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1. INTRODUCTION

The normal-Laplace distribution, which results from the convolution of independent normal and
Laplace random variables is introduced by Reed and Jorgensen (2004). Normal-Laplace distribution
is a new distribution which (in its symmetric form) behaves somewhat like the normal distribution
in the middle of its range, and like the Laplace distribution in its tails. In general, the normal-
asymmetric Laplace distribution can be used to model positively skewed, negatively skewed as well
as symmetric data (see Lishamol (2008)). Reed and Jorgensen (2004) also introduced a generalized
normal-Laplace distribution, which is useful in financial applications for obtaining an alternative
stochastic process model to Brownian motion for logarithmic prices, in which the increments
exhibit fatter tails than the normal distribution. Reed (2007) developed Brownian-Laplace motion
for modelling financial asset price returns.

Multivariate normal distribution, a generalization of univariate normal distribution is studied
by various authors. The multivariate normal distribution has applications in statistical inference,
image processing etc. Ernst (1998) introduced multivariate extension of symmetric Laplace
distributions via an elliptic contouring. Many properties in the univariate laws can be extended to
this class of distributions. With an appropriate limit of the parameters of multivariate hyperbolic
distributions, one can obtain a multivariate and asymmetric extension of the Laplace laws, see
Blaesid (1981).

The analysis of time series is usually based on the assumption that an observed time series is a
Gaussian process. But in many practical situations, the data show a tendency of asymmetry or
follow heavy tailed distributions. The use of autoregressive representation of a stationary time
series or the innovation approach in the analysis of time series has recently been attracting
attention of many researchers and this time domain approach provides answers to many problems.
Linear AR(1) structure is simple, useful and interpretable in a wide range of contexts. Theoretical
results concerning stationarity, moments and correlation structure have been proven for many
particular AR(1) models. Sim (1994) discussed a general theory of model-building approach that
consists of model identification, estimation, diagnostic checking and forecasting for a model with a
given marginal distribution. Damsleth and El-Shaaravi (1989) developed a time series model with
Laplace noise as an alternative to the normal distribution. Jose et al (2008) and Lishamol and Jose
(2009,2010) developed a unified theory for Gaussian and non-Gaussian autoregressive processes
through normal-Laplace and generalized normal-Laplace distributions. Jose et al (2010), Lishamol
and Jose (2011) discussed time series models with Skew Laplace III Marginals and geometric
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normal-Laplace marginals. Jose and Manu (2011) developed autoregressive processes with
generalized Laplacian distribution marginals. Krishna and Jose (2011) developed autoregressive
processes with Marshall-Olkin generalized asymmetric Laplace marginal distributions. George and
George (2013) developed processes with Marshall-Olkin Esscher transformed Laplace distribution.
Jose and Mariyamma (2012) developed integer valued autoregressive processes with generalized
discrete Mittag-Leffler marginals. Jose and Manu (2012) developed a product autorgressive model
with log-Laplace marginal distribution.

The present article is organized as follows. In Section 2, we consider the univariate normal-
Laplace distribution. In Section 3, we introduce the multivariate normal-Laplace distribution and
study its properties. Section 4 deals with first order autoregressive processes with multivariate
normal-Laplace marginals. In section 5, multivariate generalized normal-Laplace distribution is
introduced. In Section 6, we introduce the geometric generalized normal-Laplace distribution and
study its properties. Section 7 deals with the estimation of parameters. Some applications are
discussed in Section 8.

2. NORMAL-LAPLACE DISTRIBUTION AND ITS PROPERTIES

The normal-Laplace distribution introduced by Reed and Jorgensen (2004), arises as the
convolution of an independent normal and an asymmetric Laplace densities. A normal-Laplace

random variable X with parameters 11, 0%, ¢ and [ can be represented as

d
X=Z+W M
where Z and W are independent random variables with Z following normal distribution with
mean g and variance o 2 and W following an asymmetric Laplace distribution with parameters

a, 3. The corresponding normal-Laplace distribution shall be denoted by NL(x, 67, a, ).
Various results on normal-Laplace distribution are available in Reed (2006). A normal-Laplace
random variable X can also be expressed as

d
X=Z+E, —E, @
where E, and E, are independent exponential variables with parameters & and f respectively

and Z ~ N(u,0%) independent of E, and E,. Hence the characteristic function (c.f.) of

