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INFERENCE IN THE INDETERMINATE PARAMETERS PROBLEM 

Marco Barnabani 

1. INTRODUCTION

Let ( , )f x kR  be a density function continuous on , defining the 

distribution corresponding to the parameter  in a neighbourhood of a particular 

point, 0 , say in 0{ }U  where .  is the square norm and 0  is 

the true, though unknown, parameter value; 1 2( )nx x x  is a given se-

quence of independent observations; 
1

log ( ) log ( )
n

ii
L f x  is the log-

likelihood function defined on  and 0( )B  is the (Fisher) information matrix in 

an observation. 
Assume  to be partitioned into two subvectors, [ ]  with  of order 

m  and  of order q k m . We face an indeterminacy problem when there ex-

ist two disjoint and exhaustive subsets of ,{ , }j j J , T{ , }t t  say, such 

that the null hypothesis 0 0: j jH for all j J  makes the likelihood inde-

pendent of  (see Cheng and Traylor (1995) for a definition of indeterminacy 

based on a general transformation ( ) ). A common case is when 0j j

makes  indeterminate. In applications the complementary subset T{ , }t t

can be the null set. In this case { , }j j J  coincides with  and the null hy-

pothesis involves the whole subvector .

A well-known example of indeterminacy is the simple mixture model with 
probability density function 

1 2 2 2( ) (2 ) [(1 )exp( 2) exp( ( ) 2)]f x x x , 0 1 .

Setting either =0 or =0 eliminates the other from the expression for 

( )f x . Examples of indeterminacy abound in non linear regression models. 

Let
1 1

exp( )
r q

i i i ii i
x z . Then, 0  eliminates 1i i … q

from the model. 
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Consequences of indeterminacy are 
a) The score is a vector with a first component of order m  (the first derivative of 

the log-likelihood with respect to )  which depends on the parameter  and 

can depend on T{ , }t t ; a second component of order q  (the first deriva-

tive of the log-likelihood with respect to )  which is zero. 

b) The expected information matrix in an observation is singular and block di-
agonal with all submatrices zeroes and the north-west block matrix of order 

m m  which depends on the parameter  and on T{ , }t t . That is, when 

0j j  the expected information matrix assumes the following form 

0

0

( , , ) 0

( )
0 0

j t
m q

m m
j t

q m q q

B

B

that shows both a singularity and a local orthogonality between  and .

c) Let 0 0 0[ ]j t  be the "true" parameter of . Then, in the indeterminate 

parameters problem the submatrix 0(B , )  is non-singular for any .

d) The Hessian of the log-likelihood is not singular and a solution to the log-
likelihood equation can be computed. 
Given the above features of the likelihood, the score and the information ma-

trix, we cannot use n  the joint estimation by maximum likelihood of both 

and , for inferential purposes. As known, in this case the standard results, such 

as the asymptotic chi-squared distribution of the Wald test statistic or of the like-
lihood ratio statistic, are generally not true and the correct results depend very 
much on the precise problem being investigated. 

In the “regular” case if the value of  were known and the hypothesis is 

0  then, under the usual regularity conditions, the asymptotic distribution of 

the maximum likelihood estimator n  of  is well known to be normal with 

mean vector 0  and variance-covariance matrix 1
0( , )B . Moreover, because 

 is assumed known, the Wald test - -0 0 0( ) ( , )( )n nW n B  is dis-

tributed asymptotically as a central 2( )m . Durbin (1970) called naive a Wald 

type test based on an estimator of  (with  estimated consistently) that has the 

same asymptotic distribution as the maximum likelihood estimator n  assuming 

the true value of  known. 

In his paper Durbin argues that the maximum likelihood estimator of  as-

suming  equal to the solution of the (constrained) equation 

0log ( , ) 0L  (1) 
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produces a naive test if the maximum likelihood estimators of  and  in the 

full model are asymptotically uncorrelated. 
We note that this condition holds for the indeterminate parameters problem 

(consequence (b) above), nevertheless, in this case, because of the disappearance 
of the parameter  from the likelihood function it is not possible to solve equa-

tion (1) , to calculate the maximum likelihood estimator of  and to derive its 

asymptotic properties. Therefore, when we face an indeterminacy problem, the 
Durbin’s approach based on a constrained estimator of  is unfeasible. 

