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1. INTRODUCTION AND BACKGROUND 

In the last years the decision making process had to face a growing “dynamism” of the events: 
market changes, the use of technical innovations and communication means, industry 
specializations, which lead to follow the different operations made by the firm, to underline the 
irregularities that can generate crisis, economic losses or reductions in market share (Chiodini and 
Magagnoli, 2004; Low, 2004). 

Internal control includes systematic measures adopted by an organization to conduct business 
in an efficient manner, to safeguard assets and resources, to check the accuracy and reliability of 
the accounting data, to promote operative efficiency, to produce reliable and timely financial and 
management informations, to encourage adherence to prescribed managerial policies and to detect 
errors and frauds. Therefore, a system of internal control extends beyond the matters which relate 
directly to the functions of the accounting and financial departments. Generally, controls can be of 
three types: a preventive control, designed to discourage from occurring errors or irregularities; a 
corrective control, designed to correct errors or irregularities that have been detected; a detective 
control, designed to find errors or irregularities after they have occurred (Guy et al., 2002). 

The demands of the firms of a control extended to all phases of its organization have led to a 
wide use of statistical analysis procedures in order to locate the system irregularities, to assess the 
market and to take operational and strategic decisions in conditions of uncertainty (Ashton and 
Ashton, 1988; Kriens and Veenstra 1985). 

The aim of this study is to examine a new suitable procedure for internal auditing in order to 
define the error risk that could imply distortions and wrong decisions by the management. The 
audit system develops in different steps: some are not susceptible to sampling procedures, while 
others may be held using sampling techniques. In usual sampling techniques adopted in auditing, 
sampling plans are used to estimate the amount of the accountancy during time (i.e. one year), 
with an inference about the series of transactions that is assumed as the “statistical population” 
(Arens and Loebbecke, 1981; Smith 1976). Such assumption is denoted “static” or “ex post”. In this 
study the same informations are used to follow the data development during time (Brown and 
Rozeff, 1979; Caprara, 1988) and to estimate their behaviour from a “dynamic” point of view. In 
particular, we introduce a statistical test of hypothesis and irregularity signal, that can be connected 
with the ones applied in the production processes known as “control charts”.  

A control chart is an on-line statistical tool used in statistical quality control to detect quickly 
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the occurrence of assignable causes or process shifts so that investigation of the process and 
corrective actions may be undertaken (Montgomery, 2005; Kanji, 2004). Control charts are used to 
monitor a process for some quality characteristic that can be measured and expressed numerically 
such as thickness, weight and defective fractions (control charts for variables) or that are attributes 
and expressed categorically, for example “conforming” or “non-conforming”, “defective” or “non-
defective” (control charts for attributes). 

In auditing, both internal and external, the concept of risk is very complex (Teitlebaum and 
Robinson, 1975; Libby et al., 1985; Houston et al., 1999; Cleary and Thibodeau, 2005), with 
reference to the different kinds of fraud and acceptability that have a degree of subjectivity. For a 
review on statistical fraud detections see Bolton and Hand (2002). Therefore the study assumes as 
risk measure the probability of “no signal” when some irregularities are happening and hence in 
terms of the probability of the second type β  in function of the shift of the accountancy from the 
standard conditions. This represents the probability to not report a situation of irregularity in the 
accounts in the event of removal of the accounting process and therefore it is considered right in 
terms of regularity. The aim is to monitor the possibility of intervening with a comprehensive 
analysis of the accounts when it does not meet the conditions required under the null hypothesis 
(regularity of the accounting entries) and to reduce the probability of not reporting a situation of 
irregularity in the accounts in terms of number of transactions affected by errors in the sample that 
overcome a given threshold (natural error rate), and the mean amount of monetary errors found in 
incorrect records. Therefore we compute a mixed structure, for variables and for attribute different 
on the standard control procedure. 

The paper is organized as follows. The next section explains the marginal and the joint test of 
hypotheses to verify the regularity of the accounting system. In section 3 the decisional procedure 
consisting of two hypothesis systems is proposed. In particular, the first system is referred to the 
analysis of the first marginal test of hypothesis relative to the frequency of accounting errors p , 

with particular attention to the differences between non-randomized or randomized test. While the 
second system is referred to the analysis of the second marginal test of hypothesis relative to the 
mean (or median) of the book errors conditioned from the first one. Here the distinction is 
between unilateral and bilateral test. Moreover, the joint operative characteristic function of the 
test is calculated. Defined the decision-making procedure that allows to accept or reject the null 
hypothesis, in section 4, a sensitivity analysis of the procedure is described. Finally, in section 5 
some future developments are presented. 

 
 

2. MODEL AND TEST OF HYPOTHESES 

Within the audit accounting, the risk concept is highly complex and difficult to apply in relation 
to different types of possible frauds and to their acceptability degree.  

