
STATISTICA, anno LXII, n. 4, 2002 

HERMITE POLYNOMIALS EXPANSIONS FOR DISCRETE-TIME 
NONLINEAR FILTERING

G. Celant, G.B. Di Masi 

1. INTRODUCTION 

We consider the following discrete-time partially observable process 
Ryxyx tttt ,),,( , with tx  the unobservable and ty  the observable components, 

given for t =0, 1, …,T on some probability space ( , F, P) by 

0011          )( vxvxax ttt  (1a) 

00             )( wywxcy ttt  (1b) 

where tv and tw are independent standard white Gaussian noises. 

Given a measurable function f , we shall be concerned with the solution to 

the filtering problem, namely the computation for each t = 1,…,T, assuming it 

exists, of the least squares estimate of )( txf given the observations up to time t,

namely 

y
tt FxfE |)(  (2) 

where tsyF s
y

t |: .

The filtering problem can be more generally described in terms of conditional 
distributions as follows. Given a Markov process tx  with known transition 

densities )|( 1tt xxp  and an observable process ty , characterized by a known 

conditional density ),( tt xyp , it is desired to compute for each t=1,…,T the 

filtering density ),( t
t yxp  where t

t yyyy ,...,,: 10 .

A solution to this problem can be obtained by means of the recursive Bayes 
formula
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 (3) 

However, there is an inherent computational difficulty with this formula due 
to the fact that the integral 

1
1

11 )|()|( t
t

ttt dxyxpxxp

is parametrized by Rxt . So that the problem is in general infinite-dimensional 

and cannot be solved in an explicitly computable way. 
As it will be briefly reviewed in the next section (see also Di Masi et al., 1986), 

this difficulty disappears in all those situations when )|( 1tt xxp  is a combination 

of functions separated in the two variables, i.e.  

n

i
tititt xxxxp

0
11 )()()|(  (4) 

and for such situations an explicit finite-dimensional filter can be provided. 
In Di Masi et al. (1986) the computational advantage resulting from (4) was 

exploited in order to approximate )|( t
t yxp  by means of approximating densities 

)|( t
tn yxp , n 1, that could be explicitly computed in a recursive way. Such 

)|( t
tn yxp  were obtained by means of the recursive Bayes formula (3) using 

approximations to )|( 1tt xxp  given by suitable functions )|( 1ttn xxp  of the 

form (4). Furthermore, the approximation was such that an explicitly computable 
bound could be obtained for an appropriate approximation error. In addition, if 

)(f  does not grow too fast, then also y
tt FxfE |)(  could be approximated by 

t
t

tnt dxyxpxf )|()(  with a corresponding error bound (see Theorem 1 below). 

The practically important problem of deriving explicit error bounds for the 
nonlinear filtering problem was also studied in Di Masi et al. (1982) for discrete-
time problems and later in Di Masi et al. (1985) the results were extended to 
continuous-time problems (see also Clark, 1978; Kushner, 1977) for different 
techniques that however do not lead to explicit error bounds). While in Di Masi 
et al. (1982) the approximation is obtained by approximating the model (1), the 
method followed in Di Masi et al. (1986) consists in a direct approximation to 
the solution to the recursive Bayes formula. 

Problems related with approximations for nonlinear filtering have been re-
cently investigated (Arcudi, 1998, Goggin, 1996; Kannan et al., 1998) also in 
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connection with robustness analysis (Budhiraja et al., 1997; Budhiraja et al.,
1998). 

The aim of this paper is to study a particular case of the technique described in 
Di Masi et al. (1986), consisting in a Hermite polynomial expansion of

)|( 1tt xxp . This method provides an approximation to the nonlinear filtering 

problem with improved error bounds with respect to those given in Di Masi et al.
(1986). In fact, it is in general well known the high degree of accuracy that can be 
obtained using Hermite polynomial approximations. Furthermore, as it will be 
apparent from the formulas in theorem 1 and proposition 2, the proposed ap-
proximation does converge to the exact nonlinear filter, thus providing an arbi-
trarily accurate suboptimal solution. 

Finally, it is worth remarking that discrete-time nonlinear filtering problems 
can be used for the approximation of corresponding problems in continuous time 
(see e.g. Di Masi et al., 1985; Kushner et al., 1977). As a consequence, the 
method proposed in this paper can be interpreted as a useful tool for the deriva-
tion of approximate filters also for continuous-time problems. 