The aim of this paper is to look for an estimator of the parameters of interest, 
 (treating the parameter  somehow), so that a Wald-type test statistic can be 

used for testing 0 0: j jH for all j J . We’ll require that this estimator has 

the same asymptotic distribution as that of n  in the case of nonsingularity of the 

information matrix. We continue to call naive such an estimator and naive test 
the corresponding Wald type test. 

As said above, in the indeterminate parameters problem the information ma-
trix is block diagonal and positive semi-definite. Then, to tackle the indeterminacy 

we must face up to these characteristics of 0( )B . The paper is organized as fol-

lows. In Section 2 we briefly review some existing results on the singularity of the 
information matrix and in a work of Silvey (1959) we found a possible approach 
to tackle the indeterminacy problem. After we had briefly recalled (Section 3) the 
properties of the maximum likelihood estimator in the regular case, in Section 4.1 
we deal with the genesis of a naive maximum likelihood estimator and in Section 
4.2 we detect its properties and its applicability to the indeterminate parameters 
problem. Finally, in Section 5 we show a Monte Carlo simulation applied to two 
nonlinear statistical models detecting the performance of the proposed estimator 
in small samples. 

2. PREVIOUS WORKS ON THE SINGULARITY OF THE INFORMATION MATRIX

Perhaps, the author who first tackled the problem of the singularity of 0( )B

was Silvey (1959). He recognized that the singularity of the information matrix is 
the main symptom of the lack of identifiability (a necessary but not sufficient 
condition for the non-identification problem) and he proposed a solution in this 
field. Silvey’s approach is based on a modification of the information matrix ad- 
ding an appropriate matrix to ( )B  obtained by imposing some restrictions on 

the parameters of the model so that the restricted parameters are identified and 
the modified matrix is positive definite. Poskitt and Tremayne (1981) have 
pointed out that the inverse of this matrix is in fact a generalized inverse of the 
information matrix. El-Helbawy and Hassan (1994) further generalized Silvey’s 
results. Silvey’s approach is very simple and elegant but its applicability is limited 
to the non-identification problem. In particular it is not applicable when the sin-
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gularity of ( )B  is caused by one or more nuisance parameters vanishing under 

the null hypothesis. 
In finite mixture models such as in the typical example of the previous section, 

a likelihood-based approach does not produce a satisfactory solution (Hartigan, 
1985) and some authors suggest following other procedures (for example Wald’s 
approach to testing) in alleviating problems caused by the singularity of ( )B

(Kay, 1995, discussion of the paper by Cheng and Traylor). Examples concerning 
hypothesis tests involving parameters not identifiable under the null hypothesis 
abound in nonlinear regression models (Seber and Wild, 1989) and several ad hoc
solutions have been proposed. Cheng and Traylor (1995) introduced the 
“intermediate model” between the models where parameters are missing and 
where they are present. This approach is based on suitable reparameterizations 
and its success depends on how well the reparameterization positions the 
“intermediate model” between the two extremes. This procedure seems to be 
very difficult to apply when the number of vanishing parameters is relatively high. 

Davies (1977, 1987) proposed an interesting approach to the problem of hy-
pothesis testing when a nuisance parameter is present only under alternative. 
Given a suitable test statistic he suggested treating it as a function of the underi-
dentified nuisance parameters and basing the test upon the maximum of this 
function. The asymptotic distribution of this maximum is not standard but Da-
vies provided an upper bound for the significance level of his procedure. Though 
elegant, “Davies’ method is quite elaborate to implement in practice and difficult 
to generalize” (Cheng and Traylor, 1995) particularly when several nuisance pa-
rameters vanish under the null hypothesis. Moreover, “there is no analytically 
tractable solution to Davies’s maximization problem” (Godfrey, 1990, p. 90). 

Segmented regression is another subject where singularity of the information 
matrix can occur. For example in the two phases linear regression, the null hy-
pothesis of one single segment creates difficulties with the usual asymptotic chi-
square theory for the likelihood ratio test for one phase against two. In this sub-
ject several ad hoc solutions have been proposed (Smith, 1989). 

