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1. INTRODUCTION
Linnik (1963) proved that the function

¢a(t)=(1+|t|a)71, O<a<?2 1)

is the characteristic function of a random variable with support on (‘o, o). The corresponding
distribution is called Linnik distribution. For a =2, the Linnik distribution coincides with the
Laplace distribution with density

_lx
flegee
As a generalization to (1), Devroye (1993) introduced generalized Linnik distribution with
characteristic function

B

L1 p>o. o)

1+t

B (1)=

It was showed that the random variable with characteristic function (2) can be represented as
1

S, Vﬂaﬁ where S, is symmetric stable with characteristic function ¢ (t )= e where Vi

denotes a random variable following gamma distribution.

Pakes (1995) introduced positive Linnik distribution. A nonnegative random variable is said
to follow positive Linnik distribution if its Laplace transform is

1 v
¢(/1):(WJ ,0<a<l,v>0,1>0. (3)
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Jayakumar and Gadag (1999) obtained distribution function of the Laplace transform in (3)
and called as quasi factorial gamma. A non negative random variable X is said to follow quasi
factorial gamma distribution if its distribution function is

. (_1)k F(k+ U)Xa(k-H))
E,,(x)= ,;)r(u)/ezr(lw(kw))’

x>0, 0>0 0<a<l. )

This is a rich family of distributions as it includes important distributions like gamma,
Mittag-Leffler, exponential, etc. Jayakumar and Gadag (1999) studied various distributional
properties of quasi factorial gamma. They have also developed first order stationary autoregressive
process with marginals as quasi factorial gamma distribution.

Pillai and Jayakumar (1995) introduced discrete Mittag-Leffler distribution as a generalization
to the geometric distribution. A random variable X on {0, 1, 2, ...} is said to follow discrete
Mirttag-Leffler distribution if its probability generating function (p.g.f.) is

)= 0<a<l, c<0, |5 <1 6)

_1+c(1—5)a

The discrete Mittag-Leffler distribution can be viewed as the distribution of geometric sum of
independently and identically distributed Sibuya random variables. In a sequence of independent

a
Bernoulli trials, let i be the probability of success in k™ trial. Then the number of trials required

to obtain the first success has Sibuya distribution (see, Devroye (1993)). When « =1, we note
that discrete Mittag-Leffler distribution coincides with geometric distribution.

Christoph and Schreiber (1998a) studied the discrete analogue of the positive Linnik
distribution in (3). A non negative integer valued random variable is said to be discrete Linnik
distributed with exponent o € (0, 1] and a scale parameter ¢’ if it has p.g.f.

v

;a forO<v< o
P(s)= 1+c(1-5) ©)

e ) for v=c

Probabilities of the discrete Linnik distribution, some properties of the probabilities and
characterization via survival function are investigated in Christoph and Schreiber (1998a). Bouzar
(2002) obtained representations for discrete Linnik distribution using Poisson mixtures. Christoph
and Schreiber (1998b) proved that discrete Linnik distribution belongs to the domain of discrete
attraction of a discrete stable law as well as to the domain of attraction of non negative strictly
stable law and obtained the rate of convergence in both cases.

Discrete Linnik distribution is a rich family of distributions which includes many important
distributions. It belongs to the class of discrete self decomposable distributions. When v =1, we
get discrete Mittag-Leffler distribution and for @ =1, it coincides with negative binomial
distribution. For =1 and v =1, we get the geometric distribution. Discrete stable
distributions can be successfully applied to model discrete heavy tailed data sets. Pillai and
Jayakumar(1995) developed autoregressive models with marginals as discrete Mictag-Leffler
distribution. Jayakumar and Thomas Mathew (2008) have developed generalized INAR(1) models



Bivariate discrete Linnik distribution 425

with discrete Linnik marginal and its extensions to the autoregressive-moving average situation.
The models are applicable in modeling discrete variate time series when the marginals follow
discrete Mittag-Leffler and discrete Linnik laws. Discrete Mittag-Leffler distribution provides an
approximate median residual life time function which can be considered as an alternative to the
mean residual life time function. The widespread applications of these distributions motivated us
to introduce bivariate form of the discrete Linnik distribution. In Section 2, we define a bivariate
discrete Linnik distribution. Various distributional properties of bivariate discrete Linnik
distribution are studied in Section 3. In Section 4, characterizations of the distribution are
obtained. First order autoregressive processes with marginals follow bivariate discrete Linnik
distributions are developed in Section 5.

