problems. Moreover, since each variable
is represented in a separate way the model has another important interpretative
feature. The variation of the fitted response surface, holding all predictors constant
except one, does not depend on the values of the other predictors. In other words,
we can estimate separately the partial relationship between the response variable
and each predictor. The model is fitted by iteratively smoothing partial residuals
in a process known as backfitting, which is a block Gauss-Seidel procedure to solve
a system of equations. The idea of the backfitting goes back to Projection Pursuit
Regression (Friedman and Stuetzle, 1981), Alternating Conditional Expectation
algorithm (Breiman and Friedman, 1985) and CORALS (Corresponding canonical
Regression by Alternating Least Squares) (De Leeuw et al., 1976). In the additive
model,

E

Y − β0 −
p∑

j ̸=k

fj(Xj)|Xk

 = fk(Xk) (3)

holds for any k, 1 < k < p. This suggests the use of an iterative algorithm
to calculate the fj . Given a set of initial estimates {β̂0, f̂j}, we can improve these
estimates iteratively (i.e. looping over j = 1, ..., p ) by calculating the partial
residuals. Considering the partial residuals

R
[1]
j = Y − β̂0 −

p∑
k ̸=j

fk(Xk), (4)

and smoothing R
[1]
j against Xj to update the estimate f̂j .
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2.1. Generalized additive models

Generalized additive models (GAMs) (Stone, 1985; Hastie and Tibshirani, 1986)
represent a flexible extension of additive models. These models retain one impor-
tant feature of GLMs (Generalized Linear Models), additivity of the predictors.
More specifically, the predictor effects are assumed to be linear in the parameters,
but the distribution of the response variable, as well as the link function between
the predictors and this distribution, can be quite general. Therefore, GAMs can be
seen as GLMs in which the linear predictor depends on a sum of smooth functions.
This generalized model can be defined as (Hastie and Tibshirani, 1990):

E(Y |X) = G
(
β0 +

p∑
j=1

fj(Xj)
)
, (5)

where G(·) is a fixed link function and the distribution of the response variable
Y is assumed to belong to the exponential family. At least two other extensions
of additive models have been proposed: Friedman and Stueztle (1981) introduced
Projection Pursuit Regression and Breiman and Friedman (1985) introduced Al-
ternating Conditional Expectation. The model is fitted in two parts: the first
one estimates the additive predictor, the second links it to the function G(·) in
an iterative way. For the latter the local scoring algorithm is used. The local
scoring algorithm is similar to the Fisher scoring algorithm used in GLMs, but
it replaces the least-square step with the solution step of normal equations. As
shown in (Buja et al., 1989), the backfitting algorithm always converges. Since
the local scoring is simply a Newton-Raphson step, if the step size optimization is
performed, it will converge as well.

3. Concurvity

As the term collinearity refers to linear dependencies among the independent vari-
ables, the term exact concurvity (Buja et al., 1989) describes the nonlinear de-
pendencies among the predictor variables. In this sense, as collinearity results in
inflated variance of the estimated regression coefficients, the result of the presence
of concurvity will lead to instability of the estimated coefficients in additive models
and GAM. In other words, concurvity can be defined as the presence of a degen-
eracy of the system of equations that results in non-unique solutions. In presence
of concurvity also the interpretation feature of the additive models can be lost be-
cause the effect of a predictor onto the dependent variable may change depending
on the order of the predictors in the model. In contrast to the linear regression
framework where the presence of collinearity among independent variables implies
that the solution of the system of normal equations cannot be found unless the
data matrix is transformed in a full rank matrix or a generalized inverse is defined,
the presence of concurvity does not imply that the backfitting algorithm will not
converge. It has been demonstrated (Buja et al., 1989) that backfitting algorithm
will always converge to a solution; in presence of concurvity the starting functions
will determine the final solution. While exact concurvity (i.e. the presence of
exact nonlinear dependencies among predictors) is highly unlikely, except in the
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case of symmetric smoothers with eigenvalues [0, 1], approximate concurvity (i.e.
the existence of an approximate minimizer of the penalized least square criterion
that leads to approximate nonlinear additive relationships among predictors), also
known as prospective concurvity (Gu, 1992), is of practical concern, because it
creates difficulties in the separation of the effect in the model. This can lead to
upwardly biased estimates of the parameters and to the underestimation of their
standard errors. In real data an effect of concurvity seems to be present especially
when the predictors show a strong association. When the model matrix is affected
by concurvity several approaches have to be preferred to the standard methods.
For instance the modified GAM algorithm (Buja et al., 1989), which extracts the
projection parts of the smoothing functions and reparametrized the system of nor-
mal equations to obtain a full rank model, should be used. Another possible way
to deal with concurvity is to use partial Generalized Additive Models (pGAM)
(Gu et al., 2010) that sequentially maximizes Mutual Information between the re-
sponse variable and the covariates as a measure of nonlinear dependencies among
independent variables. Hence, pGAM avoids concurvity and also incorporates a
variable selection process. The main issue is that approximate concurvity seems to
be not predictable. To detect concurvity several diagnostic tools were proposed.
Among these we briefly examine the (1) Additive Principal Components (Donnell
et al., 1994) of the predictor variables and the (2) retrospective diagnostics for
nonparametric regression models with additive terms proposed by Gu (1992).

