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AN EXTENSION OF THE ORDINARY PERMUTATION SOLUTION 
OF THE TWO-SAMPLE LOCATION PROBLEM 

Marco Marozzi 

1. INTRODUCTION 

We are interested in comparing locations of two populations; more precisely, 

we are interested in testing XXH
d

210   :  against the stochastic dominance (one-

sided) alternative XXH
d

211   : , where X  is a continuous random variable. We 

assume that the distribution functions of X1  and X2  may differ only in their 

location parameters 1  and 2 . Thus we can specify the hypotheses also as 

0:0H  versus 0:1H  (1) 

where 21 .

2. THE MOST FREQUENTLY USED PARAMETRIC TEST AND THE ORDINARY PERMUTATION 
SOLUTION

Let iX1 i=1,…,n1 ( iX2 i=1,…,n2) be a random sample taken from the first 

(second) population. The most frequently used method for testing the hypotheses 
(1) is the Student’s t test, which is based on this statistic 

2

11

1 2

1 1

2

22

2

11

21

21

n

XXXX

nn

XX
T

n

i

n

i
ii

,

where X1  ( X2 ) denotes the mean of the first (second) sample and n=n1+n2. This 

is the uniformly most powerful similar test in testing (1) when the populations are 



M. Marozzi 772

normal with a common variance and T will follow a Student’s t distribution with 
n-2 degrees of freedom if the null hypothesis is true (Lehmann, 1986). The p-
value for the Student’s test can be computed from the t with n-2 degrees of 
freedom cumulative distribution. Under assumptions of normality and homo-
schedasticity, this test is exact, unbiased and consistent as well; but when the 
underlying population distributions are not normal, these properties are no longer 
satisfied. It is worth noting that the practitioner who performs the test rarely 
knows the distribution underlying the data. 

A procedure that is valid for any underlying distribution whatsoever, is the or-
dinary permutation test for comparing two locations. This test is based on 
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To test 0:0H  against 0:1H , the observed test statistic value PT0  is 

compared to the values of the test statistic in all permutations of the combined 
sample 2211 ,...,1,;,...,1,x niXniX ii . Since PT  is symmetric with respect 

to the order of iX1  and X1  and X2  are assumed to be continuous random 

variables, the n! permutations of x  give rise to 
1n

n
 almost surely distinct values 

of PT . Under H0 each of 
1n

n
 values of PT has a probability of 
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Since the permutation distribution of PT  is impractical to enumerate (except 
for small sample sizes), it is generally approximated by taking a random sample of 
size B from the set of all permutations. Let PTb be the value of PT  in the b-th

permutation, b=1,…,B. The p-value LPT of the ordinary permutation test is 
estimated by 
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where .I  stands for the indicator function: 10PTPTbI  when PTPTb 0

and 00PTPTbI  otherwise. It is worth observing that according to the well-

known Glivenko-Cantelli theorem, as B tends to infinity PTL̂  converges almost 

surely to LPT, thus PTL̂  is a strong-consistent estimator of the p-value. Let 

10  be the nominal significance level, if PTL̂  then H0 is rejected, 

otherwise is accepted. 
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3. THE PROPOSED METHOD 

We selected the permutation approach to develop a new procedure for tackling 
the two-sample problem because of the numerous advantages of permutation tests 
with respect to parametric tests. See Marozzi (2001) for a detailed discussion on 
permutation testing. Here it suffices to stress that a sufficient condition for a 
permutation test to be exact is the exchangeability of the observations under H0.
Moreover, there exist problems which can be treated only within the permutation 
framework. Regarding those problems that have already been solved by using a 
parametric method, it is very often possible to obtain good results by using the 
permutation version of the proposed parametric method. Generally, the perform-
ance of this permutation version is close to that of the parametric method when 
the assumptions behind the latter are met; otherwise its performance could be 
even better (see Good (2000) and the references therein). 

The theory which has been used to develop an extension of the ordinary per-
mutation solution of the two-sample problem is that of the Nonparametric 
Combination of Dependent Permutation Tests (NPC), due principally to Pesarin 
(2001). This theory allows us to take advantage of grouping the sample units into 
two groups. Our purpose is that of taking two aspects of each sample unit into 
account: the first refers to its observed value; the second to the fact that this value 
is “large” or “small”. For this reason we have decided to group the sample obser-
vations into these two groups: that of the observations which are greater than the 

median M
~

 of the combined sample and that of the observations which are less 

than or equal to M
~

. Let YYY n,...,,21  denote the order statistics of the combined 

sample. For n odd YM n 21

~
. Since we desire a unique value for M

~
, if n is 

even we use YYM nn 122
2

1~
.

