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1. INTRODUCTION 

While collecting information, directly from respondents, relating to sensitive issues such as 
induced abortion, drug addiction, duration of suffering from Aids and so on, the respondents very 
often report untrue values or even refuse to respond. Warner (1965) introduced an ingenious 
technique known as randomized response technique (RR) for estimating π , the proportion of 
population possessing certain stigmatized character A  (say) by protecting the privacy of 
respondents and preventing the unacceptable rate of non-response. Warner’s (1965) technique was 
modified by Horvitz et al. (1967), Greenberg et al. (1969), Raghavrao (1978), Kim (1978), Franklin 
(1989), Mangat and Singh (1990), Kuk (1990), Mangat and Singh (1991, 1992), Singh (1993), 
Kervliet (1994), Singh et al. (1994), Mahajan et al. (1994), Bhargava and Singh (2000), Singh et al. 
(2000), Singh and Mathur (2002, 2004), Arnab (2004), Espejo and Singh (2004), Sidhu and Bansal 
(2005/06), Pal and Sonali (2005/06), Javed and Grewal (2005/06), Zhimin (2005/06), Ryu et al. 
(2005/06), Zaizai (2005/06) and Singh (2010) among other researchers for improving greater co-
operation and efficiency. One could also refer to Giordano and  Perri (2011). 

Recently Odumade and Singh (2009) proposed two decks of cards for estimating the 
population proportion π  for RR surveys under SRSWR sampling. They showed on the basis of 
empirical investigation their model fares better than Warner (1965) and Mangat and Singh (1990) 
models if the value of 0π → or 1.π → Arnab et al. (2012) extended Odumade and Singh (2009) 
RR technique for complex survey designs and wider classes of estimators while Abdelfatah et al. 
(2011) modified Odumade and Singh (2009) RR procedure under SRWR sampling method by 
using unrelated question. Abdelfatah et al. (2011) proved that the proposed method provides more 
efficient method of estimation π . In this paper we have shown that Abdelfatah et al. (2011) RR 
strategy (combination of estimator and sampling design) cannot provide efficient estimator than 
Warner (1965) model. For more clarity we describe Odumade and Singh (2009) and Abdelfatah et 
al. (2011) RR as follows: 

1.1. Odumade and Singh (2009)  

Odumade and Singh (2009) selected a sample of size n by SRSWR method. Each of the 
selected respondents in the sample is asked to select two cards, one card from the Deck-I and the 
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other from the Deck-II. Each of the decks consists of two types of cards as in Warner (1965) 
model. The proportion of cards written “I belong to the sensitive group A” in the Deck-I and 
Deck-II are P and T respectively. The respondents are asked to report his/her response as (X, Y) 
where X indicates response from the card selected from the Deck-1 while Y indicates response 
from the card selected from the Deck-II. For example if a respondent selects a card written “I 
belong to the sensitive group A” from the Deck-I and selects the other card written “I do not 
belong to the sensitive group A” from the Deck-II, then he/she will supply with a response “Yes, 
No” if he/she belong to the sensitive group A. On the other hand if the respondent do not 
belongs to the group A, he/she will supply “No, Yes” as his/her response.  Let out of the n  
responses 11 10 01, ,n n n and 00n denote respectively the frequencies of the responses (Yes, Yes), (Yes, 
No), (No, Yes) and (No, No). An unbiased estimator for the population proportion π was 
obtained by Odumade and Singh (2009) as 

11 00 10 00
2 2

( 1)( )( )( )1ˆ
2 2 [( 1) ( ) ]os

P T n n P T n n
n P T P T

π + − − − −
= +

+ − + −
 (1) 

The variance of ˆosπ and an unbiased estimator of the variance of ˆosπ  were obtained 
respectively as  
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and 
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1 ( 1) { (1 )(1 )} ( ) { (1 ) (1 )}ˆ ˆ( ) [
4( 1) [( 1) ( ) ]os
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V
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− + − + −
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1.2. Abdelfatah (2011) 

Under this RR technique each respondent is asked to draw two cards; one from the “Deck(I)” 
and another from “Deck(II)”. Deck (I) comprises two types of cards as in Warner (1965) viz. “I 
belong to the sensitive group A” with proportion W and  “ I do not belong to the sensitive group 
A” with proportion W1 − . The respondent should answer truthfully “Yes” or “No”. 