The given check procedure is a multiple test of hypothesis, iteratively applied to the 
accountancy records that belongs to homogeneous classes and related to a short time 

tI t t t( ],= − ∆  , with t 1∆ =  , (i.e.: one day), where for the tN  accountancy records available, 

tn  of them are analysed. 
In audit context two quantitative elements play a role of particular interest. The frequency of a 

book error p  and the mean (or median) Lθ  of the conditional distribution of the error random 

variable X Vc Vr–= , given by the difference between the real book value Vc  and the recorded 
value Vr , that follows a known law L DF x; ,( )θ θ   depending on a location parameter Lθ  and on 
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a dispersion parameter Dθ  (that is considered constant).  

In other words, we can refer to the following two systems of hypotheses: 
1. a system referred to the frequency of accounting errors p , X 0≠  or 

( )X X0, 0+ −>  < , in tI  period: 

H p p

H p p

'
0 0
'
1 0

:

:

 ≤


>
 (1) 

and we accept the null hypotheses if the error fraction p  is below the value p0  (few errors); 

2. a system referred to the mean (or median) of the book errors, X 0≠  or 

( )X X0, 0+ −>  < , in tI  period. This may be unilateral, by checking the only positive 

(or negative) errors: 

L L

L L

H

H

"
0 0
"
1 0

:

:

θ θ

θ θ

 ≤


>
 (2) 

and we accept the null hypotheses if the mean value of the accountancy errors Lθ  is below the 

value L0θ  (small errors); or bilateral, by checking the presence of errors both positive and negative 

L L

L L

H

H

"
0 0

"
1 0

:

:

θ θ

θ θ

 ≤


>
 (3) 

The values p0  and L0θ  are boundary values in the acceptable conditions of the accounting. 

The operative choice of these values depends on the sample size that is linked to the number of the 
observed units N  in the considered period of time and on the significance level α . 

Consequently it is possible to set up a complex system of hypotheses to verify the regularity of 
the accounting system when p p0≤  or L L0θ θ≤  or of the both, in the situation of the unilateral 

test. 
Then the joint system of hypotheses is 







>∨>

≤∧≤

001

000

LL

LL

pp:H

pp:H

θθ

θθ
 (4) 

and similarly in the situation of the bilateral test. 
 
 

3. THE DECISIONAL PROCEDURE 

As said before, the proposed procedure consists of two hypothesis systems. The first system 
regards the verify of the presence of units characterised by accounting errors, the second one is 
about the verification of the mean (or median) value on the observed non correct units r . In other 
words, the second hypothesis system is conditioned to the first one. 

In fact, in order to verify conjointly the null hypothesis of the systems (1) and (2) or (3) which 
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form the hypothesis H0  of the system (4), we have to formalize the decisional rules belonging to 

each single hypothesis, so that to have a unique decisional rule D0  to accept the null hypothesis 
obtained as the intersection of the two marginal decisional rules. 

3.1. The first test of hypothesis 

In the test of hypothesis (1) we verify the presence of units characterised by book errors.  
Let consider a simple random sample of size n  (with n N<< ), and let r  be the number of 

units characterised by a book error in the sample. The number r  is assumed distributed as a 
Poisson random variable with parameter npλ =  (considering acceptable the conditions of the 

asymptotic approximation of hypergeometric and binomial distribution to the Poisson 
distribution). The hypothesis system (1) becomes 







>

≤
→







>

≤

01

00

01

00

λλ

λλ

:H

:H

pp:H

pp:H
'

'

'

'

 (5) 

where np0 0λ = .  

The test may be non-randomized or randomized. 
 
NON-RANDOMIZED TEST. If we consider a non-randomized test, the critical function to reject the 

null hypothesis is 

( )








→>

→≤
=Ψ '

c

'
c'

Ddecisionrrif

Ddecisionrrif
;r

1

0

1

0
λ   

where the critical value cr  depends on the significance level of the first test 'α  and D'
0  is the 

acceptance of H '
0  while D'

1  is the acceptance of H '
1 , respectively. 

Let ( )g r  ; λ  be the probability distribution function and ( )G r  ; λ  the cumulative 

distribution function of a Poisson random variable, respectively. We have 

( ) ( )c cG r G r'
0 01; 1 ;λ α λ−  < − ≤   

so that: 

( ) ( ) ( )c c cG r g r G r'
0 0 0; ; 1 ;λ λ α λ −  < − ≤    

This equation allows, assigned 'α  and 0λ , to obtain the critical value cr  of the procedure. 
In this case, the real significance level is equal to: 

( )cG r' '
* 01 ;α λ α = − <    

The operative characteristic function of the non-randomized test ( ) ( )  ' '1β λ λ= − Π  for 

  



 
 
 
 
 
 
 
 

On a Test of Hypothesis to Verify the Operating Risk etc.  49 
 

0λ λ>  gives the probability of the second type error for the hypothesis system (1) ( )' λΠ  is the 

power function of the test). This function, for assigned values of n , 'α  and p0  (from which cr  

derived), can be expressed as a function of ( )np n p0λ = = + ∆ , where ∆  is the distance from p   

to p0 . 