It follows that the hypotheses under study, XXH
d

210   :  against 

XXH
d

211   : , may be broken down as 

gs HHH 000  against gs HHH 111

where j

d
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The testing procedure is carried out in two successive steps. In the first step 
we test the sub-hypothesis sH0  against sH1  and gH0  against gH1 , while in the 
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second step we test the global system of hypotheses by using NPC theory. The 
partial test statistics are defined as 
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1 ,

where the symbols used have a clear meaning. With respect to PTL̂ , we have 

added 1/2 and 1 respectively to the numerator and denominator of the fraction 
for a mere computational reason. This does not substantially modify the permuta-
tion behavior of the global test we are going to define. See Pesarin (2001) for 
more details on this and other aspects of NPC theory. It should be pointed out 
that the permutation model is the same as that of the ordinary solution. 

The global test statistic we are going to use is defined as 

gsj
Tsg j

LT
,

1 1 , 

where 1  is the inverse of the standard normal cumulative distribution func-
tion. The test statistic for testing H0 against H1 has been obtained through the 
nonparametric combination of the partial p-values by using the Liptak combining 
function. Note that the partial test statistics are permutationally equivalent to 
their p-values. 

The observed value of sgT

gsj
jTsg TLT

j

,
0

1
0 1

is estimated as 
gsj

jTsg TLT
j

,
0

1
0

ˆ1ˆ . The distribution of sgT  is simulated 

by using the same permutation results by which we obtained the simulated distri-
bution of sT and gT . Thus we obtain a vector of B permutation values of sgT :

BbTsgb ,...,1; , where 

gsj
jbTsgb TLT

j

,

1 ˆ1 . 

Large values of the observed test statistic are evidence against the null hypothesis. 
The p-value of the global test is strong-consistently estimated as 
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We reject H0 at significance level 0< <1 if 
sgTL̂ .
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The rationale for the method just described is based on the possibility of draw-
ing an inference not only about the global null hypothesis but also about the 
partial null hypotheses, and then obtaining more inferential information from the 
data. Imagine that one has rejected H0; using this method one can judge if there is 
a different influence on the rejection of H0 from observations belonging to the 
two groups (that of “large” observations and that of “small” ones). If, for example, 

sH0  has been rejected but gH0  accepted, it may be of some interest to investi-

gate the reasons for this result. This investigation may suggest research about 
covariates to be introduced in the analysis in order to improve the study. 

4. A COMPARATIVE SIMULATION STUDY 

To evaluate the performance of the test described in the previous section, 
Monte Carlo simulations were used to estimate the type-I error rate and the 
power of sgT , PT  and Student’s test under normality. We refer to normal sam-

pling because in this case the most used parametric method for testing the system 
of hypotheses under study is optimal. It is then possible to compare the perform-
ance of sgT  with that of the optimal solution. Student’s test is very often used 

even when it is not valid (Marozzi, 2001), while the ordinary permutation test for 
testing (1) is always valid. For these reasons we performed a comparative simula-
tion study under normality of these tests. 

The computing programs for performing sgT  test and all simulations were co-

ded in R language using the free of charge R 1.2.3 program. Random samples 
varying in size were generated from two independent normal distributed popula-
tions (with variance equal to one) by means of the rnorm function. 

The null hypothesis tested was that the two populations had equal means a-
gainst the one-sided alternative hypothesis that the first one had a larger mean. 
We considered three equal sample size configurations: (n1=n2=10), (n1=n2=20) 
and (n1=n2=40), and four unequal sample size configurations: (n1=10, n2=20), 
(n1=10, n2=40), (n1=20, n2=10) and (n1=40, n2=10). In addition, five different 

values of the mean difference  were considered. One condition was determined 
by the null hypothesis (  =0) and the other four used positive values of  that 
were specified to achieve power near 30%, 46%, 63% and 80% for the ordinary 
permutation test. Then, for each sample size configuration, one simulation study 
was used to estimate the type-I error rate and the others to estimate the power. 
With  =0 (  >0), namely under H0 (H1) 4000 (2000) random samples were 
drawn from each of the two populations and 2000 (1000) permutations of the 
combined sample were computed. 
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TABLE 1 

Power estimates in percent for the t test, PT and the proposed test at =5%
and for two samples of equal sizes

Student’s test PT Tsg test

n1=10 n2=10

0 5.13 5.08 5.25

0.5 28.5 28.4 28.1

0.7 44.0 44.5 42.9

0.9 61.3 61.2 58.7

1.1 76.2 76.2 73.9

n1=20 n2=20

0 4.68 4.55 4.75

0.35 29.6 29.2 29.7

0.5 46.0 45.6 46.1

0.65 63.4 63.6 62.8

0.8 80.0 79.6 78.3

n1=40 n2=40

0 5.35 5.33 5.48

0.25 28.7 28.8 29.1

0.35 46.5 45.4 46.1

0.45 64.6 63.7 64.0

0.55 78.8 78.5 78.6 

As shown in table 1, for equal sample sizes, the proposed test is practically as 
powerful as the Student’s t test and as the ordinary permutation test, even with 
the smallest sample sizes. The results reported in table 2 and table 3 indicate that 
the conclusions from the balanced settings apply to the unbalanced ones: the 
power and the type-I error rate of sgT  are not affected by the fact that samples 

have unequal sizes. 
The size estimates show that the proposed test maintained its size (as the other 

two tests): the type-I error rate of sgT  test ranged from 4.75% to 5.48% for the 

equal size settings and from 4.38% to 5.33% for the unbalanced settings. 
The simulation results show that our permutation method for testing 