2. BIVARIATE DISCRETE LINNIK DISTRIBUTION

We define a bivariate discrete Linnik distribution as follows:
DEFINITION 2.1. A non negative integer valued random vector (X, Y) is said to follow bivariate
discrete Linnik distribution if it has p.g.f.

1%

1
l+¢ (1-5)" )(1+ c,(1-5,)" )—9(‘16‘2 (1-5)" (1-5,)" %

P(sl,sz)z (

¢, 6,>0,0>0,0<a, a,<1, 0<0<1, |s,

52|Sl.

bl
We represent the distribution with the above p.g.f. as BDL (¢, ¢,, ¢, &,,8,0). Note that
BDL (¢, ¢,, @, @,,0,0) generalizes many important distributions. When o, =, =1,

1%

1
1+¢ (1—51))(1+c2 (1—52))—06162 (1-s5)(1-5,)

represents the p.g.f. of bivariate negative binomial distribution. The distribution corresponding to
(8) is denoted by BNBD (¢, ¢,, 8,0). When v =1, (7) becomes the p.g.f. of bivariate discrete

Mittag-Leffler distribution denoted by BDML (¢, ¢,, @, &,,8). Moreover, o, =a, =0=1,

P(s;,s,)= ( ®)

P(sl ,52) represents the p.g.f. of bivariate geometric distribution denoted by BDL (¢, ¢,,0) .

From (7), it is clear that p.g.f of the components of (X, Y) are that of univariate discrete
Linnik distribution given in (6).

When @ =1, (7) becomes

1
P(s,,s, )= ©)
(552) l+c (1-5)" +¢,(1-5,)"

3. DISTRIBUTIONAL PROPERTIES
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We show that a random vector (X, Y) following BDL (¢, ¢,,,, &,,1,0) is normally attracted

to bivariate positive stable law.

Suppose that (X, Y} follows BDL (¢, ¢,,,, &,,1,0) with p.gf. in (9). Then the Laplace

transform corresponding to (9) is

v

1
)= _ (10)
¢(;11 AZ) 1+cl(1—e*ﬂ1)a] +cz(1—e7¢)a2

Consider a sequence {(Xi,Yi), iZl} of independently and identically distributed random

vectors with Laplace transform in (10). Define
1

U,=n “(X,+X,+...+X,) and

1

V,=n @ (Y, +Y, +..4+Y,) .

Then (Un, Vn) has the Laplace transform

Yu,v, (ﬂ1 A )ZE(e_(%U”WVn))

n

1 1\

=| dldn “, an

_ 1
1+¢ 1—67/11”_;1 +¢, 1—67/12”_5
Also we have
f—en =’11—a11 1/ d l—e @ _A 1+0(1/n)).
e - ( +o( n)) an e - ( +0( n))

Hence when 77 — © , we get l//U v (/11’ /LZ) N e*ql}ﬂm -0l .

ny'n

Hence BDL (¢, ¢,, &, @5, 1, 0) distribution is normally attracted to bivariate positive stable

law.
We can obtain a bivariate form of the quasi factorial gamma distribution discussed in (3) as a

limit of random vectors following bivariate discrete Linnik distribution. For this, consider a
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random vector (X, Y) with Laplace transform in (10). Replacing ¢, and ¢, by ¢,z™ and ¢,n*

respectively. Then the Laplace transform of (K, Zj will be
n n

nv

1

A A\
1+cln“'(1—e ”J +czn°’2(1—e "j

When 7 — o0, we get

@(A,ﬂz){ 1 J

1+ A" +c,A™

8, (A2,)=

Now, we prove attraction of BDL (¢, ¢,, &, &,, 1, ) towards bivariate discrete stable law.
For this we consider the operator ‘@, denoted in Jayakumar (1995) in bivariate set up. Let (X, Y)
have p.gf. P(Sl,s2 ) , then (p DX, p® Y) is defined (in distribution) by p.g.tf.
P(1—p+ps;,1—p+ps,).

Let {(Xl >Yi)’ Z 21} be a sequence of independently and identically distributed random
vectors according to BDL (¢, ¢,, @, @y, 1, U) . Define

L -

Us=n“®X, +X,+..+X,) ™ Ven@@(,+Y,+...4Y)

Then (U s Vn) is asymptotically distributed according to bivariate discrete stable.

