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1. INTRODUCTION

For more than two decades economists have widely debated whether macro-
economic and financial time series can be modelled by nonstationary processes 
with an autoregressive unit root [UR] or, conversely, they are better described by 
processes which are stationary around a deterministic, generally linear, trend. In 
an important paper, Perron (1990) questions the empirical relevance of these two 
classes of processes. Specifically, he suggests that permanent shocks may occur 
only rarely in time, and hence, that economic time series may be better described 
by means of stationary processes around a deterministic trend subject to infre-
quent level shifts. Apart from its important macroeconomic implications, Per-
ron’s proposal is extremely important for its methodological implications: the 
presence of level shifts largely affects the performance of UR tests, with the evi-
dence in favor of a UR being generally inflated. New tests which are robust to a 
single level shift have been developed, inter alia, by Perron (1990), Banerjee et al. 
(1992), Perron and Vogelsang (1992), Zivot and Andrews (1992), Amsler and Lee 
(1995), Saikkonen and Lütkepohl (2001, 2002), Lanne et al. (2002), Lütkepohl et 
al. (2004), among others. 

When multiple level shifts are allowed for, the testing procedures proposed in 
the above mentioned papers no longer work, with the evidence in favour of a UR 
possibly being inflated. The few attempts to robustify these tests by allowing for 
more than one shift are generally feasible only when the number of shifts is very 
small; see Clemente et al. (1998) and the discussion in Lumsdaine and Papell 
(1997).

In this paper we attempt to fill the gap in the literature by proposing a simple 
procedure for UR testing under multiple additive level shifts. The basic idea is 
that level shifts should be treated as a random jump process where neither the 
number of shifts nor their location should be considered as known. Furthermore, 
opposite to the “ordinary” shocks affecting the process, level shifts should be lar-
ge and should occur rarely. Given these premises, our procedure consists of two 
steps.
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First, we suggest a preliminary detection of the level shift dates by appealing to 
the literature dealing with additive shift identification, see section 3. Once the le-
vel shift dates are identified, we propose to estimate the level shift component by 
a proper estimator. This allows us to eliminate the level shifts by simply subtract-
ing from the original time series the estimated level shift component. The ob-
tained time series – which will be called ‘de-jumped’ in the following – can then be 
used to carry out standard UR tests. Notice that, by doing so, there is no need for 
new UR tests, as all the practitioner is required to do is to run a standard UR test 
on the de-jumped time series. 

The structure of the paper is the following. In section 2 we present the refer-
ence autoregressive model with multiple level shifts and a possible UR. In section 
3 we discuss the proposed UR testing procedure by focusing, in particular, on the 
de-jumping algorithm. In section 4 we briefly discuss some well-known level shift 
detection methods which can be used to implement the de-jumping technique. In 
section 5 we present a number of Monte Carlo simulations aiming at assessing 
the finite sample performance of our tests. Section 6 provides some extensions 
and Section 7 concludes. 

2. THE MODEL

The model we are interested in is a standard unobserved components model 
made of (i) an autoregressive [AR] component, either stable or with a UR; (ii) a 
deterministic component; (iii) a (stochastic) level shift component. More specifi-
cally, the observable time series Xt satisfies: 

' ,  1 , ...,t t t tX Z Y t k T (1)

1t t tY Y u (2)

1

k

t i t i ti
u u (3)

where Yt is the AR component, Zt is a vector of known deterministic terms, 
and t is the level shift component. Our interest is in testing the null hypothesis 
H0:  1 against the local alternative Hc:  1-c/T, c>0, as well as against the 
fixed alternative Hf: *, | *|< 1. The term ut is assumed to be stable, i.e. the 

roots of the characteristic equation (z)  1
1

k i
ii
z  = 0 are all outside the 

unit circle. Morever, we assume that { }t  is an IID(0, 2) sequence. Notice that 
under these assumptions Yt has at most one UR, all the other roots being stable 
roots. In the following, we regard the lag order k as known and we set =0;  
the general case where k is unknown and  0 is considered in section 6. Finally, 
the initial values are assumed to satisfy 1-k,..., 0 = 0, u1-2k,...,u k = Op(1), with  
X k = Y k being any real random variable whose distribution is fixed and inde-
pendent of T.
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The level shift component t is assumed to be constant apart from a (small) 
number of time periods. Specifically, we assume that 

1

 =
t

t s s

s

where t is a binary indicator variable which equals one if and only if a level shift 
occurs at time t ( t being zero otherwise). Notice that the single level shift model 
of Perron (1990), with the level shift occurring at time T* and with shift magni-

tude equal to * , obtains by setting t I{t T*} (I{.} denoting the indicator 

function) and T*
* . The number of level shifts occurring up to time t is given 

by
1

t

t ss
N . The procedure we propose in this paper is particularily de-

signed for cases where the level shift component has the following features: 

(a) TN  is bounded in probability; 

(b) 1 2
t tT , where 1{ }T

t t  and 1
1{ }T

t t  are sequences of Op(1) random vari-
ables as T diverges. 