Rotnitzky et al., (2000) provided an asymptotic distribution of the maximum 
likelihood estimator and of the likelihood ratio test statistic when the model is 
identified and the information matrix has rank one less than full. This approach is 
based on a suitable reparameterization of the model and was motivated by mod-
els with selection-bias but it seems quite complex and difficult to apply to models 
where the rank of ( )B  is arbitrary. 

In the above brief survey, the solutions proposed are generally based on suit-
able reparameterizations of the model so that to remove the causes of singularity. 
As a consequence of this approach the solutions proposed are often difficult to 
generalize because they usually depend on the particular issue being investigated. 

From a thorough analysis of the above works the mathematical aspect of sin-
gularity emerges. It affects the asymptotic approximating quadratic model of the 
log-likelihood function which can have a whole linear sub-space of maxima in a 
neighborhood of the “true” parameter. In that case we can say that we are faced 
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by (asymptotic) unstable parameters Ross (1990), in the sense that in a 
neighbourhood of the true parameter the asymptotic log-likelihood function can-
not be approximated by a concave quadratic form using the second-order term in 

the Taylor series expansion about 0 . Therefore, a possible solution to the prob-

lem of singularity could be passed through a modification of the curvature of this 
quadratic model. 

In our opinion, the author who first tackled the problem of singularity follow-
ing this approach was Silvey (1959). As said, he proposed to replace ( )B  by 

0( )B A  where A  is an appropriate matrix obtained introducing some restric-

tions on . As we pointed out, this approach is very simple and gives an elegant 
solution to the problem, but it is of limited applicability. Nevertheless, we think 

that Silvey’s idea could be generalized replacing 0( )B  by 0( )B I  with 0

(strictly positive) and I  the identity matrix of appropriate dimension. We show 
that this modified matrix is compatible with the definition of a penalized log-
likelihood function, and inferences on the non-vanishing parameters can be based 
on the maximizing point of this function. Under usual regularity conditions, the 
estimator so obtained is consistent and asymptotically normally distributed with a 
variance-covariance matrix approximated by the Moore-Penrose pseudoinverse 
of the information matrix, which always exists and is unique (Rao and Mitra, 
1971). In an indeterminacy problem this result allows us to construct a naive test 
useful for inferential purposes. 

3. THE REGULAR CASE

We assume the following conditions which are straightforward generalizations 
of Cramer’s conditions (Aitchison and Silvey, 1958). 

1F )  is a compact subset of the Euclidian k-space and 0  is an interior point. 

2F ) For every , 0( ) [ log ( , ) ]Q E f x  that is, the expected value of 

log ( , )f x taken with respect to a density function characterized by the pa-

rameter vector 0 , exists.

3F ) For every U  (and for almost all x R ) first, second and third order 

derivatives with respect to  of log ( , )f x  exist and are bounded by func-

tions independent of  whose expected values are finite. 
4F ) The information matrix in an observation is positive definite (local identifi-

ability condition). 
In the regular case the classical proof of the consistency of a solution of the 

likelihood equations, log ( ) 0D L , is based on the analysis in U  of the be-

haviour of the maximizing point of the quadratic model obtained from a Taylor 

series expansion of , 1 log ( )n L  about 0
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2
0 0 0

1 1 1 1
log ( ) log ( ) log ( ) log ( )

2
L L D L h h D L h R

n n n n
 (2) 

where 0h , [ ]iD  1i k  is the column vector of a differential 

operator; 2 2[ ]i jD  1i j k  is the matrix of second derivatives. By 

imposing the first order necessary conditions for a maximum to the log-

likelihood function or by expanding the likelihood equations about 0  after re-

scaling by 1n , we have: 

2
0 0

1 1 1
log ( ) log ( ) ( , ) 0

2
D L D L h V x

n n
 (3) 

where ( , )V x  is a vector whose i-th component may be expressed in the  

form 1
0 0( ) ( )( )in , ( )i  being a matrix whose ( )j m  element is 

3

1
( ) log ( ; )

n

i j m tt
f x , 1j m k  bounded in U  and  a point 

such that 0 0 . Conditions 1 3F F  ensure that 1
0log ( )n D L

converges in probability to 0 kR ; 1 2
0log ( )n D L  converges in probability to 

0( )B , and the elements of 1 ( )in  are bounded for U . We have the 

following Lemma 

Lemma 1 (Aitchison and Silvey, 1958). Subject to the conditions 1 4F F , for 

large enough n , and  sufficiently small, the equation (3)  has a (unique) solu-

tion 0nh  such that 2h h  if and only if h  satisfies a certain equation of 

the form 

2
0( ) ( , ) 0B h m x-  (4) 

where ( , )m x  is a continuous function on U  and ( , )m x  is bounded in U

by a positive number , say. 