NL(1,0°,a, ) can be obtained as the product of the c.f.'s of its normal and Laplace
components and is given by Reed and Jorgensen (2004) as,
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The normal-Laplace distribution is infinitely divisible and is closed under linear
transformation. The mean, variance and cumulants exist for the distribution. Fiure 1 shows the
probability density functions of the normal-Laplace, Laplace and normal distributions. Figure 2(a),
(b) represent the density functions of the normal Lapalce distribution with changes in values of &

and B respectively.
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Figure 1 - Probability density functions of the normal-Laplace, Laplace and normal distributions
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3. MULTIVARIATE NORMAL-LAPLACE DISTRIBUTION

A multivariate extension of the normal-Laplace distribution of Reed and Jorgensen (2004), namely
the multivariate normal-Laplace distribution can be obtained as the convolution of multivariate
normal (with parameters B and X ) and multivariate asymmetric Laplace (with parameters m and

V) random vectors. The c.f. of multivariate normal-Laplace distribution is given by

¢X(t)=(exp(it'u—lt'2tn SR S , t,meRP,Z>0,V >0. 3)
2 1+5t'Vt—im't

When M = 0, we get the symmetric case. Then the c.f. is given by

¢X(t)=[exp(it'p.—lt'2tjj _ ,teRP, >0,V >0. )
2 1+§t'Vt

3.1  Some properties

A p-variate normal-Laplace distribution with parameters W,X and V' can be denoted by

NLP (W2, V). Let X ~ NLP (W,%,V), then X can be expressed as

d
X=Z+Y ®)
where Z and Y are independent random vectors with Z following a p-variate normal

distribution with mean vector [ and dispersion matrix Z(NP (]J.,Z)) and Y following a p-

variate symmetric Laplace distribution with parameter V' (LP (V)) ). Another representation is

d
X=Z+WY, ©

where Z follows a p-variate normal distribution with mean vector W and dispersion matrix X,

W is a standard exponential variable and Y follows p-variate normal distribution with mean
vector O and dispersion matrix X .

Moments.

The k™ moment M, (x, ) of a random vector X and W is defined by

My (x, ) = E[(x ) ®(x —p) @+ @ (x —p) ®(x — W],
if B=2m—1 and
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My (x,) = E[(x ) ®(x —p) @+ @ (x —p) ® (x —p)’],
if &= 2m, where the Kronecker product of matrices A = (“ij) :mxn and B: pxq is defined
as a mpxnqg maunix AQB= [#;B]. When p=0, we write only M (x). By vector

differentiation of the c.f. of a random vector, we can obtain the moment vector,

o L@
b e

The mean vector and variance-covariance matrix of NL, (1, Z, V) can be obtained as

E(X)=p Cov(X)=Z+V. )

Cumaulants.

The £” cumulant of random vector X is denoted by C,(x). The cumulants are obtained as the

matrix derivatives of the function

ox(t) =Ingy (1)
by
13, ()
i* oror'... | _

0

b=

For multivariate normal-Laplace distribution,

Ci=p C,=2+V.

The class of elliptical distributions.

The class of elliptical distributions, introduced by Kelker (1970), is a generalization of multivariate
normal distributions. These distributions are symmetric and may not adequately represent the data
when some asymmetry is present.

DEFINITION 1. The random vector X has a multivariate elliptical distribution if its c.f. can be
expressed as

m@w@wwm§%> ®

for some column vector W, mxmn positive matrix X and for some function y(t) €y, , which is

called the characteristic generator.

The multivariate normal and symmetric Laplace distributions belong to elliptical family, since
the c.f. of multivariate normal and symmetric Laplace distributions can be factorized as (8). As a
consequence the multivariate normal-Laplace distribution belongs to the class of elliptical
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distributions because the sum of elliptical distributions is elliptical, see Fang et al. (1987). This
property is very important when we deal with portfolio of assets represented by sum.

Marginal distributions of elliptical distributions are also elliptical distributions. So the
marginal distributions of multivariate normal-Laplace distributions are also elliptical. Also all odd
order moments of an elliptical distribution are zero and hence the result holds for multivariate
normal-Laplace distribution.

Infinite divisibility.
The multivariate normal-Laplace distribution is infinitely divisible. Since the c.f. of NLP (12, V)

can be written as

n

N

it'E—lt'Ez
b=l )
1+=t'WVt
2

for any integer 7> 0. The term in brackets is the c.f. of a random vector expressed as Z+Y,

)y
where Z~N F<E’_) and Y following a multivariate generalized symmetric Laplace
nn

distribution with parameters V, 1 L (V,l) .
n\ " n

Property 1. If X‘“NLP(IJ., %, V) and Y =AX+b, where A is a px p matrix and
b e R?, then Y"'NLP(A}L-Fb,AZA',AVA').