The deck two comprises also two types of cards written “YES” with proportion Q and “NO” 
with proportion 1-Q. Regardless of his/her actual status, the respondent have to answer “YES” if 
he /she receives card written “YES”. Alternatively, if the respondent receives the card written 
“NO” the respondent should answer “NO” as his or her response.   

 
 

Deck (I)  Deck (II) 
I A∈  with proportion W  “YES” with proportion Q  

I cA∈  with proportion W  “NO” with proportion 1 Q−  
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Let the responses of the selected sample of n  units by SRSWR method be classified as 

follows: 

Abdelfatah et al. (2011) derived the following results: 
 
(i) An unbiased estimator of the population π  is 

11 1 1
2 2

( / / ) (1 )( / / )1ˆ
2 2(2 1)[ (1 ) ]f

Q n n n n Q n n n n
W Q Q

π − + − −
= +

− + −
   , 0.5W ≠  

(ii) The variance of ˆ fπ  is 
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(iii) An unbiased estimator of the variance of ˆ fπ is 
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2. PROPOSED IMPROVED ESTIMATOR 

Suppose that from a finite population 1 NU (U ,..., U )=  of N  identifiable units a sample s of size 
n  is selected by SRSWR method. Then each of the selected respondent in the sample s is asked to 
perform randomizes device suggested by Abdelfatah et al. (2011). The respondents will provide 
one of the answers (Yes, Yes), (Yes, No), (No, Yes) and (No, No) as his/her randomize response. 
Let us denote 

11

1
( )

0
 if the answer from the ith unit is (Yes, Yes)

x i
                                                    otherwise


= 


 (4) 

10

1
( )

0
 if the answer from the ith unit is (Yes, No)

x i
                                                   otherwise


= 


 (5) 

01( )
0


= 



1 if the answer from the ith unit is (No, Yes)
x i

                                                   otherwise
 (6) 

Response from Deck (I) 
Response from Deck (II) 

Total 
Yes No 

Yes 
11n  10n  1n



 

No 01n  00n  0n


 

Total 
1n


 0n


 n  
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00

1
( )

0
 if the answer from the ith unit is (No, No)

x i
                                                   otherwise


= 


 (7) 

Here the variable under study y is an indicator variable  and iy  the value of y  obtained from 
the ith unit can be written as  

1
i

 if  the ith unit A
y  

0 if  the ith unit A
∈

=  ∉
 (8) 

For the Abdelfatah RR technique described above, we have 
 
Probability of getting “yes” answer from card type I = (1 )(1 )i iWy W y+ − −  

Probability of getting “no” answer from card type I = (1 ) (1 )i iW y W y− + −  
Probability of getting “yes” answer from card type II = Q  
Probability of getting “no” answer from card type II = 1 Q−  
 
Hence, 
 

11θ = Probability of getting “yes, yes” answer ={ (1 )(1 )}i iWy W y Q+ − −  

10θ = Probability of getting “yes, no” answer ={ (1 )(1 )}(1 )i iWy W y Q+ − − −  

01θ = Probability of getting “no, yes” answer ={(1 ) (1 )}i iW y W y Q− + −  

00θ = Probability of getting “no, no” answer = {(1 ) (1 )}(1 )i iW y W y Q− + − −  
 
The likelihood function of getting 11x ”yes, yes”; 10x  “yes, no” answer ; 01x ”no, yes” and 

00x ”No, No” answers is 

11 10

01 00

[{ (1 )(1 )} ] [{ (1 )(1 )}(1 )]

[{(1 ) (1 )} ] [{(1 ) (1 )}(1 )]

x x
i i i i

x x
i i i i

L Wy W y Q Wy W y Q

W y W y Q W y W y Q

= + − − × + − − −  

       × − + −  × − + − −
 (9) 

Note that  

11x , 10x  , 01x
 
and 00x are binary and subject to 11x + 10x  + 01x + 00x =1. 