In the next section 2 we shall review the results in Di Masi et al. (1986) that 
will be needed in the sequel, while in the following Section 3 the Hermite poly-
nomial approximation will be examined in detail. 

2. GENERAL APPROXIMATION RESULTS 

As mentioned in the introduction, the computational difficulty due to the pa-
rametrization of the integrals in (3) disappears for transition densities of the form 
(4). 

In fact, letting  denote proportionality, it is easily seen that when (4) holds 

)|( t
t yxp  can actually be computed by means of (3) resulting in 

Ttxxypydyxp
n

i
titt

t
i

t
t ,...,1   ;)()|()()|(

0

1  (5) 

where the vector )( 1tyd  of the coefficients in the combination can be recursively 

obtained as 

Nidxxpxyd ii ,...,0   ;)()()( 000
0  (6a) 

1   );()()( 1 tyBydyd t
tt  (6b) 

with
njitijt ybyB

,...,0,
)()(   where 

.)()()()( ttitttjtij dxxxypxyb  (6c) 
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In this section we shall show how a suitably chosen approximation 
)|( 1ttn xxp  to )|( 1tt xxp  produces, through the recursive Bayes formula (3), 

an approximation to the filtering density )|( t
t yxp  as well as to the correspond-

ing filter t
t yxfE |)( , for which explicit upper bounds to the approximation 

error can be evaluated. 

To this end it will be convenient to provide approximations to )|( t
t yxp  in a 

suitable weighted norm of the type. 

dxxgxg |)(|)(:  (7) 

In what follows we shall choose xx exp)( , 0 , as this will enable us to 

approximate y
tt FxfE |)(  for all those )(f  for which Mxfx )(exp ,

for some 0M ; in particular, it will allow the approximation of all the condi-
tional moments, as long as they exist. 

The general approximation results are given in Di Masi et al. (1986) and sum-
marized in Theorem1 below, whose proof is based on the following boundedress 
and uniform convergence assumptions. 

There exist a function )( tyV  and constants nZZWU ,,,  such that for all t:

A.1: 0)()|(inf ttt
x

yVxyp
t

Uxyp tt
x t

)|(sup  

A.2: 0)|(inf 1
1

Wdxxxp tttn
x t

A.3: Zxxp ttn
x t

)|(sup 1
1

A.4: nttntt
x

Zxxpxxp
t

)|()|(sup 11
1

 with 0lim n
n

Z

We then have 

Theorem 1 

Under A.1–A.4 we have for all 1t

a)
t

s

t

stu
u

s
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t
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t
t yVZWUZyxpyxp

1 1

2212 )()2()|()|(
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where 0M  is such that Mexf x)( . 

Notice that the theorem states the convergence of the approximate filtering 

density )|( t
tn yxp  to the exact density )|( t

t yxp  and the convergence (in 

weighted norm) is strong enough to guarantee the approximation of the corre-

sponding conditional mean y
tt FxfE |)(  when f does not grow too fast. 

3. HERMITE POLYNOMIALS APPROXIMATION

In this section we shall provide an approximate solution to the nonlinear filter-
ing problem (1), (2), based on an approximation )|( 1ttn xxp  to )|( 1tt xxp  of 

type (4) and given in terms of a Hermite polynomials expansion of )|( 1tt xxp .

For the validity of the results of the previous section it is necessary to show that 
assumptions A.1–A.4 are satisfied. To this end we shall need the following addi-
tional assumption on model (1): 

A.5: There exist constants A and C such that 

Axa
x

)(sup  (8) 

Cxc
x

)(sup  (9) 

Taking into account that, due to the normalization in (3), we can take 

2/))((exp)|( 2
tttt xcyxyp  we have that (9) implies A.1 with 1U  and 

2/exp)(
2

CyyV tt .

We now recall some properties of Hermite polynomials that will be needed in 

the sequel. Denoting by 2/2/ 22

)/()1(:)( xkkxk
k edxdexH  the k-th Hermite 

polynomial we have  (Bourbaki, 1976), (Sansone, 1959) 
P.1: For all t and x

0

2/

!
)(

2

k

k

k
ttx

k

t
xHe

2/

0

2/ 22

!

)( x
k

k

k

k
x e

dx

d

k

t
e  (10) 

P.2: For all x and positive integer k

2/

0 !2

)1(
!)(

k

m
m

m

k
m

kxH
)!2(

2

mk

x mk

 (11) 
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where 2/k  is the maximum integer not greater than k/2.