PROOF. The cf. of Y .1is
¢ Y(t) — E(eiz'(AX+b))
— eil'b¢ X(Ant)

i['(Au+l9)—lt'AZA'
e 2

1+1t'A VA't
2
Hence Y ~ NLP(AM-i- b,AZA',AVA").

Property 2. If X ‘“'NLP(M, 3, V), then a'XaeR? follows a univariate normal-Laplace

distribution.

PROOE. This theorem can also be easily be proved using the c.f.
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Property 3. Let X ~NLP('J" %,V) and partition X, u,% and V as

X, H Xy Xp Vi Wi
X=X, n=\ 4 L=, Xy V=V, Vuls

where X, and g are kx1 vectors and X, and V|, are kxk matrices.
Then X, ~NLP(Iul,Z“,V;1) and X, ~NLP(IL12,222,V22). When X, =0, X, and X, are
independently distributed.

PROOF. By using the joint c.f., we can easily prove the result.

DEFINITION 2. A random variable X with c.f @ is said to be semi-self decomposable, if for some
0 <a<l, there exists a c.f. @, such that @(t) =@y (at) @, (t),V t € R. If this relation holds for
every 0 <a <1, then @ is self-decomposable or the corresponding distribution belongs to L class.

Property 4. Multivariate normal-Laplace ¢f. @ is self decomposable or the corresponding

distribution belongs to the class L .

PROOF. The c.f. of multivariate normal-Laplace distribution is

o(t) = (exp(it'u - lt'Etn +
2 1+Et' Vi

. 1 1
=|exp|iat'n—=a’t'st || ——
2 1+ v
2
1

X exp[it'(l—a)u—lt'(l—az)ZtJ A +(l-a*)——
2 1+%t'Vt

= ¢y (at)4, (1),
The second term in the expression is also a c.f., which can be seen in (10).

4., MULTIVARIATE NORMAL-LAPLACE PROCESSES

Consider the usual linear, additive first order autoregressive model given by

X,=aX,  +¢, 0<a<l, n=0,x1,%£2, .., ©)
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where X and innovations g, are independent p - variate random vectors.

In terms of c.f., we have

P (t) = P (at)g,(¢)
The c.f. of {6‘”} can be obtained as

4.(t) =(exp(it'(l—a)p.—lt'(l—az)ZtD Z +(1—42)+ . (10)
2 1+5t' Vi

From this, we can obtain the distribution of the innovation sequence as
d
e=Z,+L

where Z, ~ N, (1—a)u,(1-4°)X) and L can be treated as a sequence of random vectors of

the form

L,, withprobability (1- a’)

{O, with probability 4’

where L, 's are independently and identically distributed symmetric multivariate Laplace random

vectors.

THEOREM 1. The process is stationary with NLP (W2, V) marginals.

PROOF. We can prove this by the method of induction. We assume that
X, ~ NLP(;I,Z,V).

Then
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b ()= (an)g, (0)

) 1 1
= [exp(zat'y—;azt'EtD T
1+=a"t'Vt
2

><[exp(it'(l—a)y—%t'(l—az)ZtD a+ (1—az)+

1+=t'Vt
2
= (exp(it',u - %t'Etjj +
1+Et' Vi

which is the c.f. of NLP (1,%,V). Therefore {X,} is strictly stationary with NLp (u,z,V)

marginals.

THEOREM 2. If X, is distributed arbitrary, then also the process is asymptotically Markovian with

maultivariate normal-Laplace marginal distribution.

n-1
n k
PROOF. We have Xn = Xn—l +€,=a Xo + E ae, .
k=0
In terms of c.f., we get

b, (0=, (0] 9. )

- exp(ilﬁ'a/c —;aZkt'th 1+%az(k”)t'\’t
= ¢y (4nt)| I
0

k=0 1+%612kt' Vt exp(itlalwrl _;aZ(kJrl)tht)

o1 1
—>|exp|t'u——t'2t ||| ——— | as n—>ow.
2 1+1t'Vt

2

Hence even if X, is arbitrarily distributed, the process is asymptotically stationary

Markovian with multivariate normal-Laplace marginals.
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4.1.  Distribution of sums and joint distribution of (X, X, ;)

Consider a stationary sequence {X ,} satisfying (9). Then we have

- j-1 ;-2
Xyj=aX, +d g, ,+ad 7€, ,+ +¢E,.