So we have 

( ) ( ) ( )
cr

c
r

g r G r'

0

; ;β λ λ λ
=

= =∑   

In particular, for 0λ λ=  and so 0∆ = , ( ) ( )n' ' ,β λ β≡ ∆  , we have    

( ) ( ) ( )' ' '
0 *1 1β λ α α= − ≥ −   

 
 
RANDOMIZED TEST. As the non-randomized test does not have an exact significant level equal 

to 'α  we consider a randomized test. In this case the critical function to reject the null hypothesis 
is 

 

( )
c

c

c

if r r
r if r r

if r r

'

0
;

1
λ ψ

    <
Ψ  =    =
     >

,  

where 

( ) ( )
( ) ( )

c

c c

G r

g r g r

' ' '
0 *

0 0

; 1

; ;

λ α α αψ
λ λ

 − − −
= =

  
  

is the randomness probability of the decisional procedure for cr r= . 

We observe that for 0=λ λ  he expected value of the random variable ( )r' ; λΨ   is 'α : 

( ){ } { } { } { }
( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

c c c

c
c c

c

c c

E r P r r P r r P r r

G r
g r G r

g r

G r G r

'
0

'
0

0 0
0

' '
0 0

; 0 1

; 1
; 1 ;

;

; 1 1 ;

λ ψ

λ α
λ λ

λ

λ α λ α

Ψ  = ⋅ < + ⋅ = + ⋅ > =

 − −
                      =  + −  =

 

                         =  − − + −  =  

.  

The function ( )E r'{ }; λΨ  , considered as function of λ , is the power function of the test. 

Consequently, the operative characteristic function of the randomized test is 
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( ) ( ) ( )
cr

c
r

g r g r'

0

; ;β λ λ ψ λ
=

=  − ⋅  ∑ .  

In particular, for 0=λ λ  and so =0∆ , ( ) ( )n  p' '
0, ,β λ β≡ ∆  , we have 

( ) ( )' '
0 1β λ α= − .  

3.2. The second test of hypothesis 

In the situation of non-systematic absence of abnormal behavior in the recording of the book 
values, the assumption of normal distribution of the accounting error is justifiable both from 
theoretical and applicative point of view. Moreover, because in this context it makes no sense to 
consider small sample sizes, considering the sample mean as test statistic the assumption of 
normality is approximately (for the central limit theorem) even if the assumption of normal 
distribution for X is removed. Consequently the unilateral and bilateral hypotheses systems of the 

second test of hypothesis regards the random variable X N µ 2
0,( )σ  , with 2

0σ  assigned on the 
basis of the experience.  

The verification of the mean value is conducted on the observed units r  characterised by a 
book error in the sample. In other words, the second hypothesis system is conditioned to the first 

one. In fact it is taken into account only if it was observed in the first test [ ]cr r1,∈  . 

The test may be unilateral or bilateral. 
 
UNILATERAL TEST. If we consider the unilateral hypotheses systems with 

ix i  r0; 1, 2, ,>   = …  , the decisional rule to accept the null hypothesis is  

c

c

D x x

D x x

''
0
''
1

:

:

 ≤


>
  

where
r

ii
x x r

1
/

=
= ∑  is the sample mean and cx  is the critical value obtained from the 

significance level ''α : 

cx z
r

''
0

0 1 α

σµ
−

= + .  

As known, z ''1 α−
 is the percentage point ( )'1 100α−  of the standard normal distribution 

variable such that ( )z ''
''

1
1αφ α

−
= − , where φ  is the cumulative distribution function of the 

standard normal distribution. 

Considering the standardized parameter ( ) µ µ0 0/δ σ= −  with 0δ ≥  instead of µ µ0> , 

the characteristic function of the test is 
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( ) { } ( ) ( )r P D r z r''
'' '' ''

0 0 0 1
; : 1 ; αβ δ µ µ δσ δ φ δ

−
= = + = − Π = − . (6) 

For =0δ , such function takes the value ( )r'' ''0; 1β α = − , and for  δ → ∞ , 

( ) lim  r'' ; 0δ β δ→ ∞ = . 

The function ( )zφ  can be approximated to zero for z -4≤ , so we can limit the 

determination of the function ( )r'' ;β δ    for values  z r''1
, 4 )0( /( )αδ

−
∈ + . For example, for 

'' 5%α =  and r 9=  we have ( )0, 2δ ∈  ≈ . 
 
BILATERAL TEST. If we consider the bilateral case, the hypotheses systems can be write as: 

( ) ( )
H H

for
HH

'' ''
0 0 0 0 0

0''''
1 0 01 0

: :
0

::

µ µ µ µ µ
µ

µ µ µ µµ µ

 ≤ − ≤ ≤ →        ≥ 
< − ∪ >>  

  

The decisional rule based on the sample mean of the r observations ix 0≠ ; i    1, 2, , r= …  , is 

( ) ( )
c c

c
c c

D x x x
for x

D x x x x

''
0
''
1

:
0

:

 − ≤ ≤         >
< − ∪ >

  

To determine the critical value cx , we consider µ µ0=  and ( )'' 0.5α <  such that 

L U
'' '' '' α α α= +  where { }c LP X x ''α< − =  and { }c UP X x ''α> =  with L U

'' '', 0α α ≥ . 