P.3: For all x and popsitive integer k

4/2

!)( x
k eklxH  (12) 

where l is known as Charlier’s constant and 0864.1l .
P.4: For all x, y and positive integer k

m
mk

k

m
k yxH

m

k
yxH )()(

0

 (13) 

The expansion in (10) suggests the following approximation 

1

0
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xHe  (14) 

with corresponding absolute error 
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Using P.3 we have 

0

4/

!
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x
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k

t
eR

where the series, according to the ratio criterion, is convergent so that, denoting 
by tK  its sum, namely 

0 !k

k

t
k

t
K  (15) 

we have 

4/2x
tn eKR . (16) 

With the notation introduced above, the approximation )|( 1ttn xxp  to 

)|( 1tt xxp  which will be used in the sequel is given by 

!
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We now show that A.2 immediately follows from A.3. In fact, the latter im-
plies convergence in the mean of )|( 1tn xp  to )|( 1txp  uniformly in 1tx  (by 

(8)) and uniformly on compact sets. Then, for n big enough )|( 1tn xp   concen-

trates an arbitrarily large amount of probability mass on a compact set, where it is 
also positive, and A.2 easily follows. 

It remains now to show that assumptions A.3 and A.4 are satisfied. This will be 
done in Propositions 1 and 2 below, for which we need some preliminary results. 

Lemma 1 

For any real >0, ,

4/)4()( 22

/ edxe xx  (18) 

and for any real  and 

),(2/2

dxe xxx  (19) 

where

][2),( 2/)(2/)( 22

ee  (20) 

Proof. Completing the square in the exponent and using the change of variable 
2/xy  we have 

dyeedxe yxx 222 4/)4()(

from which (18) follows immediately. 
Furthermore

0 0

2/)(2/)(2/ 222

dxedxedxe xxxxxxx

so that (19) follows from (18). 
We are now in the position to prove that with the choice made for 

)|( 1ttn xxp , given by (17), the assumptions required by Theorem 1 are satisfied 

so that it is possible to evaluate the error bound provided there. 

Proposition 1 

For any real  and positive integer n
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Zxxp ttn )|( 1  (21) 

where Z does not depend on n and is given by 

2

22 eKZ A  (22) 

with KA as in (15). 

Proof. Using P.3 and Lemma 1 we have 

t
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Remark: if in (8) 1A  an alternative inequality (21) can be derived using P.2. 

In fact we have also used Lemma 1 and letting 
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Proposition 2 

For any real  and positive integer n

nttntt Zxxpxxp )|()|( 11

where

)(22 ,

2

nAAn KKeZ

with AK  as in (15) and 

1

0
, !/

n

k

k
nA kAK

Proof. Using P.3 and Lemma 1 

tn
xx

ttntt dxRexxpxxp tt 2/
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where AnA KK , .

The results of this section allow the evaluation of the error bounds given in 
Theorem 1. It could be easily verified that these bounds are in many instances 
better than those obtained in Di Masi et al. (1986). 

EXAMPLE

Here we shall briefly illustrate the proposed algorithm on a sort of the so called 
cubic sensor problem. This problem is in a sense considered as the prototype of 
difficult nonlinear filtering problems since its infinite dimensionality has been 
explicitly proved (Hazewinkel et al., 1983). 

In this problem we have: 

NxN

NxNx

NxN

xa )(
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Then the filter is given by (5) and (6) with: 
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where the integrals can be easily evaluated. 
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RIASSUNTO

Sviluppo tramite polinomi di Hermite di un filtro non lineare a tempo discreto 

Nel lavoro si propone un metodo di calcolo di un filtro non lineare a tempo discreto 
tramite uno sviluppo in serie di Hermite. Si precisano le varie maggiorazioni degli errori 
relative al filtro stesso. Infine si dà un esempio di applicazione ad un problema infinito-
dimensionale di rilevanza in ingegneria. 

SUMMARY

Hermite polynomials expansions for discrete-time nonlinear filtering 

A finite-dimensional approximation to general discrete--time nonlinear filtering prob-
lems is provided. It consists in a direct approximation to the recursive Bayes formula, 
based on a Hermite polynomials expansion of the transition density of the signal process. 
The approximation is in the sense of convergence, in a suitable weighted norm, to the 
conditional density of the signal process given the observations. The choice of the norm is 
in turn made so as to guarantee also the convergence of the conditional moments as well 
as to allow the evaluation of an upper bound for the approximation error. 