Because of condition 4F  the latent roots 1 2 ... k  of the information 

matrix are all positive. Using an equivalent of Brower’s fixed point theorem as in 

Aitchison and Silvey (1958), 1  is a sufficient condition for equation (4) to 

have a unique solution h  such that 2h h .
Taking the probability limit of both sides of (2) and using the above assump-

tions, we have 

2
0 0

1 1
lim log ( ) ( ) ( ) ( ) ( , )

2
p L Q Q h B h h m x

n
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Equation (4) may be seen as the first order necessary conditions for the uncon-
strained maximum of the quadratic model ( )Q . Then, the crucial point of the 

consistency of a solution to the likelihood equations is that for  sufficiently 

small (actually for 1 ) , ( )Q  has a unique maximizing point in U .

As to the asymptotic distribution of the maximum likelihood estimator we 
have

2 * 1/2
0 0

1 1
log ( ) log ( )D L h R n h D L

n n
 (5) 

where R  is a vector whose i th  component may be expressed as 1(2 ) ( )in

and  a point such that 0 0n . In the regular case, 

1 2
0 0lim log ( ) ( )p n D L B , 1/2

0log ( )n D L has the limiting normal dis-

tribution 0(0, ( ))N B  by the central limit theorem and because of the consistency 

of the estimator, * (1)Ph R o . On compiling these results, we see that 1/2n h

tends in distribution to a random vector 1
0( )B  where 0~ (0, ( ))N B ; and 

we conclude that 1/2n h  has the limiting normal distribution 1
0(0, ( ))N B .

We point out that in the regular case a solution of the likelihood equation has 
the same limiting distribution as the (unfeasible) linearized estimator 

1
2

0 0 0

1 1
log ( ) log ( )nS D L D L

n n

obtained by maximizing the quadratic model to 1
0log ( )n L  given by (2) with 

approximation error of order 0o( )  in U . As known, nS  is the basis of 

several numerical procedures used to obtain a maximum likelihood estimator. 

4. THE INDETERMINATE PARAMETERS PROBLEM

4.1. An unfeasible estimator 

Suppose that the conditions 1 3F F  are satisfied. Then, when  vanishes the 

information matrix is singular and the asymptotic approximation, ( )Q , will not 

have a unique maximizing point in a neighbourhood of 0  but a whole (linear) 

sub-space of maxima. The demands that ( )Q  should have a maximum in U

and that B( 0 )  should be positive definite are, clearly, related. In fact, if B( 0 )  is 

singular, nothing guarantees the existence of a unique solution h  which maxi-

mizes ( )Q  and such that 2h h  for any  sufficiently small. 
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Following Silvey (1959) a way to tackle the problem of the singularity of B( 0 )

is to modify the information matrix constraining the function ( )Q  in U . Us-

ing the Lagrange multiplier method, we could proceed to maximize ( )Q  subject 

to the constraint 0 . As known, a solution to this constrained problem, 

( )
0

ˆˆ nh  say, must satisfy the following equation (Dennis and Schnabel, 1983, 

p. 131) 

2 2
0 0

1 2
0

( ( ) ) ( , ) ( ) ( , ) 0

ˆ ( ) ( , )

B I h m x A h m x

h A m x
 (6) 

where I  is the identity matrix of an appropriate dimension and 0 (strictly 

positive) a scalar determined so that ( )
0

ˆ n . That is, the constrained 

maximum of ( )Q  occurs on the boundary of the region 0  fixing 

appropriately .
If we compare (6) with that obtained in the regular case given by (4) we can 

observe that the information matrix is now modified by adding a scalar diagonal 

matrix giving rise to a “new” matrix 0A ( )  which is positive definite. What 

about the meaning and the interpretation of ( )ˆ n  fixing  arbitrarily?. The fol-

lowing results are well known in numerical analysis (Goldfeld et al., 1966). 