Being for hypothesis ( )X N r2
0 0, /µ σ≈  , we have 

( )

( )

( )

( )

L U

L

L U
U

c
L c c

c
cU

z zx r
z x xr r

rx z zz x
r r

'' ''

''

'' ''
''

'' 0 1 10
01

0 0

'' 0 1 1001
000

1
2

1
2

α α
α

α α
α

µ σα ϕ µ
σ σ

µ σµα ϕ µσσ

− −
−

− −
−

   ++  = −   = + =      → →  
 − −  = −= −     =    

 (7) 

The values L
''α  and U

''α  derive from the second equations of the system (7) using the relation: 

L U

r
z z'' '' 01 1

0

2α α µ
σ− −

− =   

where 
L

z ''1 α−
 and 

U
z ''1 α−

 are the percentage points ( )L
''1 100α−  and ( )U

''1 100α−  of the standard 

normal distribution. 
From the previous equations it is possible to determine the critical value cx  for 0 0µ ≥ . 

In particular, for 0 0µ =  we have L U
'' '' '' / 2α α α= =  and so: 
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cx z
r

"
0

1 /2α

σ
−

= .  

The function ( )zφ  can be approximated to one for z 4≥ , so the relation 

( )c L
r

x "
0

0

1φ µ α
σ

 
+ = − 

 
 for ( )c

r
x 0

0

4µ
σ

+ ≥  implies L
''1 1α− ≅  and so L

'' 0α ≅  and 

U
'' ''α α≅ . 

If 
z

r

''10
0

4

2
ασµ −

− 
≥   

 
, the approximate critical value is cx z

r
''

0
0 1 α

σµ
−

= + . In such case 

cx  is the same of the unilateral case. 

If 
z

r

''10
0

4
0

2
ασµ −

− 
< <   

 
 we have to calculate L U

'' '',α α  , and cx  using the equations (7).  

Once defined cx , we can calculate the operative characteristic function of the conditioned test: 

( ) { }cr P X x''
0 0; :β δ µ δσ = ≤ +   

where the mean of the random variable X  is indicated as µ µ0 0δσ= +  with 0δ ≥ . 

As { }E X 0 0µ δσ= +  and { }Var X r2
0 /σ= , we have 

( ) ( ) ( ) ( ) ( )
U L U U

r z r z r z r z r'' '' '' '' ''
''

1 1
; α α α α αβ δ φ δ φ δ φ δ φ δ

− − −
 = − − − = − − −  (8) 

 

For a fixed value ''α  this is a monotonically increasing function with respect to δ  and r . 
In particular, for 0δ = : 

( ) ( ) ( ) ( )
U L

U Lr z z r'' ''
'' '' '' '' '' ''

1
0; 1 1 0;α αβ φ φ α α α α

−
= − = − − = − → Π  =    

As noted before, if 0 0µ =  we have L U
'' '' '' / 2α α α= = , so: 

( ) ( ) ( )r z r z r'' ''
''

1 /2 /2
; α αβ δ φ δ φ δ

−
= − − −   (9) 

For 












 −
≥

−

2

4 10
0

''z

r
ασ

µ  we have 0≅''
Lα  and ''''

U αα ≅ , consequently  

( ) ( )r z r''
''

1
; αβ δ φ δ

−
 = −   (10) 

and the approximation of the unilateral case (6) is still valid. 
As indicated in the preceding paragraphs it is possible to use as location index the median (or 

another quantile point) as an alternative to the mean. The benefit would be that these indexes are 
robust. This property is especially useful when we suspect that some modalities very large or very 
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small are abnormal. 

In this way it would be possible to use a non-parametric version of the procedure that does not 
require the assumption of normality of the data. 

 

3.3. The joint operative characteristic function 

We now define the joint operative characteristic function ( );β δ∆ , where ∆  is the distance from 

p  to p0  (first systems of hypotheses), and ( )µ µ0 0/δ σ= −  (second systems of hypotheses), for 

the cases examined in sections 3.1 and 3.2. 
 
NON-RANDOMIZED TEST. If we consider the unilateral and non-randomized test, the joint 

operative characteristic function is: 

( ) ( ) ( ) ( ) ( )
cr

r

P D g r g r r''
0

1

; : , 0; ; ;β δ δ λ λ β δ
=

∆   = ∆  = =   +     ∑  (11) 

where ( )r'' ;β δ   for 0δ ≥  is defined in equation (6).  

We precise that if r 0=  we accept the null hypothesis of the joint test of hypotheses, while 
for cr r>  we refuse it. For cr r1 < <  the decision derives from the second test (see paragraph 3.2). 

For the bilateral and non-randomized test, we consider in the previous equation  defined in 
equation (8). 

We observe that for 0∆ =  and 0δ =  we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )

c

c

c

r

r
r

r
r

r

g r np g r r

g g r g

g r g

g

''
0 0 0

1

'' ''
0 0 0

1

'' ''
0 0

0

'' ' ''
* 0

0;0 0; ; 0;

0; 1 ; 0;

1 ; 0;

1 1 0; 1

β λ λ β

λ α λ α λ

α λ α λ

α α α λ α

=

=

=

= =  = +   =

            =  + −  ±  =

            = −  +  =

            = − − +  = −

∑

∑

∑

 (12) 

where α  is the exact significance level of the joint test of hypothesis.  

