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POINTWISE ESTIMATE OF THE POWER AND SAMPLE SIZE 
DETERMINATION FOR PERMUTATION TESTS

Daniele De Martini 

1. INTRODUCTION 

Permutation techniques in hypothesis testing can solve several one-dimensional 
and multi-dimensional problems (Edgington, 1995, and Pesarin, 2001) and their 
use is spreading thanks to the improved performance of computational tools. The 
power function of a test plays a crucial role in practice, as it provides the type II 
error and is used to determine the sample size needed to achieve the desired 
power under a given alternative. Moreover, in clinical trials the statistical plan-
ning through the sample size determination also has ethical implications. 

The difficulty in the evaluation of the power function of permutation tests is 
due to the randomness of the critical value of the permutation test itself, which is 
a function of the observations. Hoeffding (1952) provided certain conditions for 
the convergence in probability of the critical value of the permutation test to a 
constant, in order to compute the power using the asymptotic distribution of the 
test statistic; he also gave several applications. Robinson (1973) extended Hoef-
fding's results to permutation tests for randomization models. In Albers, Bickel 
and Van Zwet (1976) and in Bickel and Van Zwet (1978) an approximation of 
the power of the one-sample and of the two-sample distribution-free test is given; 
their work is based on Edgeworth expansions and formulas depend on the under-
lying distribution F. John and Robinson (1983) generalized these results giving an 
approximation of the conditional power and an approximation of the (uncondi-
tional) power which is the mean of a function depending on the sample mo-
ments, then depending on F; their results are valid under known contiguous 
alternative and also under some restrictive conditions. 

In practice a nonparametric method, such as a permutation test, is often cho-
sen because the shape of F is unknown. But the power depends on F. Collings 
and Hamilton (1988) proposed a bootstrap method which doesn’t require knowl-
edge of F to estimate the power of the two-sample Wilcoxon test. Hamilton and 
Collings (1991) used the latter result to suggest a procedure to determine sample 
size.
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The aim of this work, considering F unknown, is to estimate the (uncondi-
tional) power and to determine sample size for permutation tests under a fixed 
alternative hypothesis: for this purpose we define a bootstrap-based method, 
which makes use of a pilot sample to compute sample size. 

Several authors suggest the use of a pilot sample to compute power and sample 
size, for example Efron and Tibshirani (1993). Here, in particular, the pilot 
sample provides information on the shape of the unknown distribution F. More-
over, the pilot sample also provides implicitly, through the bootstrap plug-in, an 
estimation of the parameter under test. Note that for the sample size determina-
tion the testing effect can be specified separately, and the method is still consis-
tent (remark 3.1 in section 3). 

Although the bootstrap approach for power estimation and sample size deter-
mination can be applied in any permutational testing framework, only the one-
dimensional, one-sample and one-tail test is considered in this paper. 

A simulation study comparing four different methods of power estimation in 
the one-sample permutation test was performed by De Martini and Rapallo 
(2001) and the results showed that the bootstrap approach, and in particular the 
smoothed bootstrap, provides the best performances for estimating high power 
values (80-90%), which are usually required to determine the experimental 
sample size. 

In Section 2 we define the test, the power of the test, propose a bootstrap esti-
mator of the power and we also state that it is consistent. In Section 3 a bootstrap 
estimator of the sample size is defined and we show its consistency. Finally, 
Section 4 contains the proofs of theoretical results. 

2. BOOSTRAP POWER OF THE ONE-SAMPLE PERMUTATION TEST 

We first introduce the permutation test, then define the power of the test and 
show that it tends to 1 as, under suitable conditions, the critical value of the 

permutation test converges to a constant and the test statistic tends to + .
So, by using the bootstrap plug-in method, we obtain a completely nonpara-

metric approximation of the power of the test, which is consistent as it also tends 
to 1. This derives from the fact that the bootstrap critical value and the bootstrap 
test statistic exhibit the same behaviour as their corresponding statistics. 