a) Given , ( )ˆ n  is the maximizing point of the function 
2

0( ) ( ) ( 2)P Q  obtained by penalizing the asymptotic approxi-

mation ( )Q  with a quadratic penalty term. Because 0( )A  is positive defi-

nite, ( )P  has a global maximum at ( )ˆ n .

b) From a) 
2 2( ) ( ) ( )

0 0
ˆ ˆ ˆ( ) ( ) ( 2) ( ) ( 2)n n nP Q Q  and 

( )ˆ( ) ( )nQ Q  for all  such that ( )
0 0

ˆ n . That is, if we 

define a region consisting of all  such that 0  then the maximum 

of ( )Q  occurs on the boundary of this region. 

c) 1 2 2
00 ( ( ) ) ( , )B I m x . Then, if ,  that is, 

( )ˆ n  is in U .

The above remarks suggest a way to use 0( )A . Define the following (penal-

ized) log-likelihood function 

0( ) log ( )
2

nP L  (7) 
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and let ( )ˆ n  be a solution of the (penalized) likelihood equations 

2
0 0

1 1 1
log ( ) log ( ) ( , ) 0

2
D L D L I h V x

n n
 (8) 

We can state the following Lemma equivalent to Lemma 1 for the “regular” 
case.

Lemma 2 Given 0 , under the conditions 1 3F F , for large enough n , and 

sufficiently small, the equation (8)  has a (unique) solution, ( )
0

ˆˆ nh  such that 
2ˆ ˆh h  if and only if h  satisfies a certain equation of the form

2
0( ( ) ) ( , ) 0B I h m x  (9) 

where ( , )m x  is a continuous function on U  and ( , )m x  is bounded in U

by a positive number , say. 

Because 0( )B I  is positive definite, the system (9)  has a unique solution 

in a neighborhood of 0  if  is sufficiently small. Indeed, it is sufficient .

The asymptotic distribution of ( )ˆ n  is immediate following the the same line of 

reasoning as in the “regular” case. We have 

2 1 2 1 2
0 0

1 ˆlog ( ) log ( )oD L I h R n h n D L
n

where oR  is a vector calculated at some point in U  and bounded in U .

Under above conditions, 1 2
0 0lim[ log ( )] ( )p n D L B , 1 2

0log ( )n D L

has the limiting normal distribution 0(0 ( ))N B  and, because of the consistency 

of the estimator, ˆ (1)o
Ph R o . Then, 1 2n h  tends in distribution to a random 

vector 1
0( ( ) )B I  where 0~ (0 ( ))N B  and we conclude that 1 2n h  has 

the limiting normal distribution 1 1
0 0 0(0 ( ) ( ) ( ))N A B A .

4.2. The naive maximum likelihood estimator

The definition and the use of the (penalized) log-likelihood function, ( )nP ,

given in the previous section, leads to the following observations. 

i) ( )nP  can be interpreted as a penalty function where the penalty term is ex-

pressed in quadratic form. In a “non-regular” theory, the approach based on a 
modified log-likelihood function is certainly not new. The logarithmic barrier 
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function has been used in recent times to overcome the boundary problem 
and the non-identifiability in mixture models (Chen et al., (2001)). 

ii) ( )nP  can be motivated by a Bayesian procedure or by incorporating a sto-

chastic constraint. In the Bayesian motivation, let  have the prior density 

proportional to 
2

0exp[( 2) ]  so that exp[ ( )]nP  is proportional to 

the posterior density. Alternatively, we can think of equation (7) as a con-
strained log-likelihood where the constraint is of the form 

1
0 (0 )v v I  where I  is the identity matrix of an appropriate di-

mension. The stochastic constraint is introduced into the log-likelihood func-
tion through the penalty function approach. 

iii) The maximization of ( )nP  is not a feasible procedure because, given , the 

procedure depends on the unknown “true” parameter 0  and the problem on 

fixing  arises. 
The observation iii) is closely bound up with the aim of our paper and it can be 
solved if we can answer to the following question. Given the (unfeasible) estima-

tor ( )ˆ n  how can we construct a naive test?. In other words, when ( )ˆ n , the first 

component of ( )ˆ n , could have (at least approximately) the same asymptotic dis-

tribution as the maximum likelihood estimator ( )ˆ n , given ?. To solve this 

problem we propose to take  very small, formally, 0 .
Then, what about the asymptotic properties of a solution of the following (pe-

nalized) likelihood equations?  