Condition (a) is in contrast with cases where the number of level shifts di-
verges together with the sample size. See, e.g., Balke and Fomby (1991a, 1991b) 
and Franses and Haldrup (1994). Basically, (a) allows us to preserve in the limit 
the distinction between ordinary shocks (frequent) and level shifts (rare). 

Regarding (b), notice that this requirement fixes the stochastic magnitude order 
of level-shift sizes at T1/2. It is not new, cf. Leybourne and Newbold (2000a, 
2000b), Perron (1989, p. 1372), Müller and Elliott (2003). Specifically, under (b) the 
stochastic magnitude of the level shifts matches the stochastic magnitude order of 
Yt under the null hypothesis and under local alternatives. That is, the magnitude of 
the shifts is not negligible if compared to the levels of the time series of interest.  

Also, under (b) standard UR tests have non-pivotal asymptotic distributions in 
the presence of level shifts. Specifically, consider the so-called Augmented 

Dickey-Fuler [ADF] regression tX 1 1

k

t i t ii
X X + errort, and the 

ADF test statistics ˆ
ˆˆ: ( 1)/| (1)|ADF T  and ˆ ˆ( 1) ( )tADF s  based 

on it, where 
1

ˆ ˆ(1) : 1
k

ii
 and ˆ( )s  is the (OLS) standard error of ˆ , with 

ˆ  and ˆ
i  denoting respectively the OLS estimators of  and i  (i = 1,...,k). In 

the absense of level shifts, ˆADF  and tADF  are pivotal; cf. e.g. Chang and Park 
(2002). On the other hand, if there is at least one level shift, the asymptotic distri-
butions of these test statistics strongly depend on the level shift component, not 
only under the null but under local alternatives as well, leading to tests with low 
asymptotic power; cf. Cavaliere and Georgiev (2006, Theorem 1). To overcome 
this serious drawback, in the next section we will focus on how to test the UR 
null hypothesis H0 in model (1)-(3) when the level shift component is present. 



G. Cavaliere, I. Georgiev 6

3. TESTS FOR UNIT ROOTS UNDER LEVEL SHIFTS

In the model (1)-(3), if Yt was observable, then the asymptotic distributions of 
the ADF statistics from the regression 

Yt = Yt 1 i -
1

k

t i

i

Y  + errort  (4) 

would be of the standard Dickey-Fuller type, under the null hypothesis and under 
local alternatives. However, since Yt is unobservable, this regression is not feasi-
ble empirically. Since Yt = Xt t can be thought of as obtained from Xt once the 
unobservable level shift component has been removed, a simple UR test would 
obtain by conducting standard ADF tests on a time series obtained by subtracting 
from Xt an estimator of the level shift component t. The idea is related to 
Saikkonen and Lütkepohl (2002), who suggest to adjust the original time series by 
removing an estimator of its deterministic component, including possible (deter-
ministic) level shifts. Since in our case t is a random jump process, in what fol-
lows this procedure is referred to as ‘de-jumping’. 

If t were observable, but the shift sizes not, to optimize test power under al-
ternatives close to the null we could estimate the shift sizes by pseudo-GLS under 
local alternatives, as suggested by Elliott et al. (1996). Furthermore, to keep under 
control the finite-sample size of the resulting tests, following the suggestion of 
Saikkonen and Lütkepohl (2002) and Lanne et al. (2002), we would set the local-
izing parameter to zero. This reduces to estimation of shift sizes under the UR 
null, i.e., to a regression of Xt on impulse dummy variables, one per shift. The 
implied estimator of t would be 

1 1 1 1

ˆ
t t t t

s s s s s s t s st
s s s s

X Y Y

It is not difficult to show that, under the assumptions discussed in section 2, if t

and t are independent, the estimation error 
1

ˆ
t

t s st s
Y  is uniformly 

bounded in probability, while t (as well as Yt under H0 and Hc) has stochastic 
magnitude order T1/2. This difference turns out to be sufficient for the ADF sta-

tistics based on the ‘de-jumped’ time series ˆ
tX ˆ ˆ( )t t tt tX Y ,

t=1,...,T, ( ˆ
tX t tX Y  for t k,...,0) to have the same null and local-to-null 

asymptotic distributions as in the standard case of no level shifts, and to diverge 
under fixed alternatives. 

