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HERMITE POLYNOMIALS EXPANSIONS FOR DISCRETE-TIME
NONLINEAR FILTERING

G. Celant, G.B. Di Masi

1. INTRODUCTION

We consider the following discrete-time partially observable process
(x,,9,),x,,9, € R, with x, the unobservable and y, the observable components,

given for #=0, 1, ...,7 on some probability space (Q2, £, P) by

X1 :d(xt)+vt+1 Xo =V (la)

)’t:C(xt)+wt )’ozwo (lb)

where {vt } and {wt} are independent standard white Gaussian noises.

Given a measurable function f, we shall be concerned with the solution to
the filtering problem, namely the computation for each 7 = 1,...,7, assuming it
exists, of the least squares estimate of f(x,) given the observations up to time #

namely

E {f () | F/} )

where F? =c{y, |s<t}.
The filtering problem can be more generally described in terms of conditional

distributions as follows. Given a Markov process x, with known transition
densities p(x, | x,_;) and an observable process y,, characterized by a known
conditional density p(y,,x,), it is desired to compute for each #=1,...,7 the
filtering density p(xt,yt) where )/’ = {_yo,yl,...,)/t}.

A solution to this problem can be obtained by means of the recursive Bayes
formula
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(3)

However, there is an inherent computational difficulty with this formula due
to the fact that the integral

jp(xt | xt—l)p(xt—l | yt_l)dxr—l

is parametrized by x, € R . So that the problem is in general infinite-dimensional

and cannot be solved in an explicitly computable way.
As it will be briefly reviewed in the next section (see also Di Masi et al., 1986),

this difficulty disappears in all those situations when p(x, | x,_;) is a combination
of functions separated in the two variables, i.e.

plx, | x,) Z¢ D (x, ) (4)

and for such situations an explicit finite-dimensional filter can be provided.
In Di Masi er al. (1986) the computational advantage resulting from (4) was

exploited in order to approximate p(x, | y*) by means of approximating densities
(x,|»"), n 21, that could be explicitly computed in a recursive way. Such

2,(x, | y") were obtained by means of the recursive Bayes formula (3) using

approximations to p(x, | x,_;) given by suitable functions p,(x, |x,_;) of the

form (4). Furthermore, the approximation was such that an explicitly computable
bound could be obtained for an appropriate approximation error. In addition, if

f(-) does not grow too fast, then also E {f (x,)| E } could be approximated by
I F(x,)p,(x, |y )dx, with a corresponding error bound (see Theorem 1 below).

The practically important problem of deriving explicit error bounds for the
nonlinear filtering problem was also studied in Di Masi ez al. (1982) for discrete-
time problems and later in Di Masi er al. (1985) the results were extended to
continuous-time problems (see also Clark, 1978; Kushner, 1977) for different
techniques that however do not lead to explicit error bounds). While in Di Masi
et al. (1982) the approximation is obtained by approximating the model (1), the
method followed in Di Masi ez al. (1986) consists in a direct approximation to
the solution to the recursive Bayes formula.

Problems related with approximations for nonlinear filtering have been re-

cently investigated (Arcudi, 1998, Goggin, 1996; Kannan ez al., 1998) also in



Hermite polynomials expansions for discrete-time nonlinear filtering 761

connection with robustness analysis (Budhiraja ez al, 1997; Budhiraja ez al,
1998).

The aim of this paper is to study a particular case of the technique described in
Di Masi er al. (1986), consisting in a Hermite polynomial expansion of
p(x, | x,_;) . This method provides an approximation to the nonlinear filtering

problem with improved error bounds with respect to those given in Di Masi ez al.
(19806). In fact, it is in general well known the high degree of accuracy that can be
obtained using Hermite polynomial approximations. Furthermore, as it will be
apparent from the formulas in theorem 1 and proposition 2, the proposed ap-
proximation does converge to the exact nonlinear filter, thus providing an arbi-
trarily accurate suboptimal solution.

Finally, it is worth remarking that discrete-time nonlinear filtering problems
can be used for the approximation of corresponding problems in continuous time
(see e.g. Di Masi er al., 1985; Kushner et al., 1977). As a consequence, the
method proposed in this paper can be interpreted as a useful tool for the deriva-
tion of approximate filters also for continuous-time problems.

In the next section 2 we shall review the results in Di Masi et 2/. (1986) that
will be needed in the sequel, while in the following Section 3 the Hermite poly-
nomial approximation will be examined in detail.

2. GENERAL APPROXIMATION RESULTS

As mentioned in the introduction, the computational difficulty due to the pa-
rametrization of the integrals in (3) disappears for transition densities of the form

(4).