 
Differentiating the likelihood with respect to iy  we get 
 

11 10(2 1) (2 1)
{ (1 )(1 )} { (1 )(1 )}i i i i i

x W x WL
y Wy W y Wy W y

− −∂
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1 0(2 1)[ ]
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where 1 11 10x x x• = +    and   0 01 02x x x• = +   

0
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∂
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1 0{(1 ) (1 )} { (1 )(1 )} 0i i i ix W y W y x Wy W y• •− + − − + − − =  (11) 

The equation (11) yields 

1 2 2(1 2 ) ( ) 0iW y W x x x• • •− + + − =   

i.e. MLE of iy  is 

0ˆ
(2 1)i
W x

y
W

•−
=

−
 (12) 

Denoting RE  and RV  as  expectation and variance over the RR technique we have  
 
THEOREM 1. 

(i) 0( )ˆ( )
(2 1)

R
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PROOF. 
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Now 



 
 
 
 
 
 
 
 

498 R. Arnab and S. Singh 

 

2
01 01 01( )RV x θ θ= −   

={(1 ) (1 )}i iW y W y Q− + − - 2[{(1 ) (1 )} ]i iW y W y Q− + −   

={(1 ) (1 )}i iW y W y Q− + − - 2 2 2{(1 ) (1 )}i iW y W y Q− + −  
(Since iy can take values 0 or 1 with positive probabilities) 

 

= (1 )(1 2 ) (1 )iQ Q W y WQ WQ− − + −  (14) 

 
2

00 00 00( )RV x θ θ= −   

(1 )(1 2 ) (1 ){1 (1 )}iQ Q W y W Q W Q= − − + − − −  (15) 

And 

01 00 01 00( , )RC x x θ θ= −   

2{(1 ) (1 )} (1 )i iW y W y Q Q= − − + − −   

2(1 ){(1 2 ) }iQ Q W y W= − − − +  (16) 

Finally substituting (14), (15) and (16) in (13) we get 

ˆ( )R iR y = 01 00 01 00
2

( ) ( ) 2 ( , )
(2 1)

R R RV x V x C x x
W

+ +
−

  

2

2

(1 ) (1 ){1 (1 )} 2 (1 )
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WQ WQ W Q W Q Q Q W
W
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−
  

2

(1 )
(2 1)
W W

W
−

=
−

 (17) 

REMARK 1. It is important the MLE of iy  is independent of Q  that is the force response from the 

card type II has no role in estimating iy .  
 

THEOREM 2. For SRSWR  

(i) 01ˆ1ˆ ˆ
(2 1)ii s

W p
y

n W
π

∈

−
= =

−∑  is an unbiased estimator of π   

(ii) Variance of π̂  is 
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(iii) An unbiased estimator of is 
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PROOF. 

(i) ˆ ˆ( ) { ( )}p RE E Eπ π=  

(where pE denotes expectation over sampling design p (SRSWR)) 
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(ii) ˆ ˆ ˆ( ) [ ( )] [ ( )]R p RV E V V Eπ π π= +  

(where pV  is the variance with respect to the sampling design p ) 
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(iii) ˆ ˆ ˆ[ ( )] ( )E V Vπ π=  
 

The following Theorem 3 shows that the proposed estimator π̂  is always superior to the 
estimator ˆ fπ  proposed by Abdelfatah et al. (2011). 
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THEOREM 3. 

ˆ ˆ( ) ( )fV Vπ π≤ , equality holds if 1 / 2Q =   

 
PROOF. 

Consider the difference 
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(using (18)) 
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SUMMARY 

An alternative randomized response model using two deck of cards: a rejoinder 

The Randomized response (RR) technique with two decks of cards proposed by Odumade and 
Singh (2009) can always be made more efficient than the RR techniques proposed by Warner 
(1965), Mangat and Singh (1990), and Mangat (1994) by adjusting the proportion of cards in the 
decks. Abdelfatah et al. (2011) modified Odumade and Singh (2009) RR technique and claimed that 
their method can be more efficient than the Warner (1965) model. In this paper it is shown that 
such claim is not valid and the RR technique proposed by Abdelfatah et al. (2011) is in fact less 
efficient than the Warner (1965) technique at equal protection of respondents.  Such finding are 
recently shown by Giordano and Perri (2011).  
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