XXH
d

210   :  against XXH
d

211   :  practically entails no loss of power in the 

context of normal data with respect both to the ordinary permutation solution 
and the Student’s parametric one. This is a very interesting result because, under 
normal sampling, the Student’s test is the most powerful similar test for testing 

(at a fixed  value) the system of hypotheses at issue, and the ordinary permuta-
tion test is almost equivalent to the permutation version of Student’s test. In 
practice, sgT  behaves just like the best parametric method and the permutation 

version of this one. Then, if one adopts sgT  one is sure, for what concerns both 

type-I error rate and power, to test (1) as if one has adopted the Student’s method 
or the ordinary permutation one. The central aspect is that sgT , through process-

ing both the global system of hypotheses and the considered partial systems of 
hypotheses, allows a deeper inference than that allowed by the other two tests 
using exactly the same sample information. 
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TABLE 2 

Power estimates in percent for the t test, PT and the proposed test at =5%
and for two samples of unequal sizes (n1 < n2)

Student’s test PT Tsg test

n1=10 n2=20

0 5.28 5.25 5.33

0.45 32.6 32.6 32.0

0.62 48.0 48.1 47.2

0.78 61.5 61.1 60.9

0.95 76.3 76.5 75.8

n1=10 n2=40

0 4.58 4.48 4.38

0.4 29.5 30.2 29.6

0.57 49.8 49.2 48.2

0.73 63.7 63.5 61.9

0.9 79.3 78.9 78.5 

TABLE 3 

Power estimates in percent for the t test, PT and the proposed test at =5%
and for two samples of unequal sizes (n1 > n2)

Student’s test PT Tsg test

n1=20 n2=10

0 5.08 5.00 5.30

0.45 31.7 31.9 32.1

0.62 46.1 45.9 45.5

0.78 62.9 62.5 60.9

0.95 78.2 77.8 75.5

n1=40 n2=10

0 5.40 5.38 5.20

0.4 29.4 29.4 29.7

0.57 48.7 48.4 48.7

0.73 64.7 64.2 64.3

0.9 78.8 78.1 76.1 

The same simulation results show also that the proposed test, besides being 
exact, appears to be unbiased and consistent. 

5. CONCLUSION 

Permutation tests are not generally endorsed very enthusiastically by either 
theoretical or applied statisticians, but these tests can be very useful in many 
contexts. The simulation results showed that the proposed exact permutation test 
is, within the considered context, as powerful as the Student’s t test and as the 
ordinary permutation test. In addition, the practitioner who uses the proposed 
test can draw inferential conclusions that cannot be drawn by using the usual 
methods. 

For these two reasons the practitioner should take into consideration the use of 
the proposed permutation test. On the one hand, its performance is practically 
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the same as that of the optimal parametric test (even when the sample sizes are 
small and when they are very different). On the other hand, through processing 
both the global system of hypotheses and the considered partial systems of hy-
potheses, it gives more information on the hypotheses under testing than that 
given by usual tests. 

We presented a method which gives more information about the studied null 
hypothesis than the usual ones. Additional research is needed regarding the ways 
of using this type of information profitably. 
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RIASSUNTO

Un’estensione della soluzione ordinaria di permutazione per il two-sample location problem 

In questo lavoro viene proposto un metodo permutazionale per il confronto di locazio-
ne tra due popolazioni. Per come è stato congegnato, questo test permette di condurre 
un’inferenza maggiormente informativa di quella ottenibile con gli altri metodi, usando 
esattamente le stesse informazioni campionarie. Inoltre i risultati di uno studio di simula-
zione mostrano come nei contesti considerati esso sia de facto caratterizzato dalla stessa 
potenza della soluzione ottimale parametrica e come la usa ampiezza sia prossima al livello 
di significatività nominale. 

SUMMARY

An extension of the ordinary permutation solution of the two-sample location problem 

In this paper, a permutation method for comparing locations of two populations has 
been proposed. Due to the way it has been devised, this test allows a deeper inference on 
testing the studied system of hypotheses than that allowed by the other methods using 
exactly the same sample data. Furthermore, simulation results show that, in the consid-
ered contexts, it performs practically as well as the optimal parametric solution in terms of 
power and it maintains its size close to the nominal significance level. 