2
0 0

0

1 1 1
lim log ( ) log ( ) ( , ) 0

2
D L D L I h V x

n n
 (10) 

We can state the following Theorem 

Theorem Under the conditions 1 3F F , for large enough n , and  sufficiently 

small, the equation (10)  has a (unique) solution ( )
0 0 0

ˆˆ nh  in a neighborhood 

of the true parameter 0 . Moreover, 

1 2 ( )
0 0 0

ˆ( ) (0 ( ))nn N B  (11) 

where 0( )B  is the Moore-Penrose pseudoinverse of 0( )B .

Proof. Consistency is immediate invoking Lemma 2. The asymptotic distribu- 
tion of the estimator emerges following the same line of reasoning as that at  
the end of the previous Section. Therefore, under the conditions 1 3F F  we  

can state that 1 2
0

ˆn h  tends in distribution to 1
0 0lim ( ( ) )B I  where 
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0~ (0 ( ))N B . Then, 1 2
0

ˆn h  has the limiting normal distribution 0(0 ( ))N B

where 1 1
0 0 0 0 0( ) lim ( ( ) ( ) ( ) )B A B A . It is immediate to show that 

0( )B  is the Moore-Penrose pseudoinverse of 0( )B  which always exists and is 

unique (Albert, 1972). 

For the indeterminate parameters problem given the particular form assumed 

by the information matrix, the pseudoinverse of B( 0 , 0 )  is given by 

1
00

00

( ) 0
( )

0 0

B
B

then, ( ) ( )
0 0 0 0 0 0

ˆ ˆ(( ) ( , ) )n nW n B  is distributed as a central 2( )m .

Let 1
0( )B  be partitioned in four blocks, 11B , 12B , 21B , 22B  and call j

and t  respectively the first and the second (block) component of the vector .

Then, we can test a subset of parameters 0H : 0j j  through the statistic 

11 1
0 0

ˆ ˆ( )( ) ( )j j j jn B  which is distributed as 2 11( ( ))rank B . It is imme-

diate to note that ( )
0

ˆ o( )n
n  and 0 o( )W W  with 0 .

5. SOME EXAMPLES

Applications of the naive test, 0W , are closely associated with the possibility 

of obtaining a solution of the naive maximum likelihood estimator through equa-
tion (10) . With respect to this problem, we first note that for any , the estima-

tor ( )ˆ n  has the same limiting distribution as the (unfeasible) linearized estimator 

1

2
0 0 0

1 1
log ( ) log ( )n L I D LT D

n n
 (12) 

in the sense that 1 2 ( ) 1 2
0 0

ˆ( ) ( ) o (1)n
n pn n T . We underline that in the 

indeterminacy problem Tn  plays the same role as the (unfeasible) linearized esti-

mator Sn  given for the regular case. Then, we can use (12) to obtain a solution to 

equation (10)  through an iterative algorithm fixing in advance a sequence of 

converging to zero. More specifically in the subsequent examples we computed 
the estimate following these steps: 

i) Fix a sequence { i }, typically {1, 10 1 , 10 2 ,...}, choose a starting point, ( )s

and set 1i .
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ii) Check the termination condition. When a sufficiently small value of i  has 

been reached the algorithm terminates. 

iii) Compute an analytical Hessian matrix, ( )( )sJ , and the matrix 
( )( )s

iA J I .

iv) Find iteratively a solution to (12), call it ( )F .

v) Set ( ) ( )s F , set i=i+1 and return to (ii).
This algorithm works quite well in the examples discussed in this paper. 

Example 1 (Gallant, 1987): Let 1Y , 2Y ,..., Yn  be a sequence of independent normal 

random variables with (known) variance 2  and expectations given by 

1 21 2 3
1

( ) exp
q

i i i i ij
i

zE x xY

The inputs correspond to a one way “treatment-control” design that uses experi-
mental variables that affect the response exponentially. Suppose we want to test  

the hypothesis 0 3: 0H . Then, under 0H , 1 2log ( ) 2 ( )i ii
L y v ,

1 1 2 2i i iv x x , is independent on the q  nuisance parameters 1j j q

but depends on two parameters, 1  and 2  to be estimated. The elements of the 

score vector are 

3

3

3

2
3 2 1

0

2
3 2 1

3 0

3 2 1

0

log ( ) 1 2

log ( )

0 1log ( )

i ij

ij

i i

i

j

L v x j

L v a

j qL

where expi j ijj
a z .