The p.g.f. of the random vector {(Xi’Yi ), l 21} s

1
T+¢(1=-5)" +¢,(1-5,)"

P(sl,sz)z

The p.g.f. of (U,,V,) is

nv

PU,I, v, (51:52): (

As n— 0, we get
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PU Vv (51352 ):e_CIU(l—sl)al —CZU(l—SZ)az (1 1)

n> 'n

We obtain BDL (¢, ¢,, &, &,,1,0) as a mixture of bivariate discrete stable distribution and
gamma distribution with parameters f and v .

Take the joint distribution of the random vector (S, T) as bivariate discrete stable having
p-g.f. in (11), exponents ¢, and ¢, with parameters ¢, =c, =W . Suppose that W follows gamma
distribution with parameters f and U .Consider the unconditional distribution of (5, 7). Its p.g.f.

1S

< a o v _—pw_ v-1
P(s,,5,)= [ Wim) sy Fe @y
(51552) j o

pei=a) (=) )| 1 L (1) (1))

Hence (S, T) follows BDL (¢, ¢,, @, @, 1,0) such that ¢, = ¢, =

1
5

4. CHARACTERIZATION OF BDL (¢, ¢,, o, @,,1,0) THROUGH NEGATIVE
BINOMIAL COMPOUNDING.

In order to obtain characterizations of BDL (¢, ¢,, &, &,,1,0), we consider the probability

distributions of random sums of independently and identically distributed random vectors. Let
N N

Uy = ZXi , V= ZYL where {(Xi’Yi ), Z 21} is a sequence of independently and identically
1=1 1=1

distributed random vectors with p.g.f. Q(sl,sz) and N follows negative binomial distribution

with p.m.1f.

n—1

P(N=n)=[ jp”(l—p)"_”

v-1
(12)

v=1,2,3,..5n=v,v+1L,0+2,..;0<p<1.

The p.gf. of N is

o)
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Then the p.g.t. of (U,Vy) is

— Unv eV ) = PQ(SpSz) !
P(sl,sz)—l[f(S1 S, )_(1—(1—17)(2(51,52)}. (14)

Using this negative binomial compounding, a characterization of BDL(c;, ¢,, @y, @,,1,0) is
obtained in the following theorem.

THEOREM 4.1. Let {(X Y ), l 21} be a sequence of independently and identically distributed
random vectors and N independent of (Xi,Yl—), 121, be a random variable following negative

1 1
binomial distribution in (12). The pal Uy, paz @ Vy | follow BDL(c,,c,,a;,,,1,0) if

and only if {(Xi’yi)’ ) 21} follows BDML (c,, c,, o, @y, 1) .
PROOF. Suppose that {(Xsz) Z >1} follows BDML (¢, ¢,, @, &y, 1) distribution with

1 1

pgf. Q(s,,5,)- Then the p.gf. of | p™ ® Uy, p™ BV, | is

P(sl,52)=E[sf’al@UA"SfaQ@V\'].
From (14),
l 1 1 1
pQ[l +p%s, 1=p® +p%s,
P(s;,s,)= T 1 T 1 . (15)
1-(1-p)Q| 1-p™ +p™s;, 1=p™ +p™s,

In (15) substituting the p.g.f. of X ,Y:), 121, we get

2

v

sl,sz =
1+c1 —s1 +cz(1—sz)

1 1
To  prove the  converse, suppose  that p ®Uy, p™ @V follows

BDL(c¢,,¢,,,,a,,1,0) distribution. Substituting its p.g.f. in (15)
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1 1 1 1 v

v pQ|1-p“ +p“s;,1-p™ +p%s,
1

1+c](1—51)a1 +C2(1_52)“2

1 1 1 1

1-(1-)Q| 1= p“ + p“s,,1- p + p™s,

On simplification we get
1
T+¢(1-5)" +¢,(1-5,)"

Q(51a52):

REMARK 4.1 Let {(X;,Y}), i = 1} be a sequence of independently and identically distributed
random wvectors. Then (p®Uy, p®Vy) follows BNBD (c,, ¢, 1,v) distribution if and only if
{X,Y), i = 1} have BGD (cy, c,,1) where N is independent of {(X;,Y;), i = 1} and  follows

negative binomial distribution.

Proof of Remark 4.1 is omitted as it is obvious.

Now we introduce BDL (¢, ¢,, @, @t,, 6, ) using negative binomial sum of independent

random vectors in which the components are independently distributed as Mittag-Leffler.

THEOREM 4.2.  Suppose that {(Xl-,Yl-), Z 21} is a sequence of independently and identically

distributed random wvectors and N, independent of (Xl-,Y;), 121 has the negative binomial
s x
distribution in  (12). Then| p™ @U,, p™ @ Vy | follows BDL(cy, ¢,,a,, &y,1—p,0)

distribution if and only if the components X l s and Yl s are independently distributed according to

discrete Mittag-Leffler with parameters (0{1 N ) and (0{2 N ) respectively.