Let Xi, i=1,…,n be independent, symmetrically distributed around 1 and with 

cdf Fi. We consider the null hypothesis H0: 1 =0 against the alternative H1: 1

>0. In this situation an appropriate permutation test statistic is Tn= i=1,…,n Xi. Let 

S be a random uniformly distributed set of signs, that is let S=(S1,…,Sn) U{-1,1}n,

and let tn
S= i=1,…,n SiXi, that is the generic value of the test statistic obtained 

through a random permutation of the signs. Let tn
(1) tn

(2) … tn
(2n) denote the 

ordered values of tn
s, that is the ordered permutations, when s runs over all the 2n

elements of {-1,1}n.
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Given the level of the test , let l =2n - [ 2n]. Then, tn
(l ) is the level  critical 

point of the permutation test. Note that tn
(l ) is a random variable which is a 

constant conditional on the sample (X1,…,Xn). We reject H0 if Tn > tn
(l ), with an 

obvious randomization of probability b=(2n  - #(tn
( )>Tn))/#(tn

( )=Tn)) when 

Tn=tn
(l ). Hence the power of the permutation test is P(Tn> tn

(l ))+bP(Tn= tn
(l )).

Here we consider the non-randomized version of the test and the power is simply 

)()( )(l
nn tTPn  (1) 

Hoeffding (1952), under the hypothesis that the Xi's have all the same distribu-

tion F with a finite second moment, that is 2=E[X1
2]< , proved that tn

(l )/n1/2

u1- 2
1/2 in probability as n , where u1- = -1(1- ) and  is the cdf of the 

standard normal.

Hence, under H1, from the Central Limit theorem we have that Tn/n
1/2  +

in probability and then 

1)//()()( 2/1)(2/1)( ntnTPtTPn l
nn

l
nn  as n . (2) 

Now, we want to estimate the sequence (n). To this aim we introduce our 
bootstrap estimator of the power, that is the bootstrap power, based simply on the 
plug-in method applied to the definition (1) of the power of the test. The defini-
tion of this bootstrap estimator is completely normal and its consistency is shown 

proving that it converges to 1, as the power of the test (n).

Let Xn=(X1,…,Xn) be a sample from F, which is symmetric around 1, and let 
Fn be the empirical cdf based on Xn. Now let X*n=(X*1,…,X*n) be a sample from 

Fn, and let T*n= i=1,…,n X*i. Furthermore, let tn*
S= i=1,…,n SiX*i, that is a random 

bootstrap permutation of the bootstrap test statistic, and define the bootstrap 

critical value tn*
(l ) analogously to tn

(l ). Finally let the bootstrap power be defined 
by

)//()()(* 2/1)*(2/1*)*(*
n

l
nnn

l
nn ntnTPtTPn XX

Let Qn be the distribution of tn*
(l )/n1/2 conditional upon Xn. We prove that Qn

converges weakly along almost all sample sequences X1,X2,… to the Dirac meas-
ure at the weak limit of the critical value. Using the language of Bickel and Freed-
man (1981), we can refer to this convergence as almost sure conditional probability 
convergence and denote the conditional probability by p*.

Lemma 1. With the notations above and if 2<  we have 

2/1
21

*2/1)*( / unt
pl

n  almost surely, as n .        
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Now note that the normalized bootstrap test statistic, that is T*n/n
1/2, tends to 

+ . In fact, denoting the weak convergence by “ ”, theorem 2.1(a) in Bickel 

and Freedmam (1981) states that (T*n/n
1/2- Tn/n

1/2  Xn)  N(0, 2- 1
2) almost 

surely. Moreover, we have that Tn/n
1/2  +  and then T*n/n

1/2  +  almost 
surely in conditional probability. Hence we obtained the consistency of the 
bootstrap test, that is the convergence to 1 of the bootstrap power. 

Theorem 1. With the notations above, if 1>0 and 2< , we have 

1)(*)//( 2/1)*(2/1* nntnTP n
l

nn X  almost surely, as n . (3) 

Finally, since from (2) and (3) respectively the power and the bootstrap power 
tend to 1, we have the following 

Corollary 1. With the notations above, if 1>0 and 2< , we have 

0)(*)(lim nn
n

 almost surely, as n .

Remark 2.1. This method may be still consistent using other types of empirical 
cdfs. For example when we substitute for Fn any estimate of the distribution 
function F based on (X1,…,Xn) which is consistent in Mallows metric, theorems 
2.1 and 2.2 in Bickel and Freedman (1981) used in the proof of lemma 1 are still 
valid and our method is still consistent. In De Martini (2000) the Mallows metric 
convergence of some classes of smooth estimates of F is shown and these results 
allow the use of the smoothed bootstrap in this framework. It should be noted 

that the analytical computing of *(n) is often complicated and a Monte Carlo 
method should be used.

Remark 2.2. It could be objected that also 1-1/n is a consistent estimator of the 

sequence (n), in the sense of the result in corollary 1. But, 1-1/n presents a bias 

depending on ,  and F. Moreover, De Martini and Rapallo (2001) compared 
different estimators showing that bootstrap estimators perform better than the 

Conditional Estimator DFCP, which is unbiased for every ,  and F.