The information matrix on n  observations is given by 

2
1 1 2 1

2
1 2 2 22

3 1 2
2

1 2

0

0
( 0 )

0

0 0 0 0

i i i i ii i i

i i i i ii i i
n

i i i i ii i i

x x x x a

x x x x a
B

x a x a
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which shows both a singularity and a local orthogonality between  and .

For simulation purposes we construct independent variables following Gallant 
(1987, p. 19). The first two coordinates consist of the replication of a fixed set of 
design points determined by the design structure 

1 2

(1 1)
( )

(0 1)
i i

if i is odd
x x

if i is even

As to the q  variables ijz  we limited these to 2q  and generated ijz , 1 2j  by 

random selections from the uniform distribution in the interval [0 10] . Results 

are based on 5000 replications of samples of different sizes with 

1 2 30 05 1 0  and 2 0 001 . The model is very sensitive to the 

choice of the functional form of the distributions of ijz , which must be positive 

everywhere on some known interval. Moreover, the initial point for the iterative 
process is crucial to be successful in the simulation. Therefore, a particular care 
with these aspects is required (Gallant, 1987). The naive test is given by 

33 2 2
0 3

ˆ ˆ( )( ) (1)W b  where 33 ˆ( )b  is the inverse of the third element of the 

principal diagonal of the pseudoinverse of 3 1 2( 0 )nB . Proportion of 

rejections of H 0  for different sample sizes are shown in Tab. 1. 

TABLE 1 

Proportion of rejections of 0 3 0H

Sample size 
Hypothesis 

30n 50n 70n 80n

3 0 0.57 0.28 0.105 0.057 

The table shows that the proportion of rejections reaches the 0.05-significance 
level when the sample size is about 80. 

Example 2: (Davies, 1987). Let 1 nY Y  be a sequence of independent normal 

random variables with a unit variance and expectations given by 

if
( )

( ) if

i i

i

i i i

a bx x
E Y

a bx c x x

where ix  denotes the time and  the unknown time, at which the change in a 

slope occurs. We want to test the null hypothesis 0 0H c  against the alterna-

tive that 0c . We use simulation to investigate how rapidly the finite-sample 
performance of the test statistic based on the naive maximum likelihood estima-
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tor approaches its asymptotic limit. For simulation purposes we construct an X 

matrix which has one in the first column, time such that 0ii
x  in the second 

column, zero if ix  or ( )ix  if ix  in the third. Then, we generated 

samples of different sizes starting from 20n  using the following model 

1 3 ( 1)i i i iy x c x u , (0 1)iu N , giving several values to the parameter 

c. Under 0H , one immediately notes that when the null hypothesis is true  van-

ishes from the model and the expected information matrix becomes singular 

2

2

2

2

2 2 2

( ) 0

( ) 0
( 0 )

( ) ( ) ( ) 0

0 0 0 0

i i
i i

i i i i
i i i

n

i i i i

i i i

n x x

x x x x

B c a b

x x x x

2i
 denotes the summation over ix .

In small samples, the application of the naive test to the two-phase model leads 

to define the test statistic, 33 2 2
0

ˆ ˆ( ) (1)W b c  where 33 ˆ( )b  is the inverse of 

the third elementt of the principal diagonal of the pseudoinverse of 

( 0 )nB c a b .

Proportion of rejections of a null hypothesis for some value of c and different 
sample sizes are shown in Table 2. Results are based on 1000  simulation runs at 
a 5%  level of confidence. 