In equation (12) ( ) r '''' 0; 1β α= − , ( ) npg e e 00
00; λλ −− = =  and 

( )cr

r
g r ' '

0 *0
; 1 1λ α α

=
  = − ≥ −∑ , so 

( )( ) ( ) ( ) ( )( )g' '' ' '' ' '' ' '' ' ''
* * * * * 01 1 1 1 0;α α α α α α α α α α α λ α− − = − + + > − → ≅ + − +   

If we do not consider the term ( )( )g' ''
* 00;α λ α+   , we obtain ( ) ''''''

* ααααα +≤+= .  

Operatively, we can proceed by assigning a small value to α  (1%, 5%, 10%) and build the test 

assuming ' '' / 2α α α= = . 
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RANDOMIZED TEST. If we consider the procedure of the first system of hypothesis using a 

randomized test, the joint operative characteristic function of the test ( );β δ∆   can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

c

c

r

c c
r
r

c c
r

g g r r g r r

g g r r g r r

1
'' ''

1

'' ''

1

; 0; ; ; 1 ; ;

0; ; ; ; ; .

β δ λ λ β δ ψ λ β δ

λ λ β δ ψ λ β δ

−

=

=

∆  =  +   + −   =

              =  +   −   

∑

∑
 (13) 

We note that for 0∆ =  and 0 δ =  we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

( )( )

c

c

c

r

c c
r

r

c
r

r

c
r

g g r r g r r

g g r g r g

g r g r g

g

'' ''
0 0 0

1

'' '' ''
0 0 0 0

1

'' ''
0 0 0

0

' '' ''

0; 0 0; ; 0; ; 0;

0; ; 1 ; 1 0;

1 ; ; 0;

1 1 0;

β λ λ β ψ λ β

λ λ α ψ λ α α λ

α λ ψ λ α λ

α α α

=

=

=

 =  +   −   =

             =  +  − −  − ±  =

 
             = −  −  + = 

 

             = − − +  

∑

∑

∑

( )0 1λ α= −

 (14) 

where ( ) r '''' 0; 1β α= − , ( ) npg e e0 0
00; λλ −− = =  and ( ) ( )cr

cr
g r g r '

0 00
; ; 1λ ψ λ α

=
 −  = −∑ . 

We may observe that in equations (11), (12), (13) and (14) the terms ( )g 00; λ  or ( )g 0; λ  can 

be disregarded if 0λ  or λ  are greater than 7, as their contribution would be lower than 0,001. In 
this way to consider the joint procedure is equivalent to consider the two joint tests stochastically 
independent. 

 
 

4. SENSITIVITY ANALYSIS OF THE PROCEDURE 

Defined the decision-making procedure that allows on the basis of sample data to accept or 
reject the null hypothesis using the critical values ( cr  and cx ), consistent with the level of quality 

required for the correctness accounting and in accordance with the parameters ( p0  and µ0  ) and 

significance levels of the two tests ( 'α  and ''α ), it is interesting to evaluate the level of risk 
considered acceptable in a real situation incompatible with the null hypothesis in terms of 

probabilities. This probability is expressed by the operational characteristic function ( );β δ∆   

where δ  and ∆  are appropriate measures of the distances of the real values from the parameters 
p  and µ  from p0  and µ0 . This function is called the "risk of error in the decision-making 

procedure sample" and is an indicator of general use for the choice of parameters that establish the 
decision-making procedure. It has to be noted that it also depends on the type of procedure of 
randomness (random or non-random) as regards the first test, and on the type of hypothesis 
(unilateral or bilateral) as regards the second test, conditional on the first. 

To evaluate the sensitivity of the parameters on the operative characteristic function, and thus 
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to direct operatively the conductors of the investigation of auditing in the choice of the 
parameters, the next Table 1 presents the critical values cr , the real significance level of the first 

test '
*α  and the randomness probability ψ  of the decisional procedure for cr r= . In particular 

we have referred to: n   100, 250, 500= ; p   0 0.01, 0.05, 0.10=  and   ' 1%, 2.5%, 5%α = . 

 

TABLE 1 

Critical values cr , real significance level '
*α  and randomness probability ψ  of the decisional procedure for 

cr=r . 

    
' 1%α =  '  2.5%α =  '  5%α =  

n  p0  0λ  g 0(0; )λ  cr  ( )'
* %α  ψ  cr  ( )'

* %α  ψ  cr  ( )'
* %α  ψ  

 0.01 1.0 0.3679 4 0.37 0.4136 3 1.9.0 0.0981 3 1.90 0.5058 

100 0.05 5.0 0.0067 11 0.55 0.5517 10 1.37 0.6234 9 3.18 0.5011 

 0.10 10.0 ~0 18 0.72 0.3968 17 1.43 0.84 15 4.87 0.0363 

 0.01 2.5 0.0821 7 0.42 0.5788 6 1.42 0.3885 5 4.20 0.1194 

250 0.05 12.5 ~0 21 0.94 0.0759 20 1.73 0.5789 19 3.06 0.9129 

 0.10 25.0 ~0 37 0.92 0.1478 35 2.25 0.2233 33 4.98 0.0101 

 0.01 5.0 0.0067 11 0.55 0.5517 10 1.37 0.6234 9 3.18 0.5011 

500 0.05 25.0 ~0 37 0.92 0.1478 35 2.25 0.2233 33 4.98 0.0101 

 0.10 50.0 ~0 67 0.89 0.3128 64 2.36 0.1695 62 4.24 0.5725 
 

In the Table 1 we observe that the values of the function ( )g 00; λ  show the probability that 