PROOF Assume that the components of (Xi,Y;), 121 are independently and distributed

according to discrete Mittag-Leffler with parameters (Otl,Cl) and (a,, ¢,) respectively. Therefore
the joint p.g.f. of (Xz”Yi)’ 12>1is
1

1+Cl(1—51)a1)(1+62(1—52)a2)

Q(51’52)=
(

1 1

From (15) the p.g.f. of p;1 Uy, pOTZ DV |is
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~ p
P(S“SZ)_ (1+Pc1(1_51)al )(1+p62(1_52)0’2)—1+p

_ p
pe, (1—51 )a1 +pc, (1—52 )az )+p2qc2 (1—51 )m1 (1—52 )az +p

1%

1
1+¢ (1—5l )a1 +¢, (1—52 )%)+pqc2 (1—51 )w1 (1_52)0:2

Comparing with (7), we get @ =1—p.

1 1
Conversely, suppose that | p™ @U,, p* @V, | follows BDL(c, ¢,,a,, a,,1—p,0).

From (15) we get

1
1+¢ (1—51)0[l +c, (1—52 )az)-kpclc2 (1—51 )0[1 (1—52)m2

v

1 1 1 1

pQ| 1=p™ +p“s,1-p™ + p*s,

1 1 1 1

1=(1=p)Q| 1= p +p™s, 1= p + p™s,

Solving, we obtain that X l s and Yl s are independently distributed according to discrete

Mittag-Leffler with parameters (al,cl) and (az,cz) respectively.

Jayakumar and Mundassery (2007) obtained BNBD (cy, ¢,,0,v) distribution as the negative
binomial sum of independently and identically distributed random vectors.

REMARK 4.2. Consider a sequence {(X Y, ), Z 21} of independently and identically distributed

random vectors. Let N be independent of (Xl-,Y; ), 121 and follow negative binomial distribution
stated in (12). Then (p @Uy, p® VN) follows BNBD (¢, ¢,,1— p,0) distribution if and only if
(Xz"Yi ), 121 are BGD(c,, c,,0) random vectors.

Proof of the remark 4.2 follows easily.

Now, we obtain a characterization of the negative binomial distribution.
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THEOREM 4.3. Consider a sequence {(X Y ), 1> 1} of independently and identically distributed

random  wvectors  following BDML (¢, ¢,,0,, &,,1) distributions. Then for 0<p<1,
i 1
p“ ®Uy, p* @V, | has BDL (Cpczaapaplau) distribution if and only if N follows the

negative binomial distribution in (12).

PROOF. The necessary part of the theorem is already discussed in Theorem 4.1.
To prove the sufficiency part, without loss of generality, take ¢, =c¢, =1. Assume that
s x
pal Uy, paz @V, | follows BDL (1, La,al, U) distributions.

Therefore,

1
1+(1_sl)“1+(1_52)“2J '

1 1
By definition, the p.g.f. of | p™ @ Uy, p™ V) | 1s

P(s1,sz)=£

1 1 1 1

P(sl,sz)=ZQ 1—p;‘+p;151,1—p;2+p‘7252 P(Nzn)

where P(Spsz) represents the p.g.f. of (Xi,Y; ), 1 21 which follows BDML (¢, ¢,,0;, ¢,,1).
Therefore

1 1 1 1

S @ @, 1
2Q1-p% +p“s,l=p™ +p 'SzJP(NZ”)Z

[1+(1—sl)“‘+(1—sz)“ZJ

7
Expanding both sides and comparing coefficients of ((1 -5 )a] + (1 -5, )m2 ) , forj=1,2,3,...

gn(n+1))(n+2).,.(n+]-_1)P(N _ n): U(U+1))(U +p27_)"'(u+ ]-_1)

Therefore

E(N)=

~ | C
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Consider

2 3

E(1-t) "= 1+11!E(N)+;—!E(N(N+ 1)+;—!E(N(N+ 1)(N+2)+...

But

Therefore,

n=v n=v

i(l_t)in p(N:n):pUi(n_lj(l—t)”(1—]))”_“ .