In fact, letting oc denote proportionality, it is easily seen that when (4) holds

p(x, | ") can actually be computed by means of (3) resulting in
Pl 19 o DA, D p(y, x4 (x,); £ =1,.T (5)
i=0

-1 . . . . .
where the vector d(y") of the coefficients in the combination can be recursively
obtained as

d(y") = w0 plg)dxys i=0,... N (6a)
d(y')=d(y" By, t=1 (6b)
with B(yt):{bij(yt)}i,jzo lllll  where

by(3) = [, () p(le )i, . (60)
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In this section we shall show how a suitably chosen approximation
2,(x, |x,_,) to p(x,|x,.;) produces, through the recursive Bayes formula (3),

an approximation to the filtering density p(x, | y) as well as to the correspond-
ing filter £ {f (x,)] y’}, for which explicit upper bounds to the approximation
error can be evaluated.

To this end it will be convenient to provide approximations to p(x, | y*) in a
suitable weighted norm of the type.

el = f"‘<x) | g(x) b )

], o >0, as this will enable us to
approximate E{f(xt) | F/} for all those f(-) for which ‘exp[— a‘xlf(x)‘ <M,

for some M >0; in particular, it will allow the approximation of all the condi-
tional moments, as long as they exist.

The general approximation results are given in Di Masi ez al. (1986) and sum-
marized in Theorem1 below, whose proof is based on the following boundedress
and uniform convergence assumptions.

There exist a function V(y,) and constants U,W,Z,Z  such that for all

In what follows we shall choose a(x) = exp[oc‘x

A.1: inf p(y, |x,)2V(y,) >0

sup p(y, | x,) <U

Xt

A2: J‘infpn(xt | x,_)dx, >W >0

A.3: sup

X1

Ads sup|plx, | %) = p,(x, | %), < Z,

X1

with lim Z =0

n—»o0

We then have

Pn(xt | xt—l)Ha < Z

Theorem 1

Under A.1-A.4 we have for all z>1

t 12
<z >>Uuw'z [V 0.
* s=1

u=t—s+1

O VCATOETNCARD

<SMZ,)y QUWZ?)

s=1

by [ElfGe) | =[£G, |y

IL[-V_Z()/,,)

u=t—s+1
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where M >0 is such that ‘f(x)e_“ <M.

Notice that the theorem states the convergence of the approximate filtering

density p,(x,|y’) to the exact density p(x,|y’) and the convergence (in
weighted norm) is strong enough to guarantee the approximation of the corre-

sponding conditional mean E { f(x,)| F7 { when f does not grow too fast.

3. HERMITE POLYNOMIALS APPROXIMATION

In this section we shall provide an approximate solution to the nonlinear filter-
ing problem (1), (2), based on an approximation p,(x, |x,_;) to p(x,|x,_;) of
type (4) and given in terms of a Hermite polynomials expansion of p(x, | x,_;) .

For the validity of the results of the previous section it is necessary to show that
assumptions A.1-A.4 are satisfied. To this end we shall need the following addi-
tional assumption on model (1):

A.5: There exist constants A and C such that

sup‘a(x)‘ <A (8)

sup‘c(x)‘ <C )

Taking into account that, due to the normalization in (3), we can take
2y, | x,) =exp—(y, —c(xt))2/2 we have that (9) implies A.1 with U =1 and
V() =expl—Qyt\+C)2/2J.

We now recall some properties of Hermite polynomials that will be needed in
the sequel. Denoting by H,(x):= (—l)kexz/z(a’k/a’xk)e_xz/2 the A-th Hermite

polynomial we have (Bourbaki, 1976), (Sansone, 1959)
P.1: For all zand x

txt/Z ZH X)—
k=0

o0 k d/e 5
z ' dx P /2 (10)

P.2: For all x and positive integer 4
| £/2] (_1)m k—2m

H,(x) =k al
&) gzmml (f— 2m)!

(11)
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where | £/2 | is the maximum integer not greater than £/2.
P.3: For all x and popsitive integer 4

|H ()] < I Jle™ (12)

where / is known as Charlier’s constant and / = 1.0864 .
P.4: For all x, y and positive integer 4

E(k
Hy(x+y)= Z[mjﬂk_m(x)y’” (13)

m=0
The expansion in (10) suggests the following approximation
k

=22 = 12

X — ~

e => H, (%)
par k!

with corresponding absolute error
0 k

ZHk(x)% .

k=n

R, =

) n—1 t/?
etx—t 12 ZH/?(X)E
k=0 .

Using P.3 we have

where the series, according to the ratio criterion, is convergent so that, denoting

by K, its sum, namely

£
© |t
K, = Zl (15)
im0V A!
we have
R <Kle" 't (16)

With the notation introduced above, the approximation p, (x,|x, ;) to

p(x, | x,_,) which will be used in the sequel is given by

1 dk (xt—l)

) n—1
Pn(xt |xr—1):—€_xt/zzH/e(xt)— (17)
k=0

27 k!
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We now show that A.2 immediately follows from A.3. In fact, the latter im-
plies convergence in the mean of p (-|x, ;) to p(-|x,_,) uniformly in x, ; (by
(8)) and uniformly on compact sets. Then, for 7 big enough p (-|x, ,) concen-

trates an arbitrarily large amount of probability mass on a compact set, where it is
also positive, and A.2 easily follows.