In the case of unobservable t we can imitate the above de-jumping scheme 
through the following procedure: 
1. the sequence of level shift indicators { t} is estimated by an appropriate esti-

mator { }t ; the level shift component is estimated by 1

t

s st s
X ;



A note on unit root testing in the presence of level shifts 7

2 the level shifts are removed by constructing the de-jumped series 

tX t tX  (t  1) and t tXX  (t = k,...,0); 

3  standard ADF tests, say ˆADF  and tADF , are computed using tX  instead 
of the original time series; the UR null hypothesis is evaluated by comparing 

ˆADF  and tADF  to standard asymptotic critical values (see, e.g., Fuller, 
1976).

In this framework, the key step is the estimation of level shift indicators. 

Technically, since 1
ˆ ( )

t

t t s s ssX X , for the ADF test obtained from 

1-3 above not to be influenced asymptotically by the fact that t are estimated, 

1

T

ttt
 should converge to zero sufficiently fast. 

In the next subsection we introduce a traditional estimator of the level shift 
dates which can be employed in conjunction with the de-jumping method. The 
estimator, which is due to Chen and Tiao (1990) and Chen and Liu (1993), is 
well-known in the outlier detection literature. 

4. ESTIMATION OF THE LEVEL SHIFT INDICATORS

Let us start by considering the reduced form of equations (2)-(3): 

( ) t tL Y

where ( ) (1 ) ( )L L L . The level shift detection procedure of Chen and 
Tiao (1990) and Chen and Liu (1993) is based on the observation that, under the 
additive level shift model, the counterpart of the above equation in terms of the 
observable variable Xt is 

1
( ) ( ) ( ) { } ,

T

t t t t s ss
L X L L t sI

where : 0s  for 0,...,s k . Thus, in the case of known ( )L , to test the hy-

pothesis that a level shift has occurred at a given time *t  against the alternative  

of no level shifts in the sample, one could regress ( ) tL X  on *( ) { }L t tI

(t = 1,...,T), and could base the test on the t-statistic 

*

*

**

1/2

2
*

ˆ
ˆ

ˆ
: [ ( ) { }] ,

T
t

t

t tt

L t tI

where 
*

ˆ
t  is the OLS estimator of the regression coefficient, and 

*
ˆ

t  is the re-

sidual standard deviation. On the other hand, a test of the hypothesis that there is 
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at least one level shift in the sample, against the alternative of no shifts, could be 
based on the statistic  

1

ˆmax t
t T

In the practically relevant case where ( )L  is unknown, Chen and Tiao (1990) 

and Chen and Liu (1993) suggest to replace it by the estimator ( )L  obtained by 

regressing tX  on 1tX  and 1( , ..., )t t kX X ; in this case we write ,  and 

 for the associated statistics. An estimator of the shift indicators { }t  can then 
be defined as follows (cf. Chen and Tiao, 1990). 

1. Let : ( )t tx L X  and let :D  denote the initial estimator of the set of 
dates where level shifts have occurred. 

2. Compute t  (t = 1,...,T) and 1,...,: max | |t T t . If | | C , where C is a criti-

cal value, then go to step 4. 

3. Let t* denote an observation such that 
*t

. Replace D  by *{ }D t  (up-

dated set of dates with level shifts) and tx  by 
*

*( ) { }t tx L t tI  (residuals 

corrected for the newly detected shift). Return to step 2 with the updated tx .

4. Define : { }t t DI  (t = 1,...,T).

The choice of the critical value C in the above procedure is obviously crucial. 
Since  is an extremum statistic, it may converge to a distribution only upon ap-
propriate normalization. Even so, due to difficulties related to the dependence 
structure of { }t , no asymptotic critical values have been proposed in the litera-
ture, as far as we are aware. Instead, based on simulations with various DGPs, 
Chen and Tiao (1990) propose the value of C = 2.8 for what they call “high sensi-
tivity level-shift detection”, and we adopt their suggestion for the Monte Carlo 
simulations in the next sections. 

Given { }t , we can obtain a de-jumped series 
1

:
t

t t s ss
X X X  as dis-

cussed in the previous section. In the simulations exercise we talk about Chen-
Tiao de-jumping in this case, although Chen and Tiao do not actually propose de-
jumping (they employ dummy variables) and do not address UR testing (by ruling 
out unit roots). 