3. SAMPLE SIZE DETERMINATION 

We begin this section by defining the sample size to be determined. Then we 
introduce the “Mapped Bootstrap” and, through lemma 2, we apply it to the 
determination of the sample size. We note that the natural bootstrap estimator 
derived from the Mapped Bootstrap may not be consistent. Finally, we define a 
modified bootstrap estimator which, through theorem 2, is consistent. 
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When we wish to determine the sample size m required to attain a given power 

(0,1), we should compute m( ) such that 

)(min)( mm
m

.

When F is known m( ) can be easily computed by a Monte Carlo method, but 
throughout this paper we assume that F is unknown. 

A major characteristic of the bootstrap method is that a sample of size n may be 

bootstrapped with a sample of size m n. Consider a generic statistic 

Um= m(X1,…,Xm) with distribution function Hm. Consider also a bootstrapped 
sample X*1,…,X*m, where X*1 has distribution Fn. It is well known that the distri-

bution of the bootstrap statistic U*m= m(X*1,…,X*m), namely H*m, can be used as 

a valid approximation of Hm, whenever m and n tend to .
In the present framework we bootstrap the statistic of interest Um for every fi-

xed m and the result is consistent as the pilot sample size n tend to . This consis-
tency is due to the Continuous Mapping theorem. Letting m be fixed as n tends 
to infinity is called here “Mapped Bootstrap”. We omit the subscript n for sake of 
clarity in the bootstrap objects denoted by the “*”.

With the same notation used in Par.2, let Um = Tm - tm
(l ) and let U*m = T*m -

tm*(l ) be the bootstrap version of Um, defined through Fn. To avoid notational 
confusions between the pilot sample and the sample generating the statistic of 
interest, whose distribution have to be approximated, we assume that Fn is based 
on a pilot sample Z1,…,Zn. Now we can introduce the following 

Lemma 2. Let Z1,…,Zn be independent and identically distributed with distri- 
bution F; moreover, let Fn be any estimate of F, based on a given sample Z1,…,Zn,

such that Fn F almost surely. Let X1,…,Xm be independent and identically 
distributed with distribution F, independent from Z1,…,Zn. Let X*1,…,X*m be 
independent and identically distributed with distribution Fn. Then, for any fixed 
m:

)()*(* l
mm

l
mm tTtT  almost surely, as n .

Hence, from the definition of weak convergence, we have that 

)()())()( )()*(** yHytTPytTPyH m
l

mmn
l

mmm X  almost surely, as 

n

for every y where Hm is continuous, that is for every y such that P(Tm - tm
(l )

=y)=0. In order to approximate the power function (m)=1- Hm(0), we are inter-
ested in the convergence in the point y=0, where unfortunately Hm is not con-

tinuous. In fact we have P(Tm- tm
(l ) =0)>0, as the set of signs which determines 
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tm
(l ) can be the same as those of Tm (note that the latter probability depends on 

F). Hence we cannot say that, for every fixed m, *(m)=P( T*m-tm*(l ) >0 Xn)

tends to P( Tm - tm
(l ) >0)= (m), and we cannot use *(m) as an estimator of the 

power.

However we can define an approximation that should be close to (m), and for 
which lemma 2 can be useful. The idea consists in using the condition of conti-
nuity on Hm in a right neighbourhood of 0. Indeed, when F is continuous, P(Tm - 

tm
(l )= )=0 for every 0. This allows the convergence of a modified definition of 

the bootstrap power, for every fixed m.

Let >0, let (m)=P(Tm > tm
(l )+ ) and denote m ( )=minm{ (m)> }. Then 

consider the bootstrap version of (m)

)()( )*(**
; n

l
nnn tTPm X ,

and the related bootstrap sample size estimator 

})({min)( *
;

*
; mm n

m
n . (4) 

We then have the following theorem 2 which states the strong consistency of 
the bootstrap sample size estimator defined in (4). 

Theorem 2. With the same hypotheses as in lemma 2, we have: 

i) for any >0 there exists n ( ) such that for n > n ( ),

)()(*
; mm n  almost surely; 

ii) there exists  such that for any  in (0, ),

)()( mm ;

iii) for any  in (0, ) there exists n ( ) such that for n > n ( ),

)()()(*
; mmm n  almost surely. 

We abbreviate this result by 

)()(limlim *
;

0
mm n

n
 almost surely. 