Comparing both sides, we get

P(N:n):[

Hence N follows the negative binomial distribution in (12).

n—1

5. AUTOREGRESSIVE PROCESS WITH BDL(¢;,c,,0,,@,,1,0) MARGINALS

In the following theorem we obtain a necessary and sufficient condition for a first order
autoregressive process with marginals have BDL (¢4, ¢,, @4, @3, 1, V) to be stationary
THEOREM 5.1. Let {(Xn Y, ), nz 1} constitute a first order antoregressive process with structure
1 S
1 X,,Y,}=(p" ®@X,  +¢,), p“ @Y, +y, 0<p<l (16)
where {(fn,l//ﬂ), n Zl} is a sequence of independently and identically distributed random vectors.
Then the process (16) is stationary with BDL (Cl,CZ,Oll,CZ2 , 1,()) marginals if and only if innovation

random vectors, (fn W, ), 121 have p.g.f.
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1-p
P 5,8, )= p+ — ~ (17)
”’W"(1 2) L+c (1=5)" +c,(1-s5,)"

Provided (X,,Y,) has the BDL (cl,cz,al,az ,1,1)) distribution.

PROOF. The p.g.f. of (16) is

1 1 1 1

Py y (sl,sz)sz v 1—,00Tl -i—,o;‘sl,l—poTz —i—p”’is2 k., (51,52). (18)

n3tn n—-1>"n-1
Suppose that the process is stationary with BDL(Cl,CZ,al,O{Z,l,U) marginals. Then from (18)

we have

1% v

1 - 1 P, (ss). (19)

T+¢(1=5)" +¢,(1-5,)" 1+ pc; (1-5,)" +pc, (1-5s,)"

Hence we get,

1-p ’
T+ (1-5)" +¢,(1-5,)"

IJ(,I,l//" (51’52)= p+

Proof of the converse is obtained by induction method. When n=1, from (18), we get

1 1 1 1

_ a a o a
Py y (51,5,)=Px y, [ 1= + p%5,,1=p™ + p™s, L., (50,5)-

Suppose that {(€,,, 1), n = 1} have the p.g.f. given in (17). Therefore,

v v

1 o+ 1-p
1+ pc, (1=5,)" +pc, (1-5,)" 1+ pc, (1=5,)" +pc, (1-5,)"

12

PXI,Y1 (51’52)=

1
T+c (1=5)" +c,(1-5,)"

By mathematical induction, it follows that the process {(Xl-,Yl-), iZl} is stationary with

BDL(¢;,¢5,,a,,1,0) marginals.

Now we develop a first order autoregressive process with BNBD (cy,¢,,1,0) marginals.

REMARK 5.1.Ssuppose that an autoregressive process {(Xi,Yi)’ i Zl} has the structure
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{XmY;z}: (pc—Banl_FEn)’ p(‘BYn,1+y/ﬂ, 0Sp<1

Where  (e,,¥,), n=1 is a sequence of independently and identically distributed random vectors
with p.g.f-

U
1-p
) _ . 20
fnywn(spsz) ’0+1+C1(1_51)+Cz(1_52)j ()

Assume that (X,,Y,) have BNBD (cy,cy,1,0) distribution. Then the process {(Xn,Yn), nZl} is
stationary with BNBD (c;,¢,,1,0) marginals if and only if (c;,c,,1,0) have the p.g.f. in (20).

We omit the proof or Remark 5.1 as it is obvious.

6. CONCLUSION

In the present study we have introduced a bivariate form of discrete Linnik distribution and
studied various distributional properties. Its characterizations were obtained using negative
binomial compounding and first order autoregressive process is developed with marginal follows

BDL (¢y,¢5,,,1,0) distribution. Random summation technique can be applied in modeling

practical problems in which the respective mathematical models are sums of random number of
independent random variables. The bivariate discrete Linnik distribution introduced in this paper
can be applied to model bivariate data sets which are closed under negative binomial
compounding. The autoregressive model developed is applicable in modeling discrete variate time
series when the marginals follow bivariate discrete Linnik distribution. The parameters of

BDL(Cl,CZ,a1,a2,9,u) may be estimated along the lines of Remillard and Theodorescu (2000).
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SUMMARY

Bivariate discrete Linnik distribution

Christoph and Schreiber (1998a)studied the discrete analogue of positive Linnik distribution and
obtained its characterizations using survival function. In this paper, we introduce a bivariate form
of the discrete Linnik distribution and study its distributional properties. Characterizations of the
bivariate distribution are obtained using compounding schemes. Autoregressive processes are
developed with marginals follow the bivariate discrete Linnik distribution.

Keywords: Discrete Linnik distribution; Discrete Mittag-Leffler distribution; Linnik distribution;
Negative Binomial compounding; Quasi factorial gamma distribution.