there are no accounting errors. Considering the critical values cr  we observe that in some 
situations such values are very small and, therefore, the means calculated at the second test result 

lacking in precision. In particular, already for the smallest value of ( )' 1%α =  in some situations 

we observe values of cr  very small (i.e. 4, 7, 11) and  decreasing when 'α  increases. To have sense 

the use of the test on the mean you need to consider combinations of p0  and n  such that ensure a 

value of np0 0 10λ = ≥ . 

Moreover the real significance level of the first test '
*α  is that of the case of non-randomized 

test: ' '
*α α< , while for the randomized test is equal to the nominal level 'α . 

To complete the observations arising from Table 1, the Figure 1 presents the probability to 
accept the null hypothesis of the first test (operative characteristic function) as a function of ∆  for 
the randomized and non-randomized test. In particular we have referred to: 

p n  0 0.05; 100, 250=   =  and 'α  ' 2.5%, 5%α = . We note that in the graph the thick lines are 

referred to the randomized test, while the fine lines are referred to the non-randomized test. 
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Figure 1 – Probability to accept  the null hypothesis of the first test for the randomized (thick lines) and 
non-randomized (fine lines) test. 

The figure shows that the risk function is very sensitive to sample size. In particular, it is much 
more sensitive the higher is the value of n . It is generally argued that the test presents a good 
discriminating ability.  

Once defined the conditions of the first test about the frequency of accounting errors p , it is 

possible to carry out the second one relative to the mean of those errors. We emphasize that the 
second test is conditioned to the first one. 

For this test we have chosen '' 'α α= . Denoting by 

r
u

0

0
0 σ

µ
=    and   

r
xu c

c
0σ

=   

the standardized values of µ0  and cx  respectively, Table 1 contains, for the bilateral test, the 

values u0  and the differences cu u0− . We note that the values cu  and u0 are standardized with 

respect to r  and are obtained as function of U
''α  by an iterative procedure for ''α  equal to 1%, 

2.5%, 5%. From those we can obtain c cx ku=  and µ ku0 0=  with k r0σ= . 

 

  



 
 
 
 
 
 
 
 

On a Test of Hypothesis to Verify the Operating Risk etc.  57 
 

TABLE 2 
Standardized values uo, differences uc - uo and probabilities ( )%''

Uα . 

 '' 1%α =  '' 2.5%α =  '' 5%α =  

u0  ( )U
'' %α  cu u0−   u0  ( )U

'' %α  cu u0−  u0  ( )U
'' %α  cu u0−  

0 0.5 2.5758 0 1.25 2.2414 0 2.5 1.96 

0.0418 0.56 2.5362 0.051 1.414 2.1933 0.0589 2.842 1.9045 

0.0837 0.619 2.5011 0.102 1.574 2.151 0.1177 3.174 1.8558 

0.1255 0.675 2.4703 0.153 1.725 2.1143 0.1766 3.487 1.8136 

0.1673 0.727 2.4437 0.204 1.863 2.0829 0.2354 3.773 1.7777 

0.2092 0.774 2.421 0.255 1.986 2.0566 0.2942 4.026 1.7477 

0.251 0.816 2.4018 0.306 2.094 2.0348 0.3532 4.244 1.7231 

0.2928 0.852 2.3859 0.3569 2.184 2.0171 0.4113 4.423 1.7035 

0.3346 0.883 2.3729 0.4078 2.259 2.003 0.4695 4.569 1.6881 

0.3765 0.9 2.3623 0.4591 2.319 1.9919 0.5269 4.684 1.6763 

0.4183 0.929 2.3539 0.51 2.366 1.9833 0.5845 4.772 1.6674 

0.4602 0.946 2.3472 0.561 2.403 1.9769 0.6399 4.836 1.6609 

0.5021 0.959 2.342 0.612 2.43 1.972 0.7063 4.892 1.6554 

0.5439 0.969 2.338 0.6629 2.451 1.9685 0.7651 4.927 1.652 

0.5857 0.977 2.335 0.7139 2.466 1.9659 0.8239 4.951 1.6496 

0.6274 0.983 2.3327 0.7645 2.476 1.9641 0.8808 4.967 1.648 

0.6694 0.988 2.3309 0.816 2.484 1.9627 0.9368 4.978 1.6469 

0.7106 0.991 2.3297 0.867 2.489 1.9618 0.9984 4.987 1.6462 

0.7529 0.994 2.3287 0.9179 2.493 1.9612 1.0595 4.992 1.6457 

0.7943 0.996 2.328 0.9857 2.496 1.9607 1.1183 4.995 1.6454 

0.8361 0.997 2.3275 1.0195 2.497 1.9605 1.1754 4.997 1.6452 

>0.8368 1 2.3263 >1.0200 2.5 1.96 >1.1776 5 1.6449 
 
In the Table 2 we observe that for u0 0=  (first line highlighted in the table), the values of the 

probability { }U cP x x''α = >  are exactly the half of the values of ''α . In this case the bilateral test 

is perfectly symmetric. Instead, for u0 greater than a calculated value (last line highlighted in the 

table), we have U
'' ''α α= . In this situation it is possible to not consider the lower tail (and so L

''α ), 

therefore the bilateral test tends to that unilateral. For example for '' 2.5α =  and u0 1.0200>  we 

have U
'' '' 2.5%α α= = . 