Remark 3.1. When the sample size is computed under the fixed alternative 1 and 

the location parameter of the pilot sample Z1,…,Zn is 1' 1, then Fn can be 

based on Zi- 1' + 1, i=1,…, n, whose distribution function is F. Hence, if Fn F
almost surely, lemma 2 and theorem 2 still hold. 
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Remark 3.2. Hoeffding (1952) proposed an estimator based on asymptotic nor-
mal distribution of the test statistic, which is consistent to an approximation 

ma( ) of m( ). Here, we obtained the estimator m* ;n( ) which is directly consi- 

stent to m( ).

4. PROOFS 

Proof of Lemma 1. Let Gn( y X*n; Xn) denote the permutational bootstrap distri-

bution of the statistic i=1,…,n Si X*i /n1/2. Note that the sequence of probability 
measures Gn is indeed defined on the space of the 2n possible values of S. The 
distribution Gn is thus conditional upon the bootstrap sample X*n and, naturally, 
upon the sample Xn.

Making use of the convergence in almost sure conditional probability defined 
in Section 2, we will prove that 

)();(
2

*
* yyG

p
nnn XX  almost surely, as n .

for any real y, where 
2
 is the cdf of the Normal distribution with mean and 

variance respectively 0 and 2.
Next we prove that this latter statement implies convergence of quantiles, na-

mely

2/1
21

2/1)*( / unt l
n

in probability with respect to the bootstrap sample X*n conditioned upon Xn, that 
is in conditional probability, and almost surely upon Xn.

This follows from theorem 3.1 in Hoeffding (1952), which states that if the 
permutational distribution tends pointwise in probability to a distribution G, for 

every continuity point of G, and if the equation G(y)=1-  has a unique solution 

, then the 1-  p-tile of Gn tends in probability to . In this context we then have 

that the 1-  p-tile of Gn ( X*n; Xn), that is tn*
(l ) /n1/2, tends, in conditional 

probability almost surely, to the 1-  p-tile of 
2
 ( ), that is u1- 2.

According to Hoeffding (1952), and following the proof of theorem 3.2, a suf-
ficient condition for the convergence almost sure in conditional probability of Gn

to
2
, is that the mean on X*n of Gn (y X*n; Xn), conditional upon Xn, tends to 

2
 (y) almost surely and its variance, on X*n and conditional upon Xn, tends to 0

almost surely. With this as our aim we will make use of two classical theorem on 
sample mean bootstrap consistency, as the test statistic is a sample mean. 

Studying the convergence of the mean of the normalized permutational boot-
strap distribution we have that 
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(5) 

Now observe that SiX*i, i=1,…,n, are independent and randomly drawn, with 

uniform probability 1/2n, from ( X1,…, Xn), and that X1=X1S1 has finite 

variance equal to 2. Hence, from theorem 2.1 in Bickel and Freedman (1981), 
regarded as the behaviour of the normalized bootstrap sample mean, we have that 

21

2/1* /
n

i ii nSX  almost surely.  (6) 

Combining equation (5) with result (6), it follows that the mean of any p-tile 
of the normalized permutational bootstrap distribution, conditional upon Xn,

tends almost surely to the respective p-tile of 
2
, that is 

)()];([E
2

*
* yyG nnn

n
XX

X
 almost surely. (7) 

In order to prove the convergence of the variance of Gn ( X*n; Xn) to 0, we 
show that its second moment tends to the square of the mean, being the variance 
the difference between the second moment and the square of the mean. We have 
that

]));/([(E]);([E 2*

1

2/1*2*
** nn

n

i iiSnnn ynSXPyG
nn

XXXX
XX
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X

)/',/(P
1

2/1*

1

2/1*
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i ii

n

i ii ynSXynSX
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 (8) 

Now observe that the random vectors (X*iSi, X*iS'i), i=1,…,n, are independent 

and randomly drawn, with uniform probability 1/4n, from (( X1, X1),…,( Xn,

Xn)), and that the random vector ( X1, X1)=(X1S1, X1S'1) has covariance matrix 

 equal to ( 2,0; 0, 2). Hence, from theorem 2.2 in Bickel and Freedman (1981), 
regarded as the behaviour of the normalized bootstrap sample mean in Rk, we 
have that 

)/',/(
1

2/1*

1

2/1* n

i ii

n

i ii nSXnSX  almost surely,  (9) 

where  is the bivariate normal distribution with mean equal to (0,0) and 

covariance matrix . Then combine equation (8) with result (9) and obtain that 
the second moment of any p-tile of the normalized permutational bootstrap 
distribution, conditional upon Xn, tends almost surely to the square of the respec-

tive p-tile of 
2

)(]);([E 22*

2
* yyG nnn
n

XX
X

 almost surely.  (10) 

Hence, from (7) and (10) and making use of theorem 3.1 in Hoeffding (1952), 
we have that any p-tile of the normalized permutational bootstrap distribution 

tends, in conditional probability almost surely, to the respective p-tile of 
2
, and 

in particular 

2/1
21

*2/1)*( / unt
pl

n  almost surely, as n .