Hence

T =X,+X, ,++X

n+r—1

r—1
: -
= Z[a’Xn +ad g, ot E,,]
i=0

1-4" ) & 1-a7/
-X +3e | 2.

The c.f. of T, is given by

b (1) =

|
AN
=
VR
—_| =
|l
W
N—
~ . p—
LS AN
ASH
7\
o~
—
ol |
(N EN
Q|
N—

1+-
2

-2 ). 1f1-aY 1
=| exp 'y —— t'Xt
2
1-a 2\ 1-a 1{1-4
t'Vi
1-a

r—

T {(exp(it'(l—a” )y—%(l—a” )(1+a)t'2tj]

j=

x|a® +(1-a’)

-\ 2
1{1-a"
1+-| —*2 t'Vt
2\ 1-a
The distribution of 7, can be obtained by inverting the above expression. The joint

distribution of contiguous observation vectors (X, X .,) can be given in terms of c.f. as
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b x ,(tohs)

= Elexp(it, X, + ity X, )]
=Flexp(it, X, +ity (aX, +e,,, )]

= Elexp(i(t, + aty)X, + ity €,,,))]

= ¢Xn (t, +at, )¢£n+1 (t)

1

= (exp(i(tl +at)) pu— %(t1 +at,)'%(t, + at, )D

1+ E(t1 +at,))V(t, +at,)

x(exp(itzr(l—a),u—%tzf(l—az)Etz D a+ (1—42)+

1+—¢, Vi
2 2 2

Here ¢Xn’Xn+1 (t,t)) # ¢Xn’Xn+1 (¢),t;). Therefore the process is not time reversible.

5.  MULTIVARIATE GENERALIZED NORMAL-LAPLACE DISTRIBUTION

A multivariate generalized normal-Laplace distribution can be defined by introducing an additional
parameter. Multivariate generalized normal-Laplace distribution can be obtained as the
convolution of multivariate normal and multivariate generalized symmetric Laplace random
vectors. The c.f. of multivariate generalized normal-Laplace distribution is given by

14

oy (t) = Lexp(it'ﬂ—lt'ﬁtjj o ,teR?, >0,V >0,v>0. (11)
2 1+5t'Vt

A p-variate generalized normal-Laplace distribution with parameters g, 2,V and v can be

denoted by NL, (W2, V,v).Let X ~ NL, (4,2, V,v), then X can be expressed as

X<z +Y, (12)

where Z and Y are independent random vectors with Z following a p-variate normal

distribution with mean vector Vi and dispersion matrix VZ(NP (Vy,VZ)) and Y following a p-

variate generalized symmetric Laplace distribution with parameters V,v (LP(V’ V))

NLP (1,Z,V,v) is infinitely divisible and self-decomposable.
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6. MULTIVARIATE GEOMETRIC GENERALIZED NORMAL-LAPLACE DISTRIBUTION

Now we introduce a new distribution namely, the multivariate geometric generalized normal-

Laplace distribution denoted by GGNL, (1,2, V,v). The c.f. is given by

1

w(t) = 1 1
1—it'vu+ 5vz:’Zt’ +vlog(1+ Et' Vi)

the above c.f. can be written in the form ¢(t)=eXp(1—%J, where @(t) is the cf. of
w(t

NLP(,U, %, V). Hence the multivariate geometric generalized normal-laplace distribution is

geometrically infinitely divisible.

6.1.  Multivariate geometric normal-Laplace disribution

When v =1, we get the multivariate geometric normal-Laplace distribution. The c.f. is obtained

as denoted by GNLP (4,2, V), is given by

1

1—it'u+ Et’Et' +log(1+ Et’ Vi)

THEOREM 3. Let X, X, ,-+ are independently and identically distributed GGNLP (W,Z,V,v)
random vectors and N be geometric with mean —, such that
p

P[N =k]= p( —p)k_], k=12...,0< p<l. This establishes that
Y ~ GGNLP(,U,Z,V,V /p)

PROOF. The cf. of Y is
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vy (©) = STy 01 p(1- )

k

—

p/ (A—it'vu+ %Vt'Zt' +vlog(1+ %t' Wt))

1-(1-p)/ (A—it'vu+ %Vt'Zt' +vlog(l+ %t' Wt))

1

1—it'zp+11t'2t'+Klog(1+lt' Vi)
p 2p P 2

Hence Y is distributed as GGNL b (w,Z,V,vp).

THEOREM 4. Multivariate  geometric ~ generalized ~— normal-Laplace  distribution
GGNL p(,u,Z,V,V) is the limiting distribution of multivariate generalized normal-Laplace

distribution.