An alternative approach to de-jumping, discussed in Chen and Liu (1993), is to 
regress ( ) tL X  on the vector 1 | |( )( { },..., { })',

D
L t t t t| | 1,...,t T , where 

1 | |{ , , }
D

t t D . If the estimated coefficient vector is 1 | |( , , )'
D

, then i  es-

timates the size of the level shift occurring at time it . A de-jumped series can be 
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defined as ( )1
:

t

t t s n ss
X X , with 

1
( ) :

s

uu
n s , and we talk about 

Chen-Liu de-jumping in this case. 
It is seen that a main difference between the relatively simple Chen-Tiao de-

jumping (the way we have defined it), and Chen-Liu de-jumping (the way it is im-
plicitly defined in Chen and Liu, 1993, p. 287, stage II.3, and formalized above) is 
that there is a pseudo GLS (efficiency improving) idea behind the former, and an 
OLS idea behind the latter. Furthermore, for Chen-Tiao de-jumping the local 
GLS parameter, as explained in the previous section, is set to zero for size con-
siderations. We evaluate next the finite sample implications of these differences. 

5. FINITE SAMPLE SIMULATIONS

In this section the finite-sample size and power properties of standard ADF 
tests and of ADF tests based on prior level-shifts removal, as introduced in sec-
tions 3 and 4, are investigated by Monte Carlo simulation, for DGPs either with 
or without level shifts. We want to establish (i) whether allowing for multiple 
level shifts does not result in deteriorated size properties, and (ii) whether the 
power properties of the tests based on prior level-shifts removal are close to 
those of the usual ADF tests under standard conditions (i.e., without level shifts), 
at least as the sample size increases, under fixed and local alternatives. 

The employed DGPs are as follows. Data are generated for sample sizes of T
100,200,400 observations according to model (1)-(3) with k  1,  := 1 {-0.5, 0, 
0.5},  = 0 and zero-mean unit-variance IID innovations following a Gaussian 
distribution; the initial values are Y 1  0 and u 1 drawn from the stationary distri-
bution implied by eq. (3), i.e., u 1  N(0,(1 2)-1). We consider the UR case, 
which obtains by setting  1 in (2), the sequence of local alternatives Hc  1-
c/T with c := 7, and the fixed alternative Hf  0.9. 

Three specifications of the level shift component are employed. First, the case 
of no level shifts ( t 0 for all t) is considered, with the resulting model denoted 
by S0. Second, with S4 we denote the case of four shifts occurring at fixed sample 
fractions ti, i=1,...,4, with t1:= 0.2T , t2:= 0.35T , t3:= 0.6T  and t4:= 0.8T , and 
with size magnitudes 

1 4
: 0.4t t  and 

2 3
: 0.35t t ; consequently, the 

level shift component is 

t := T1/2 [0.4 I(t 0.2T )  0.35 I(t 0.35T ) 0.35 I(t 0.6T )
 + 0.4 I(t 0.8T )]

Third, we consider a case, Sr in the following, with a random number of level 
shifts NT  B(T,2/T) (B denoting a Binomial distribution); i.e., at least two, and 
on average four, level shifts occur over the sample. The shift dates ti, i = 1,...,NT,
are generated as ti:= iT , where the relative locations i are independent and uni-
formly distributed on [0,1]; the (independent) shift sizes i are drawn from a uni-
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form distribution on [ 4, 3.5] [3.5,4]. Note that for our selection of T, this 
model generates level shifts of size between 4 and 8 standard deviations of the 
errors. These shift magnitudes, although large, are not unrealistic. For instance, 
Vogelsang and Perron (1998, p.1090) report, for the long GNP series considered 
in Perron (1992), level shifts “generally no larger (in absolute value) than 8 (...) 
relative to the standard deviation of the innovation errors”. Furthermore, in some 
recent papers (see Papell et al., 2000, inter alia), UR tests under level shifts are ap-
plied to unemployment series where level shifts are as large as 10 times the stan-
dard deviation of the innovations. Using, as in Perron (1990), quarterly US un-
employment data from 1948 to 1988 with a break at 1974:1, we have estimated 
the size of the shift as 6.9 times the residual standard deviation from a 9 lags 
ADF regression on the de-jumped data (cf. Perron, 1990, Table 1). With T=163 
this corresponds to  =0.54, which is actually larger than the values we have used 
in our Monte Carlo design. Similarly, using monthly unemployment over the 
same range (T=485) we find that the size of the shift is 10.4 times the residual 
standard deviation from the second-stage ADF regression; this corresponds to  

 =0.47. 