Proof of Lemma 2. The idea is to define Tm - tm
(l ) as a function m of X1,…,Xm,

where m is continuous as composite of continuous function. Analogously T*m -

tm*(l ) = m (X*1,…,X*m). Hence, as the joint distribution of (X*1,…,X*m) tends 
almost surely to the joint distribution of (X1,…,Xm), we can make use of the 
Continuous Mapping theorem to prove the thesis. 

Let F m be the joint distribution of (X1,…,Xm) and Fn
m the joint distribution 

of (X*1,…,X*m). Indeed, remember that the bootstrap objects denoted by the “*” 

depend on n but we omit this notation. Morover Fn
m F m almost surely as 

n . Now let hm: Rm R be defined as follows: 
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n

i imm xxxh
11 ),...,( .

Let M=2m and let sl, l =1,…,M, be the M generic point in {-1,1}m. Define the 

M functions hl
m: Rm R as follows: 

n

i i
l
im

l
m xsxxh

11 ),...,( .

Then hm and hl
m are continuous functions on Rm. Furthermore define the or-

dering function jm: RM RM :

),...,,(),...,( )()2()1(1 MMm xxxxxj

which is continuous and finally let km: RM+1 R as follows 

lMMMm xxxxxk 111 ),,...,( .

Now we have that: 

),...,(),...,()),,...,(),...,,...,(( 1111
1)(

mmmmm
M
mmmmm

l
mm XXXXhXXhXXhjktT

where m: Rm R is a continuous function on Rm, as it is a composite of continuous 

functions. Hence from theorem 29.2 in Billingsley (1995), as Fn
m F m almost surely, 

we have that 

)(
1

**
1

)*(* ),...,(),...,( l
mmmmmm

l
mm tTXXXXtT  almost surely, as n .

Proof of Theorem 2. At first we show the convergence of the power functions, for 
every fixed sample size m. Then we obtain the convergence of the sample size 
estimator using the uniform convergence of the power functions for each m

which belongs to the finite set of sample size {2,…,m( )}. From lemma 2 we have 
the right continuity of Hm in 0, for any fixed m, and it follows that 

)()(lim
0

mm .

This implies 

)()(lim
0

mm  for every m m( ).

The latter result allows 

)()(lim
0

mm ,  (11) 

which implies ii). Moreover, for any fixed m and for every >0, from the continu-
ity of Hm in R/{0} and lemma 2, we have 
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)()(lim *
; mmn

n
 almost surely. 

As in (11) it follows that for every >0

)()(lim *
; mmn

n
 almost surely, for every m m( ),

which yields 

)()(lim *
; mm n

n
 almost surely. (12) 

Result (12) implies i) and hence, combining equations (11) and (12), we ob-
tain iii). 
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RIASSUNTO

Stima puntuale della potenza e determinazione della numerosità campionaria per test di 
permutazione 

In questo lavoro viene presentato un metodo per la stima della potenza dei test di per-
mutazione nel caso di distribuzione F non nota. Tale metodo si basa sul principio naturale 
della sostituzione della funzione di ripartizione empirica al posto della distribuzione 
teorica nella struttura del test, fornendo la potenza bootstrap. Si dimostra la consistenza 
del test di permutazione bootstrap. Inoltre, al fine di determinare la numerosità necessaria 
m per il test di permutazione sulla base di un campione pilota di taglia n, si presenta il 
“Bootstrap Mappato”, che considera m fisso ed è dimostrato essere consistente al crescere 
della dimensione n del campione pilota. 

SUMMARY

Pointwise estimate of the power and sample size determination for permutation tests  

A method is presented for the estimation of the power of permutation tests when F is 
unknown. It is based on the natural plug-in of the empirical distribution in the structure 
of the statistical test, giving the bootstrap power. The consistency of the permutational 
bootstrap test is shown. Moreover, to determine the sample size m of permutation tests 
starting from a pilot sample of size n, the “Mapped Bootstrap” is introduced. The Map-
ped Bootstrap works for a fixed m and is consistent as the pilot sample size n tends to 
infinity.