3.1. Additive Principal Components

Additive Principal Components (APCs) are a generalization of linear principal
components. The linear combination of variables is replaced with the sum of ar-
bitrary transformations of the independent variables. The presence of APCs with
small variances denotes the concentration of the observations around a possibly
nonlinear manifold, detecting strong dependencies between predictors. The small-
est additive principal component is an additive function of the data

∑
j fj(Xj)

with smallest variance subject to normalizing constraint. The APCs are charac-
terized by eigenvalues, variable loadings and the APC transformations fj . The
eigenvalues measure the strength of the additive degeneracy present in the data.
They are always non negative and below 1. For instance the presence of an APC
with eigenvalues equal to zero reveals the presence of exact concurvity among the
predictor variables. On the other hand, the variable loadings are equal to the
standard deviation of the transforms and indicate the relative importance of each
predictor in the APC. Moreover the shape of the APC functions indicates the sen-
sitivity to the value of each independent variable in the additive degeneracy and
it shows at which extent each predictor is involved in the dependency. Note that
this approach is retrospective since it requires that the additive functions have
been already estimated before diagnosing approximate concurvity.
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3.2. Diagnostics for additive models

Let

η =

p∑
j=0

fj(Xj) (6)

be a model with additive terms. After having computed fits of this model, the di-
agnostic proposed are standard techniques applied to a retrospective linear model
that is obtained evaluating the fit at the data points:

Ŷ = f1(X1) + . . .+ fp(Xp) + e. (7)

Stewart’s collinearity indices κj (Stewart, 1987):

κj = ∥xj∥∥x†
j∥, (8)

where xj is the jth column of the data matrix X and x†
j is the jth column of

the generalized inverse of X, can then be calculated from the cosine between the
smoothing functions and they measure the concurvity of the fit. High collinearity
coefficients are a sign of a small distance from a perfect collinearity in the model
matrix. Other concurvity measures considered are the cosines of the angles be-
tween each fj and the predicted response, between each fj and the residual term
and the magnitude of each fj . By definition also these diagnostics are retrospec-
tive.

4. A nonparametric approach to detect concurvity

We propose a nonparametric approach to detect concurvity among the predictor
variables inspired by the use of a modification of the correlation integral (Grass-
berger and Procaccia, 1983) proposed by Chen et al. in 2010. Correlation in-
tegral was original proposed in dynamic systems analysis: given a time series
zi, i = 1, . . . , N , the correlation integral quantifies the number of neighbors within
a given radius r. With the aim to detect the presence of concurvity we use the cor-
relation integral to evaluate the pairwise distances between data points and these
measures to detect the presence of global association and nonlinear relationships
among the untransformed predictor variables that, according to our view, may be
a good indicator of presence of concurvity in the data. Given a bivariate sample,
zi = (xi, yi), i = 1, . . . , N , of size N , let |zi−zj | be the Euclidean distance between
observations i and j. The correlation integral is defined as (Chen et al., 2010):

I(r) =
1

N2

N∑
I,j=1

I(|zi − zj | < r). (9)

In this way we obtain a quantification of the average cumulative number of neigh-
bors within a discrete radius r. Before calculating the correlation integral, each
variable is transformed to ranks and then a linear trasformation is applied (sub-
tracting the minimum rank and dividing by the difference between maximum and
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TABLE 1
Eigenvalues of the correlation matrix and tolerance of the predictors, simulated data

eigenvalue tolerance
x 1.9384 0.1497
t 1.0747 0.9759
z 0.9092 0.9872
g 0.0777 0.1491

minimum rank) to ensure its marginal distribution to be uniform. This step is
necessary to avoid the predictors being on non-comparable scales. The correlation
integral is calculated to obtain a description of the global pattern of neighboring
distances and it has the property of a cumulative distribution function. Its deriva-
tive D(r) represents the rate of change of the number of observations within the
radius r and can be interpreted as a neighbor density. It has the properties of a
probability density function.