TABLE 1 

Comparison between standard Dickey-Fuller tests and the new unit root tests 
based on traditional level shift estimation. Model S0 (no level shifts) 

Size (  1) 
T ADF ADFt ADF CT ADFtCT ADF CL ADFtCL

100 -0.5 5.1 5.1   8.3   8.5   9.2   9.5 
  0.0 5.2 5.1   8.2   8.3   8.6   8.7 
  0.5 5.5 5.4   7.0   6.9   7.2   7.1 

200 -0.5 5.3 5.4 10.0 10.2 10.9 11.2 
  0.0 4.6 4.6   8.7   8.8   9.2   9.2 
  0.5 5.0 4.8   6.4   6.5   6.7   6.7 

400 -0.5 4.9 5.1 10.5 10.6 11.5 11.8 
  0.0 4.8 4.8   9.5   9.5   9.9 10.1 
  0.5 5.2 5.2   7.0   6.9   7.2  7.2 
        

Size-adjusted power (  1-c/T)
T ADF ADFt ADF CT ADFtCT ADF CL ADFtCL

100 -0.5 51.0 51.5 37.4 37.7 38.0 38.5 
  0.0 48.0 49.3 38.9 39.5 38.8 39.9 
  0.5 42.4 43.2 40.8 41.8 40.7 41.6 

200 -0.5 47.6 48.4 36.3 35.3 36.5 36.1 
  0.0 51.6 52.0 40.4 41.7 40.4 41.4 
  0.5 46.2 47.5 43.9 44.7 43.5 45.1 

400 -0.5 48.9 48.5 36.9 37.1 37.8 38.6 
  0.0 50.4 50.6 39.6 39.7 40.1 40.3 
  0.5 47.6 47.2 43.5 44.1 43.4 44.3 
        

Size-adjusted power (  0.9) 
T ADF ADFt ADF CT ADFtCT ADF CL ADFtCL

100 -0.5   76.2   76.7   60.1   60.2   60.4   60.9 
  0.0   72.7   73.4   59.4   60.9   59.9   60.9 
  0.5   63.9   64.5   60.2   61.7   60.2   61.5 

200 -0.5   99.8   99.5   94.4   94.2   97.1   97.2 
  0.0   99.7   99.6   96.8   96.9   97.6   97.7 
  0.5   98.7   98.6   97.1   97.1   97.5   97.5 

400 -0.5 100.0 100.0   99.2   99.1 100.0 100.0 
  0.0 100.0 100.0 100.0 100.0 100.0 100.0 
  0.5 100.0 100.0 100.0 100.0 100.0 100.0 
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We consider tests based both on Chen-Tiao and Chen-Liu de-jumping, see 
section 4. All tests are performed at the 5% (asymptotic) nominal level, with criti-
cal values taken from Fuller (1976, Tables 10.A.1 and 10.A.2). Computations are 
based on 10 000 Monte Carlo replications and are carried out in Ox v. 3.40, 
Doornik (2001). 

In Table 1 results for the DGPs with no level shifts are reported. The three 
panels of the table refer to the UR case, to the case of local alternatives and to the 
case of a fixed alternative. Standard ADF tests are reported together with tests 
based on de-jumping. Three facts emerge from the table. 

First, standard ADF tests have quite accurate finite-sample size, whereas tests 
based on de-jumping tend to be slightly oversized for all the sample sizes consid-
ered. There are no big differences between tests based on the Chen-Tiao proce-
dure and tests based on the Chen-Liu procedure, although the latter are slightly 
less accurate. 

Second, in terms of size-adjusted power against local alternatives, allowing for 
possible multiple level shifts when actually none is present implies a power loss 
with respect to standard ADF tests. This power loss does not seem to decrease 
when the sample size increases. Again, there are no strong differences between 
tests based on Chen-Tiao and Chen-Liu de-jumping. 

Finally, all tests seem to be consistent against the fixed alternative 0.9.
Results for model S4 are reported in Table 2. The following results are worth 

to note. First, standard ADF tests tend to be slightly undersized, in particular for 
cases where  is non zero. This feature does not characterize tests based on de-
jumping: when the Chen-Tiao method is employed, the tests are slightly oversized 
for T=100 and, in particular, when  = 0. The tests based on Chen and Liu’s algo-
rithm experience more severe oversizing problems. Again, these are more serious 
when = 0 and tend to disappear as T grows. However, even for T=400 the em-
pirical size of Chen-Liu based tests can be up to 10%. 