It remains now to show that assumptions A.3 and A.4 are satisfied. This will be
done in Propositions 1 and 2 below, for which we need some preliminary results.

Lemma 1
For any real a>0, §, y

+00
2 2
J‘e—(ax +ﬂx+7)dx: 7[/0(6('8 —4ay)/ 4o (18)

—0

and for any real o and S

+00

Iea‘xhﬂxwzudx < ﬂ(a,ﬁ) (19)
where
wo, f) =27 [P 4 V2] (20)

Proof.  Completing the square in the exponent and using the change of variable
y=x+ /20 we have

400 ~+o0
Ie—(ax2+ﬁx+y)dx _ e(ﬁ2—4a7)/4oc Ie—aﬁdy

from which (18) follows immediately.

Furthermore

+o0 400 +00
Iea‘x‘+ﬂx—x2/2dx _ je—(ﬂ—(x)x—xz/de_l_ J‘e(ﬂ+a)x—x2/24x
o 0 0

so that (19) follows from (18).
We are now in the position to prove that with the choice made for

2,(x, | x,_,), given by (17), the assumptions required by Theorem 1 are satisfied
so that it is possible to evaluate the error bound provided there.
Proposition 1

For any real « and positive integer 7
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Pn(xt |xt—1)Ha <Z (21)
where Z does not depend on 7 and is given by
Z =220K ;" (22)

with K as in (15).

Proof.  Using P.3 and Lemma 1 we have

1 Tale o a*(x, )
P 5l = [ e R ) T <
w7 0

< Taxx/fo//;\/_z_dx

ﬂ

—00

EK a‘x‘x/4
\/EJ. dx, <

=
—00

_—K N2u(20,0) = 220K e

Remark: if in (8) A <1 an alternative inequality (21) can be derived using P.2.

1
m= 02
p L/«/zj
n( t t—)
px|x1Ha Z_: ,;)2 k Zm)

+00 5 p
: Iea‘x“_xf /z‘xt‘ —2det <

—0

J' (1+a)‘x‘ x; /Zd <

1 1 11 )
<———Su(l+0a,0) = ——AS2«/27re(l+a) 2 =

2r1-A N2 11—
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Proposition 2

For any real « and positive integer 7
Hp(xr | xt—l) _Pn(‘xt | xt—l)Ha < Zn

where
Z,=22¢" (K, - K )

with K ; asin (15) and

Proof.  Using P.3 and Lemma 1

1 i alx —X2
Hp(xr |xr—1)_pn(xt |xt—1)Ha =7 J.f ‘ l‘ ! /2‘R”‘6l’xt <

NGy

—00

Eexf 14

1 +],°€axt_x3/z iA_k
W2z Sk

L

Ny

where K, — K ,.

200 (K~ K, ) =220 (K, —K )

The results of this section allow the evaluation of the error bounds given in
Theorem 1. It could be easily verified that these bounds are in many instances

better than those obtained in Di Masi et a/. (1986).

EXAMPLE

Here we shall briefly illustrate the proposed algorithm on a sort of the so called
cubic sensor problem. This problem is in a sense considered as the prototype of
difficult nonlinear filtering problems since its infinite dimensionality has been

explicitly proved (Hazewinkel ez al., 1983).
In this problem we have:

- N x<—-N

alx)=2 x —-N<x<N
+ N x>N
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~-N°>  x<-N
clx)={ x> —-N<x<N
+N° x>N

Then the filter is given by (5) and (6) with:

P(xt |xt71) = 2 ZH t 1)

a'(x
wilx, ) =—"=

4,(3y) = J‘%P(xo)dxo

li/2] m o +N
(=1)"! j‘xi+j—2m€—1/2[(y,—x3)2+x2]dx

— m!2” 7!

m=0 J -N

b,]()/t) =

where the integrals can be easily evaluated.
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RIASSUNTO

Sviluppo tramite polinomi di Hermite di un filtro non lineare a tempo discreto

Nel lavoro si propone un metodo di calcolo di un filtro non lineare a tempo discreto
tramite uno sviluppo in serie di Hermite. Si precisano le varie maggiorazioni degli errori
relative al filtro stesso. Infine si da un esempio di applicazione ad un problema infinito-
dimensionale di rilevanza in ingegneria.

SUMMARY

Hermite polynomials expansions for discrete-time nonlinear filtering

A finite-dimensional approximation to general discrete--time nonlinear filtering prob-
lems is provided. It consists in a direct approximation to the recursive Bayes formula,
based on a Hermite polynomials expansion of the transition density of the signal process.
The approximation is in the sense of convergence, in a suitable weighted norm, to the
conditional density of the signal process given the observations. The choice of the norm is
in turn made so as to guarantee also the convergence of the conditional moments as well
as to allow the evaluation of an upper bound for the approximation error.