To complete the analysis of the second test, the Figure 2 represents the operative characteristic 

function of the conditioned test ( )r'' ;β δ   expressed in terms of rδ  for the unilateral test in 

equation (6) and for the two extreme situations for the bilateral test in equations (9) and (10). Here 
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we have considered the values   '' 1%, 2.5%, 5%α =  . We note that in the graph the thick lines 
are referred to unilateral test, while the fine lines are referred to the bilateral test. 

 

 

Figure 2 – Characteristic function of the conditioned test ( )r'' ;β δ  . 

The figure shows the influence of the values ''α  on the operative characteristic function. In 

particular the higher is the value of ''α  than ( )r'' ;β δ   is much more sensitive. Moreover for the 

unilateral test the curves drawn on the graph identify the single values of the characteristic 
function. Instead, for the bilateral test instead you get a range of values for this function making 
able, as shown in the table above, the bilateral test to be perfectly symmetric or to be reduced to 
the unilateral case. 

For the joint test of hypothesis, Table 3 contains the global significance level α  given by 
equations (11) and (13) for the non-randomized test and randomized test respectively with respect to 
the conditions of the null hypothesis of the first and the second test together. We remember that in 

this case, for 0∆ =  and 0δ =  we have ' ''α α α≤ +  and the equality is valid only in the 
situation of stochastic independence of the two systems of hypotheses. In the table the probability 
α  is here obtained as function of n   100, 250, 500= ; p   0 0.01, 0.05, 0.10=  and 

' '' 2.5%, 5%α α= =   . 
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TABLE 3 
Global significance level α . 

n  p0  0λ  g 0(0; )λ  

' '' 2.5%α α= =  ' '' 5%α α= =  
non-

randomized 
test 

randomized 
test 

non-
randomized test 

random-
ized test 

 
0.01 1 0.3679 3.43 4.02 4.96 7.91 

100 0.05 5 0.0067 3.82 4.92 7.99 9.72 

 
0.10 10 ~ 0 3.89 4.94 9.63 9.75 

 
0.01 2.5 0.0821 3.68 4.73 8.58 9.34 

250 0.05 12.5 ~ 0 4.19 4.94 7.91 9.75 

 
0.10 25 ~ 0 4.69 4.94 9.73 9.75 

 
0.01 5 0.0067 3.82 4.92 7.99 9.72 

500 0.05 25 ~ 0 4.69 4.94 9.73 9.75 

 
0.10 50 ~ 0 4.8 4.94 9.03 9.75 

Global significance level in the 
situation of stochastic independ-
ence of the two systems of hy-

potheses 

4.94 9.75 

 
From Table 3 we observe that smaller is the sample size n much more visible are the 

differences of the probability values α  obtained with randomized and non-randomized procedures. 
The last line in the table contains the global significance level in the situation of stochastic 
independence of the two systems of hypotheses. This situation is verified only when the 

probability that there are no accounting errors is ( )g  00; ~ 0λ . In these cases we note that the 

probability obtained with the randomized test is exactly that of the situation of independence. For 

the situations where ( )g  >00; 0λ  the differences are due to the fact that the second test is 

conditioned to the result of the first one. 
To evaluate the sensitivity of the parameters ∆  and δ  on the operational characteristic 

function ( );β δ∆  , we present in the next figures the level curves ( β probabilities) 

for 20%, 40%, 60%,80%β =     for the unilateral test to vary of ∆  and δ . We remember that as 
indicated in paragraph 3.2, the level curves for the unilateral test express also the extreme situation 

for the bilateral test. The considered cases are for ' '' 2.5%α α= = ; n  100, 250=  

and p   0 0.01, 0.05, 0.10= . 

In particular, for n 100=  we have the following level curves for the non-randomized and for 
the randomized test. 
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Unilateral non-randomized test Unilateral randomized test 

  

  

  
Figure 3 – Level curves for the unilateral non-randomized and randomized test for ' '' 2.5%α α= = ; 
n 100=  and p   0 0.01, 0.05, 0.10= . 

For n 250=  we have the following level curves for the non-randomized and for the 
randomized test. 
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Unilateral non-randomized test Unilateral randomized test 

  

  

  
Figure 4 – Level curves for the unilateral non-randomized and randomized test for ' '' 2.5%α α= = ;  
n 250=  and p   0 0.01, 0.05, 0.10= . 