Second, under local alternatives the (size-adjusted) power of standard ADF tests 
is very low. For T=100, power is about 0 for 0.5, about 0.2% for 0 and 
about 10% for 0.5. Conversely, the tests based on de-jumping have much better 
power properties. For T=100, when the Chen-Tiao procedure is employed power is 
about 11% for 0.5, 15% for 0 and 30% for 0.5; for T=200 power grows 
to 24% for 0.5, around 29% for 0 and 38% for  = 0.5. For T=400 the re-
jection rate increases further, although it tends to stay below the 50% asymptotic 
power which characterizes standard ADF tests when no level shifts are present. 
When, instead, Chen-Liu’s procedure is employed, local power slightly decreases. 

Third, under non-local alternatives, standard ADF tests have (size-adjusted) 
power close to 0, even for large sample sizes. Conversely, the tests based on de-
jumping have power which significantly increases with the sample size. 

As in the case of local alternatives, (i) the Chen-Tiao procedure is preferable 
over the Chen-Liu method, and (ii) large sample sizes are needed for the tests to 
achieve a power level close to that of standard ADF tests under no level shifts 
(see Table 1). 
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TABLE 2 

Comparison between standard Dickey-Fuller tests and the new unit root tests based on traditional 
level shift estimation. Model S4 (four level shifts at fixed fractions of the sample) 

Size (  1) 
T ADF ADFt ADF CT ADFtCT ADF CL ADFtCL

100 -0.5 3.0 3.2 7.4 7.5 10.9 11.1 
  0.0 4.9 4.9 9.3 9.2 12.1 12.0 
  0.5 3.6 3.7 7.1 6.7   9.3   9.3 

200 -0.5 2.6 2.7 5.6 5.7   7.5   7.4 
  0.0 4.8 4.9 6.4 6.4 10.2 10.1 
  0.5 3.4 3.4 6.5 6.3   8.3   8.2 

400 -0.5 2.5 2.7 5.2 5.1   6.1   6.1 
  0.0 4.6 4.7 6.5 6.5   9.4   9.3 
  0.5 3.5 3.5 6.8 6.8   8.2   8.4 
        

Size-adjusted power (  1-c/T)
T ADF ADFt ADF CT ADFtCT ADF CL ADFtCL

100 -0.5   0.0   0.0 11.4 11.2 10.1 10.0 
  0.0   0.1   0.2 14.8 14.9 11.5 11.4 
  0.5 11.0 10.9 29.9 30.6 27.3 28.5 

200 -0.5   0.0   0.0 24.1 23.9 22.8 23.5 
  0.0   0.2   0.2 28.8 28.4 19.4 20.4 
  0.5 11.7 11.2 38.3 38.7 35.1 36.0 

400 -0.5   0.0   0.0 27.3 27.6 27.7 28.7 
  0.0   0.1   0.1 29.5 29.5 21.7 22.2 
  0.5 10.6 10.4 38.8 38.8 36.7 37.1 
        

Size-adjusted power (  0.9) 
T ADF ADFt ADF CT ADFtCT ADF CL ADFtCL

100 -0.5 0.0 0.0 14.2 14.1 14.1 14.1 
  0.0 0.0 0.0 19.8 20.1 16.0 16.0 
  0.5 7.5 7.8 40.2 41.0 36.9 36.9 

200 -0.5 0.0 0.0 50.0 49.5 53.9 53.9 
  0.0 0.0 0.0 60.9 60.4 52.4 52.4 
  0.5 3.5 3.4 85.5 85.4 85.0 85.0 

400 -0.5 0.0 0.0 63.7 63.3 70.4 70.4 
  0.0 0.0 0.0 74.8 73.7 70.3 70.3 
  0.5 0.7 0.6 97.0 96.8 98.3 98.3 

Results for the random shift model Sr do not qualitatively differ from those for 
the S4 model; in general, the power loss experienced by standard ADF tests is less 
severe than for S4, and the local power of the tests based on de-jumping is closer 
to the asymptotic power envelope. Overall, the power results are encouraging, as 
they show that it is possible to distinguish between UR processes and processes 
which are stationary apart from several level shifts, even in samples of moderate 
dimension. 

6. EXTENSIONS

In this section we briefly show how the tests discussed can be applied in the 
case of deterministic time trends and in the case of unknown autoregressive or-
der.
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TABLE 3 

Comparison between standard Dickey-Fuller tests and the new unit root tests based on traditional  
level shift estimation. Model Sr (random level shifts, four on average, at least two) 

Size (  1) 
T ADF ADFt ADF CT ADFtCT ADF CL ADFtCL

100 -0.5 3.6 3.5 8.0 8.2 10.9 11.2 
  0.0 4.9 4.8 9.4 9.4 11.9 12.0 
  0.5 3.5 3.5 6.9 6.9   8.8   8.8 