TABLE 2 

Proportion of rejections of 0 0H c

Sample size Parameter 
c n = 20 n = 30 n = 40 n = 50 

0.0 0.134 0.124 0.053 0.037 
0.1 0.142 0.144 0.154 0.145 
0.2 0.265 0.33 0.387 0.773 
0.3 0.42 0.64 0.942 1 
0.4 0.651 0.85 1 1 

The table shows that there are differences in the performance of the test when 
we move from samples of size 20  to 50 . In particular, under the null hypothesis 

0 0H c  the proportion of rejections reaches the 0.05-significance level with a 

95%  confidence interval [36 64]  when the sample size is 40 . Moreover, when 

data are generated with 0 1c  (we also tried with different values of 0 0 1c )
the proportion of rejections is nearly constant at about 14-16 per cent. We  
have an increase of this percentage when n  is raised from 50 to 100 as shown in 
Table 3. 
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TABLE 3 

Proportion of rejections of 0 0 1H c

Sample size Parameter 
c n = 60 n = 70 n = 80 n = 90 n = 100 

0.1 0.174 0.221 0.412 0.584 0.645 

Because the two-phase model is taken from Davies (1987), a brief comment 
may be appropriate. Our remarks concern the approach used rather than the re-
sults obtained. The test based on the naive maximum likelihood estimator pro-
posed in this paper may be considered “standard” because asymptotically the test 
statistic has a central chi-square distribution. Moreover, it is relatively simple to 
apply as it emerges from the above application. Davies’ approach, though elegant, 
is quite elaborate to implement in practice and it is difficult to generalize when 
more than one parameter vanishes under the null hypothesis. In models more 
complex than those described in this paper, the asymptotic distribution of the test 
statistic constructed following Davies’ method is unknown. Approximated distri-
butions using simulation techniques are necessary and tabulation of critical values 
is impossible. Recent works that follow Davies’ approach are Andrews and 
Ploberger (1994) and Hansen (1996). 

6. CONCLUSIONS

In this paper we proposed a way to make inference in the indeterminate pa-
rameter problem. The approach is based on the definition of a modified (penal-
ized) log-likelihood function letting a penalty parameter going to zero. The 
maximizing point of this function has attractive statistical properties. It is consis-
tent and asymptotically normally distributed with variance-covariance matrix ap-
proximated by the Moore-Penrose pseudoinverse of the information matrix. 
These properties allow one to construct a Wald-type test statistic with a “stan-
dard” distribution both under the null and alternative hypotheses. This test is 
relatively simply to apply to the indeterminacy problem. The performance in 
small samples of the proposed test statistic is detected on two nonlinear regres-
sion models. 

Dipartimento di Statistica “G. Parenti” MARCO BARNABANI

Università di Firenze 
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RIASSUNTO

Inferenza nel problema dei parametri indeterminati 

Il problema dei parametri indeterminati nasce quando ci sono due insiemi di parametri, 

 e , tali che l’ipotesi nulla 0 0:H  rende la verosimiglianza indipendente da .

Una conseguenza di questa situazione è la singolarità della matrice di informazione. Per 
questo tipo di problema i risultati asintorici standard legati allo stimatore di massima vero-
simiglianza non sono generalmente validi. Nel lavoro si propone uno stimatore per il pa-
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rametro di interesse, , tale che, asintoticamente sia possibile sottoporre a verifica l’ipo- 

tesi 0H  utilizzando la statistica test di Wald. Un tale stimatore è ottenuto tramite la mas-

simizzazione di una funzione di log-verosimiglianza penalizzata. Si mostra che una solu-
zione dell’equazione di verosimiglianza (penalizzata) è consistente, e distribuita asintoti-
camente in modo normale con matrice di varianze-covarianze approssimata dalla pseu-
doinversa di Moore-Penrose della matrice di informazione. Queste proprietà consentono 
di costruire una statistica test di Wald utile per scopi inferenziali. 

SUMMARY

Inference in the indeterminate parameters problem 

We face an indeterminate parameters problem when there are two sets of parameters, 

 and , say, such that the null hypothesis 0 0:H  makes the likelihood independ-

ent of . A consequence of indeterminacy is the singularity of the information matrix. 

For this problem the standard results, such as the asymptotic chi-squared distribution of 
the Wald test statistic, are generally false. In the paper we propose an estimator of the pa-

rameters of interest, , so that a Wald-type test statistic can be used for testing 0H . Such 

an estimator is obtained through the maximization of a modified (penalized) log-
likelihood function. We show that a solution to the (penalized) likelihood equation is con-
sistent and asymptotically normally distributed with variance-covariance matrix approxi-
mated by the Moore-Penrose pseudoinverse of the information matrix. These properties 
allow one to construct a Wald-type test statistic useful for inferential purposes. 