Observing the figures 3 and 4 we note that there is not a great difference in the level curves 
between non-randomized and randomized tests, for a fixed value of the sample size n . While in 
those figures we observe some differences of the level curves when p0  varies, for a fixed n , or 

n varies, for a fixed p0 . 
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The following table shows the values of ( );β δ∆   for a particular couple of ∆  and δ . In 

particular here we have considered 0.01∆ =  and 0.5δ =  for  ' '' 2.5%, 5%α α= = . 

TABLE 4 
Global Percentage values of ( ) ;β δ∆  for 0.01∆ =  and  0.5δ =  .  

n  p0  0λ  g 0(0; )λ  

' '' 2.5%α α= =  ' '' 5%α α= =  

unilateral 
non-

random-
ized test 

unilateral 
random-
ized test 

bilateral 
non-

random-
ized test 

bilateral 
random-
ized test 

unilateral 
non-

random-
ized test 

unilateral 
random-
ized test 

bilateral 
non-

random-
ized test 

bilateral 
random-
ized test 

 0 1 0.3679 78.44 76.91 81.25 79.63 73.65 66.51 78.11 70.25 

100 0.1 5 0.0067 74.45 72.79 81.38 79.46 62.59 60.67 71.67 69.33 

 0.1 10 ~ 0 60.89 59.97 70.34 69.2 47.14 47.07 58 57.9 

 0 2.5 0.0821 63.32 58.95 67.87 63.07 46.84 45.37 51.95 50.27 

250 0.1 12.5 ~ 0 47.08 47.77 58.51 57.29 36.38 34.87 47.07 44.97 

 0.1 25 ~ 0 25.53 25.43 34.67 34.53 16.36 16.36 24.54 24.53 

 0 5 0.0067 41.54 36.49 46.58 40.76 28.33 24.83 33.41 29.17 

500 0.1 25 ~ 0 20.84 20.68 28.81 28.57 12.58 12.58 19.22 19.21 

  0.1 50 ~ 0 4.42 4.41 7.56 7.54 2.2 2.18 4.31 4.26 

 
The table confirms as observed in the previous figures that there are modest differences 

between randomized and non-randomized test. These differences are greater for p0 0.01= . The 

differences between unilateral and bilateral tests are quite reduced, too. The analysis confirms that 
the influence on the level curves is given mainly by n . 

 
5. FUTURE DEVELOPEMENTS 

It is of fundamental importance to adapt the decision making of corporate management to 
changing conditions due to vary the change of the behaviour of customers, suppliers and the 
production system itself, for the employment of innovative technological tools and 
communication instruments, that compel to follow the multiple transactions that the company 
carries out. Therefore the statistical tools are increasingly made suitable for a dynamic vision. 

The proposed procedure provides a tool of quantitative measure in terms of probability error 
that detects the anomalous circumstances in the accountancy book. The choice of values and 
parameters has an impact on the economic consequences and on the efficiency of the auditing, but 
also provides to the statistical analyst an easy to implement and to use procedure. In particular, it is 

of great importance the choice of the starting parameters p0 , µ0 , n  and of the probabilities 'α  

and ''α  to evaluate the parameters influence on the selective ability β  of the test. Therefore it 
should be interesting to conduct in the future a more analitical study concerning the selection of 
these parameters. 

Moreover in this analysis we have made some assumptions regarding the distribution laws of 
some random variables. In particular in the first hypothesis system we have supposed that the 

  



 
 
 
 
 
 
 
 

On a Test of Hypothesis to Verify the Operating Risk etc.  63 
 
number r  of units characterised by a book error in the sample is distributed as a Poisson random 
variable (considered acceptable the conditions of the asymptotic approximation of hypergeometric 
and binomial distribution to the Poisson distribution). While in the second hypothesis system we 
have assumed that the sample mean follows a normal distribution. Given the validity of these 
assumptions in standard situations, it should be interesting carry out further analysis to assess the 
changes in the sensitivity of the procedure. In particular, it should be interesting to consider some 
distributions for the error random variable X  different from normal distribution, for example 
lognormal, chi-square and Weibull distributions.  

In addiction as location index it is possible to use the median (or another quantile point) as an 
alternative to the mean so it should be possible to use a non-parametric version of the procedure. 

Finally, a further consideration reguards the type of sampling carried out. In the present work 
we have considered a simple random sample, but it should be interesting to see how the procedure 
changes by performing a sampling whithout replacement. 
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SUMMARY 

On a Test of Hypothesis to Verify the Operating Risk Due to Accountancy Errors 

According to the Statement on Auditing Standards (SAS) No. 39 (AU 350.01), audit sampling is 
defined as “the application of an audit procedure to less than 100 % of the items within an account 
balance or class of transactions for the purpose of evaluating some characteristic of the balance or 
class”. The audit system develops in different steps: some are not susceptible to sampling 
procedures, while others may be held using sampling techniques. The auditor may also be 
interested in two types of accounting error: the number of incorrect records in the sample that 
overcome a given threshold (natural error rate), which may be indicative of possible fraud, and the 
mean amount of monetary errors found in incorrect records. The aim of this study is to monitor 
jointly both types of errors through an appropriate system of hypotheses, with particular attention 
to the second type error that indicates the risk of non-reporting errors overcoming the upper 
precision limits. 
 
Keywords: auditing; error risk; non-randomized test; operative curve. 

  