200 -0.5 3.9 3.9 6.1 6.3   9.2   9.2 
  0.0 4.8 4.7 7.2 7.3 10.1 10.2 
  0.5 3.7 3.6 6.3 6.3   7.9   7.8 

400 -0.5 3.5 3.6 6.5 6.5   8.5   8.5 
  0.0 4.8 4.7 7.5 7.6   9.7   9.8 
  0.5 3.5 3.5 6.4 6.2   7.2   7.2 
        

Size-adjusted power (  1-c/T)
T ADF ADFt ADF CT ADFtCT ADF CL ADFtCL

100 -0.5   0.0 10.2 15.9 15.7 18.9 18.6 
  0.0   0.1 13.5 19.9 19.9 20.2 20.5 
  0.5 11.0 23.4 31.9 32.1 32.0 32.7 

200 -0.5   0.0   9.2 25.1 24.8 25.5 24.8 
  0.0   0.2 14.1 31.2 30.9 27.4 27.7 
  0.5 11.7 24.5 39.8 40.6 38.2 39.2 

400 -0.5   0.0   9.5 26.3 26.6 27.4 27.5 
  0.0   0.1 13.2 31.8 32.0 28.5 29.3 
  0.5 10.6 24.7 40.9 41.5 40.0 41.1 
        

Size-adjusted power (  0.9) 
T ADF ADFt ADF CT ADFtCT ADF CL ADFtCL

100 -0.5 11.4 11.4 21.9 21.5 27.1 26.6 
  0.0 15.7 15.7 25.9 26.1 27.3 27.7 
  0.5 30.0 29.2 45.0 44.9 45.0 45.9 

200 -0.5 12.0 12.0 53.4 52.5 64.5 63.6 
  0.0 20.7 20.8 66.3 65.4 66.8 66.8 
  0.5 43.8 42.6 87.9 87.8 89.8 89.8 

400 -0.5 13.7 13.3 66.0 65.2 77.1 76.4 
  0.0 23.8 23.7 78.6 78.0 81.6 81.2 
  0.5 51.2 50.2 97.0 96.8 98.5 98.6 

6.1 Deterministic time trends 

So far we have considered the case of no deterministics in the DGP; i.e., t of 
(1) is equal to 0, all t. Nevertheless, in the presence of deterministic time trends 
the approach discussed in sections 3-4 can be applied in conjunction with a 
proper detrending procedure. 

In what follows only the cases of a constant (Zt  1) and of a linear time trend 
(Zt  (1,t) ) are considered; the procedure may be extended to general determinis-
tic trends as those considered, e.g., in Phillips and Xiao (1998). 

A simple approach is to combine the de-jumping algorithm of section 3 with 
pseudo-GLS detrending (see Elliott et al., 1996). For a time series Xt, the pseudo 

GLS detrended series at : 1 /c T  is defined as 'ˆ:t t tX X Z , where 

0 0( ) ( (1 ) )t tX X X L X , 0 0( ) ( ,(1 ) )t tZ Z Z L Z  and ˆ  minimizes 
2

( ) ( ' )t tt
S X Z .
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In details, the de-jumping procedure can be combined with deterministic cor-
rections in the following way: 
1. level shifts are initially detected as suggested in section 4, but including the de-

terministic regressors Zt in the regression for the estimation of (L); t are es-
timated using the residuals of this regression in place of ( ) tL X ;

2. level shifts are removed by de-jumping, i.e. by computing tX  as explained in 
section 3; 

3. pseudo-GLS de-trending with respect to Zt is applied to tX ;
4. UR test statistics are obtained from an ADF regression for the de-trended ver-

sion of tX .
Obviously, the critical values which have to be used need to account for the 

fact that the data employed to compute the UR test statistics are de-trended. In 
the constant case Zt  1, critical values can still be taken from Tables 10.A.1 and 
10.A.2 in Fuller (1976). In the linear trend case, Zt  (1,t) , when (as is standard) 
GLS detrending is conducted at : 1 /c T  with 13.5c , critical values are 
reported in Ng and Perron (2001), Table I. 

6.2 Unknown autoregressive order 

So far, we have considered the case where the autoregressive order k of the er-
rors ut, see eq. (3), is known. In more realistic situations, the autoregressive order is 
unknown and must be estimated prior to the computation of the UR test statistics. 

To deal with unknown lag order we may consider the following simple strat-
egy, which combines the test procedure outlined earlier with standard economet-
ric methods for determination of the lag order. More specifically, in the first 
round, level shifts can be detected as in section 4, with the lag order set to some 
maximum admissible number kmax; for instance, as suggested in Ng and Per- 
ron (1995), one may use the following function of the sample size: kmax :
int{12(T/100)1/4}. Once level shift detection has been performed, a de-jumped 
time series is obtained. 