D(r) =
∆I(r)

∆r
(10)

We then compare the observed neighborhood density with the neighborhood den-
sity under the null hypothesis of no association D0(r) to obtain the local corre-
lation and we seek for the maximal local correlation between the untransformed
predictor variables. Maximal local correlation is defined by (Chen et al., 2010)

M = max
r

{|D (r)−D0 (r)|} = max
r

{|L (r)|} . (11)

It represents the maximum deviation between two neighbor densities and can
be interpreted as a measure of distance. For this reason, it can also be interpreted
as the overall nonlinear association between two variables.

5. Simulated data

We define an example of multicollinearity that leads to approximate concurvity.
Drawing from an illustrative example proposed in Gu et al. (2010), we define a (250
× 4) X = {xi, ti, zi, gi} , i = 1, . . . , 250. The first three variables are independently
generated from a uniform distribution in [0, 1]; the forth predictor is gi = 3x3 +
N(0, σ1). We calculate the response variable as: yi = 3 exp (−xi) + 1.3x3

i + ti +
N(0, σ2), where σ1 = 0.01, σ2 = 0.1. These coefficients have no special meaning.
Our aim is to define a model matrix affected by multicollinearity.

In Table 1 we report the eigenvalues of the correlation matrix of the four pre-
dictors and the corresponding values of tolerance. Obviously there is a strong
relationship between the first and the forth predictors. Table 2 shows the maxi-
mal local correlation statistic values. The two-sided p values were evaluated via
classical permutation test with shaffling approach, with 1000 replications. The
rate of change in the radius in this example was equal to ∆r = 0.05, but we
noticed that even using different values of the radius ∆r = 1

10 ,
1
50 ,

1
100 , for these
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TABLE 2
Maximal local correlation statistics. In brackets two-sided p values evaluated via

permutation test with 1000 replications.

x t z g
x 1.000 0.306 0.125 0.907

(0.040) (0.740) (0.000)

t 1.000 0.126 0.372
(0.640) (0.034)

z 1.000 0.071
(0.840)

g 1.000
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Figure 1 – Pairwise neighbour densities and local correlation patterns, simulated data .

data, the results were unaltered. As null distribution we used a normal bivariate
distribution with correlation equal to zero.

In Figure 1 pairwise neighbour densities and local correlations are plotted
against the radius (∆r = 0.05). As expected distances between data points be-
longing to two highly related predictor variables (x and g) were different from
those between the other pairs. This seems to indicate that in the case of multi-
collinearity which leads to approximate concurvity, this nonparametric approach
based on maximal local correlation succeeds to detect global nonlinear relation-
ships between predictors.
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TABLE 3
Boston Housing dataset

Label Description
CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River adjacency
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIST weighted distances to five Boston employment centres
RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B (Bk − 0.63)2, where Bk is the proportion of blacks by town
LSTAT % lower status

MEDV median value of owner-occupied homes in $1000’s

6. Real data: Boston Housing

The data set used in this section is called the Boston Housing dataset. It was
originally collected by Harrison and Rubingeld (1978) and was used to estimate
the air pollution effect on housing values in suburbs of Boston. This dataset
contains 506 instances on 14 variables (13 continuous variables and a binary one)
and there are no missing values. The variables are reported in Table 3. The
dependent variable is MEDV and it indicates the median value of owner-occupied
homes in $1000’s. Drawing from an example proposed in (Donnell et al., 1994)
we will examine the behaviour of the maximal local correlation statistics on the
full dataset and on a reduced one proposed by Breiman and Friedman (1985).
The reduced dataset contains 5 predictors: 4 chosen via forward stepwise variable
selection (RM, TAX, PTRATIO and LSTAT) and NOX to evaluate the effect of
air pollution.

In Table 4 the eigenvalues of the correlation matrix of the independent variables
and the values of tolerance are shown. We can notice that the full dataset is badly
conditioned, especially if we look at the values of tolerance for the predictors RAD
and TAX.