PROOF. We have

v/n v/n
(exp(it'u—%t‘ZZD + =<1+ [exp[it’ﬂ—%t’iﬁtn + -1
1+5t'Vt 1+Et’Vt

is the c.f. of a probability distribution since Multivariate generalized normal-Laplace distribution is
infinitely divisible. Hence by Lemma 3.2 of Pillai (1990).

v/n

v,(t)=11+n (exp(it',u—lt'thJ + -1
2 1+Et'Vt

is the c.f. of geometric sum of independently and identically distributed multivariate generalized
normal-Laplace random vectors . Taking limit as 7 — 0.
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()= }lij};l//n(t)

v/in -

=<1+ im<7n (exp(it'y—lt'ZtD + -1
o 2 1+§t'Vt

1

1—t'vu+ %vt'Zt' +vlog(1+ %t’ Vi)

Hence GGNL GGNLP(/J,Z,V,V) is the limiting distribution of multivariate generalized

normal-Laplace distribution.

7.  ESTIMATION OF PARAMETERS

Kollo and Srivastava (2004) discussed the estimation of Multivariate Laplace distribution. We can
use the method of moments to estimate the mean, covariance matrix and the skewness and kurtosis
measures of multivariate normal-Laplace distribution.

Skewness and Kurtosis.

Let x be a random vector with mean vector @ and covariance matrix X and

_ 12 . . . . .
y=2x (X—B) with mean vector 0, covariance matrix |p and with third and fourth

moments M 3(y) , M4(y) and cumulants C3(y) , C4 (y) . Then skewness measure IBlp (X)
and kurtosis characteristic f3, b (X) are defined by
ﬁ]p (x) = tr{Cy (0)C5(9)] = tr[ M5, ()M ()]
and
B, (x) = tr[ M, ()] = tr{ C, ()] + P’ +2p.

are independently identically distributed as NLP(,U,Z,V). Then the

estimates of mean vector and covariance matrix are obtained as

-1
=13
n i

Let X15X5" 05X,

and

- 2 )
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estimated using the random vector defined by
-1/2 oy
y; =87 (x;—x), 1=1,...,m,

where §7V% is any square root of S such that $7' = s (571/2 )" . Then the estimates of third

and fourth moments are given by
A 1&
My =—2 (3 ®: ®)
=1

and

A n+11Z
M, = __Z(yi ®y, ®y, ®y;).

n—1n3

These estimates are unbiased estimators, see Mardia (1970). The estimates of skewness and
kurtosis measures are given by

By, =t M3M,]

and

A A

ﬂZp =tr[M,].

8. APPLICATIONS

In insurance and financial markets, there is significant need for the development of a standard
framework for the risk measurement. Landsman and Valdez (2003) derives explicit formulas for
computing tail conditional expectations for elliptical distributions and extends them to
multivariate case. Multivariate elliptical distributions are useful to model combinations of
correlated risks. Since multivariate normal-Laplace distribution comes in the class of elliptical
distributions and it also convolutes both Gaussian and non-Gaussian distributions, it also has a
very important role in risk analysis. It seems to provide an attractive tool for actuarial and
financial risk management because it allows a multivariate portfolio of risks to have the property
of regular variation in the marginal tails.

The importance of normal-Laplace model lies in the fact that it is the first attempt to combine
Gaussian and non-Gaussian marginals to model time series data, see Jose et al (2008) and Lishamol
and Jose (2009). Applications of normal-Laplace distribution are wide spread in areas like financial
modelling, Levy process, Brownian motion etc. Reed (2006) showed that it is the distribution of
the stopped state of a Brownian motion with normally distributed starting value if the stopping
hazard rate is constant. In financial modeling, a normal-Laplace model is a more realistic
alternative for Gaussian models as logarithmic price returns do not follow exactly a normal
distribution. But it is more realistic to consider multivariate data where several interdependent
variables are discussed. The models developed in this paper can be used for modeling multivariate
time series data.
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SUMMARY

Multivariate normal-Laplace distribution and processes

The normal-Laplace distribution is considered and its properties are discussed. A multivariate
normal-Laplace distribution is introduced and its properties are studied. First order autoregressive
processes with these stationary marginal distributions are developed and studied. A generalized
multivariate normal-Laplace distribution is introduced. Multivariate geometric normal-Laplace
distribution and multivariate geometric generalized normal-Laplace distributions are introduced
and their properties are studied. Estimation of parameters and some applications are also discussed.
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