In the second round a standard criterion for the determination of the lag order 
is applied to the de-jumped time series; this delivers an estimate of k, say k*. In 
the final round, the ADF statistics are computed on the de-jumped time series 
fixing the number of lags k at k*.

7. CONCLUSIONS

In this note we have proposed a modification of the well-known augmented 
Dickey-Fuller (ADF) tests which allows to test for unit roots in the presence of 
multiple level shifts. Differently from existing works, we do not restrict the num-
ber of level shifts – which may occur at random dates and may have random sizes 
– apart from requiring it to be bounded in probability. The tests are based on a 
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two-step procedure where possible level shifts are initially detected using the level 
shift indicator estimators suggested by Chen and Tiao (1990) and Chen and Liu 
(1993), and later removed by a novel procedure which is denoted as “de-
jumping”. A Monte Carlo simulation has shown that the new tests, used in con-
juntion with standard critical values, behave well in finite samples. 

Some remarks are worth noting. Althought the finite-sample properties seem 
largely acceptable when compared to those of standard ADF tests, there is still 
room for size improvements. The tests tend to be oversized for small values of T,
and better size properties might be obtained by replacing Chen and Tiao’s (1990) 
and Chen and Liu’s (1993) level shift detection procedures with new procedures 
which explicitly account for the possible non-stationarity of the data. Moreover, the 
power of the modified tests seems not to be optimal even asymptotically: althought 
having much larger power than standard ADF tests, the local power of the modi-
fied tests does not seem to converge to the asymptotic power envelope (that is, ap-
proximately 50% power when the localizing parameter c equals 7) which obtains 
when no level shifts are present. This result is not related to the de-jumping method 
(which, in case the level shift dates are known, delivers 50% asymptotic local 
power). Rather, it can be attributed to the Chen-Tiao and Chen-Liu level shift de-
tection procedure. Again, this result suggests that further research should be carried 
out in order to develop new methods for the estimation of the level shift indicators. 
The new procedures should probably be worked out under the null hypothesis, 
given that in our Monte Carlo experiment tests based on Chen-Tiao de-jumping 
(which implicitly imposes a UR) have better properties than tests based on Chen-
Liu de-jumping (which are carried out without imposing the UR). 
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RIASSUNTO

Una nota sui test di radice unitaria in presenza di cambiamenti di livello 

Nel lavoro vengono discusse le proprietà dei test Dickey-Fuller “aumentati” [ADF] per 
processi autoregressivi con una radice unitaria (o vicina all’unità) in presenza di cambia-
menti di livello. Si mostra come la presenza dei cambiamenti di livello causa un significati-
vo e sostanziale decremento nella potenza dei test. Viene discussa una nuova classe di test 
ADF “modificati” che possono essere applicati anche in assenza di informazioni sul nu-
mero (e sulla posizione) dei cambiamenti di livello. I test sono basati su una procedura a 
due stadi in cui, al primo passo, i cambiamenti di livello vengono individuati usando gli 
stimatori proposti da Chen e Tiao (1990, Journal of Business and Economics Statistics) e da 
Chen e Liu (1993, Journal of the American Statistical Association); successivamente, al secondo 
passo, i cambiamenti di livello vengono eliminati sulla base di una nuova procedura che, 
nel lavoro, viene denominata “de-jumping”. Una simulazione Monte Carlo consente di 
notare come i test modificati, sebbene caratterizzati da un’ampiezza superiore al livello di 
significatività nominale in campioni di piccola dimensione, abbiano una potenza estre-
mamente superiore a quella dei test ADF tradizionali. 

SUMMARY

A note on unit root testing in the presence of level shifts 

In this note we discuss the properties of Augmented-Dickey-Fuller [ADF] unit root 
tests for autoregressive processes with a unit or near-unit root in the presence of multiple 
level shifts of large size. Due to the presence of level shifts, the ADF tests experience se-
vere power losses. We consider new modified ADF unit root tests which require no 
knowledge of either the location or the number of level shifts. The tests are based on a 
two-step procedure where possible level shifts are initially detected using the level shift 
indicator estimators suggested by Chen and Tiao (1990, Journal of business and Economics Sta-
tistics) and Chen and Liu (1993, Journal of the American Statistical Association), and later re-
moved by a novel procedure which is denoted as “de-jumping”. Using a Monte Carlo ex-
periment we show that the new tests, althought partially oversized in samples of moderate 
size, have much higher power than standard ADF tests. 