6.1. Reduced dataset: Boston Housing data

In Table 5 maximal local correlation statistics are reported. As in the previous
analysis the two-sided p-values were evaluated via permutation test with 1000
replications. The rate of change of the radius used was equal to ∆r = 0.05. As null
distribution we used a simulated normal bivariate distribution whose correlation
was equal to zero. We can notice that maximal local correlation statistics are
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TABLE 4
Eigenvalues of the correlation matrix and tolerance of the predictors, Boston Housing

data

Eigenvalues Tolerance
CRIM 6.1267 0.5594

ZN 1.3425 0.4351
INDUS 1.1798 0.2532
NOX 0.8351 0.2279
RM 0.6647 0.5176

AGE 0.5374 0.3233
DIS 0.3964 0.2528

RAD 0.2771 0.1352
TAX 0.2203 0.1127

PTRATIO 0.1862 0.5608
B 0.1693 0.7435

LSTAT 0.0646 0.3412

TABLE 5
Maximal local correlation, Boston Housing reduced data

NOX RM TAX PTRATIO LSTAT

NOX 1.0000 0.2648 0.6077 0.5616 0.3789
(0.3567) (0.0320) (0.0367) (0.1521)

RM 1.0000 0.3585 0.2562 0.3812
(0.1567) (0.5876) (0.1498)

TAX 1.0000 0.5655 0.2179
(0.0331) (0.5438)

PTRATIO 1.0000 0.2008
(0.6136)

LSTAT 1.0000
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TABLE 6
Maximal local correlations, Boston Housing Complete data

CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

CRIM 1.000 0.275 0.586 0.664 0.308 0.554 0.549 0.488 0.476 0.382 0.219 0.218
ZN 1.000 0.419 0.285 0.241 0.313 0.348 0.247 0.206 0.214 0.134 0.224

INDUS 1.000 0.784 0.342 0.424 0.533 0.480 0.610 0.502 0.212 0.280
NOX 1.000 0.164 0.657 0.665 0.439 0.504 0.446 0.258 0.326
RM 1.000 0.298 0.313 0.166 0.309 0.186 0.226 0.338

AGE 1.000 0.706 0.190 0.347 0.306 0.185 0.322
DIS 1.000 0.222 0.466 0.335 0.198 0.194

RAD 1.000 0.387 0.438 0.269 0.149
TAX 1.000 0.395 0.218 0.177

PTRATIO 1.000 0.161 0.151
B 1.000 0.119

LSTAT 1.000

statistically significant at significance level α = 0.05 for NOX - TAX, NOX -
PTRATIO and TAX - PTRATIO. Note that this result is extremely close to the
one obtained in Donnell (1982) using APCs.

6.2. Complete data set: Boston Housing data

Maximal local correlation statistics for the complete dataset are shown in Table 6.
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Figure 2 – Maximal local correlation statistics, Boston Housing complete data

In Figure 2 the highest statistically significant maximal local correlation statis-
tics are highlighted. We can notice that the proposed methodology succeeds in
finding nonlinear associations between the following predictors: TAX - INDUS,
DIS - NOX, DIS - AGE, AGE - NOX, NOX - CRIM, NOX - INDUS. Also these
results are similar to the ones obtained in Donnell (1982) using APCs. This indi-
cates again that in the case of badly conditioned input matrix, this nonparametric
approach based on maximal local correlation succeeds in spotting global nonlinear
relationships between untransformed predictors.
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7. Concluding remarks

In this study, we have demonstrated that the proposed nonparametric approach
based on maximal local correlation statistics succeeds in detecting global nonlinear
relationships between predictor variables. For this reason we believe that it can
be used as a perspective or as a retrospective diagnostic for concurvity especially
in real data cases. Indeed, in these cases, concurvity tends to be present when
predictor variables show strong association patterns. Moreover this approach can
be used, together with the other diagnostics, as a variable selection method before
implementing an additive model. A natural extension of this study would be
to test the efficacy and the efficiency of this method when nonlinear association
among predictors is characterized by the presence of clusters within the data.
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SUMMARY

On concurvity in nonlinear and nonparametric regression models

When data are affected by multicollinearity in the linear regression framework, then
concurvity will be present in fitting a generalized additive model (GAM). The term con-
curvity describes nonlinear dependencies among the predictor variables. As collinearity
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results in inflated variance of the estimated regression coefficients in the linear regres-
sion model, the result of the presence of concurvity leads to instability of the estimated
coefficients in GAMs. Even if the backfitting algorithm will always converge to a so-
lution, in case of concurvity the final solution of the backfitting procedure in fitting a
GAM is influenced by the starting functions. While exact concurvity is highly unlikely,
approximate concurvity, the analogue of multicollinearity, is of practical concern as it
can lead to upwardly biased estimates of the parameters and to underestimation of their
standard errors, increasing the risk of committing type I error. We compare the existing
approaches to detect concurvity, pointing out their advantages and drawbacks, using
simulated and real data sets. As a result, this paper will provide a general criterion to
detect concurvity in nonlinear and non parametric regression models.

Keywords: Concurvity; multicollinearity; nonparametric regression; additive models;
generalized additive models.


