
STATISTICA, anno LXII, n. 4, 2002 

AN APPLICATION OF THE ASYMPTOTIC THEORY TO A 
THRESHOLD MODEL FOR THE ESTIMATE OF MARTENS HARDNESS 
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1. INTRODUCTION 

Hardness measurements are widely carried out in industry, since traditional 
hardness scales, such as the Brinell, Rockwell, Vickers and Knoop offer good 
performances at a reasonable cost. In all of them an indenter (spherical, conical 
with a spherical tip, pyramidal) is pressed against the flat surface under test with a 
given force (figure 1), and either the depth or the width of the indentation is 
measured; the larger the indentation, the lower the hardness is. The measurement 
process is simple and straightforward, and results are very useful even when a 
single reading is obtained for force and indentation. Indeed, the close connection 
between the hardness number and the tensile strength often permits to substitute 
a much cheaper and faster hardness test for an expensive tensile test. The limita-
tions of traditional hardness methods in getting information from a single force 
have been got over by introduction of the “Instrumented Indentation Test” 
(ISO/DIS-14577-1:2000), whereby a continuous record of both applied force 
and indentation depth is used. The part of this new method closer to a hardness 
number is called “Martens Hardness”. 

In a first approximation, hardness is directly proportional to the ratio between 
the applied force and the indentation surface, that is the average pressure, as 
proposed by Brinell and confirmed also for other indenters, for example, those 
pyramid shaped; the force vs. depth pattern should therefore follow a parabolic 
law evolution. The indenter, usually a diamond pyramid with a base either square 
(Vickers type) or triangular (Berkovich type), is pressed into the surface under 
test; the force signal should be constant, and almost zero, until the indenter 
contacts the sample surface. From that moment onward, the force should in-
crease, versus the indentation depth, with a parabolic law. 

As instruments used to measure force and indentation depth are affected by 
systematic and random errors, results deviate from the theoretical pattern (figure 
2). A force measuring transducer is usually affected by a systematic zero error
(therefore when no force is applied the relevant signal must be considered) and 
random errors, normally distributed around the zero error, with an almost con-
stant standard deviation. As regards the parabolic part, systematic errors of both 
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force and indentation depth measurements can be considered negligible; however, 
owing to random errors, measurement signals can be considered normally distrib-
uted, the force signal with a slowly increasing standard deviation and the indenta-
tion signal with an almost constant standard deviation. 
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Figure 1 – Scheme of a hardness measuring 
machine.

Figure 2 – Theoretical pattern (-), experimental 
data (o) and regression patterns of the constant 
and parabolic parts (--); in this case the two parts 
do not intersect. 

The International Standard Organization (ISO/DIS-14577-1:2000, p. 7) re-
quires to estimate the position of the zero-point, that is the first contact point of 
the indenter with the test piece surface, and its uncertainty. Usually, the ISO 

requirement is met by determining the zero error of the force measuring instru-
ment through averaging the measurement results obtained before contact of the 
indenter with the sample surface, and therefore by determining the regression 
parabola by means of the data obtained after contact, corrected for zero error. The 
indentation zero-point is then determined as the intersection of the initial hori-
zontal line with the parabolic curve which follows (Mencik and Swain, 1994; 
Ullner and Quinn, 1997). 

This method has, evidently, some drawbacks: 
a. owing to the data pattern around the contact point, that region cannot easily 

be split into two sets, one being attributed to the constant part and the other to 
the parabolic part; an arbitrary part of data, the more important being the nearer 
to the contact point to be determined, may therefore arbitrarily be excluded from 
regression calculation; 

b. the point to be determined at the end of the constant part, coincides with 
the apex of the parabola; since both lines have there the same tangent, identifica-
tion of the abscissa of that point entails an ill-conditioned problem; 

c. as shown by Ullner (2000), in some cases the routine for identification of the 
point under consideration fails, as no intersection can be found between them 
(figure 2). 

To find a solution to these problems, in the next section we propose to adopt a 
single segmented model, constant in its first part and parabolic in the second one. 
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2. DESCRIPTION OF THE MODEL 

Data collected from the “Instrumented Indentation Test” can be fitted by a 
segmented curve, the Force/Depth Curve (FDC), as figure 3 shows. The first part 
of the FDC is a horizontal line representing the zero-load or approach phase of the 
test, in which no force is applied by the indenter to the specimen.  
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Figure 3 – Force/Depth Curve, showing applied force y plotted against indentation depth x. A 
segmented curve is fitted to measurement data obtained during the “Instrumented Indentation 
Test”. Abscissa of the zero-point ( ), corresponding to initial contact of the indenter with the 
specimen, is the unknown parameter of interest. 

As soon as contact is established, a force is generated and from that moment 
the FDC takes the form of a second order polynomial (Grau et al., 1994); the 
contact point between the horizontal line and the parabola is the zero-point. In 
accordance with continuity considerations, the model of the “Instrumented 
Indentation Test” may be written: 

for

for
2

210

0

xxxy

xy
 (1) 

where x is the indentation depth and y the applied force. The parameters 

j (j=0,1,2) are related to the FDC, the threshold parameter is the abscissa of the 

zero-point.
Assumption of FDC continuity and of its first derivative appears to be reason-

able. Therefore model (1) becomes: 

2

20 xy  (2) 

where [x- ]+=max(0, x- ) is the positive part of x-  (Gallant and Fuller, 1973). 
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Values of variables x and y at the measurement points are not observable. The 
values of the two random variables Xi and Yi, instead, are observable: 

;1,..., con     ni
yY

xX

i

i

Yii

Xii
 (3) 

where
iX  and 

iY  are the model experimental errors, unavoidable in both force 

and indentation depth measurements. By substituting (3) into (2), one obtains: 

YXXY
2

20 . (4) 

Whereas (2) is defined as a functional relation between the two mathematical 
variables x and y, equation (4) is a structural relation between the observable 
random variables X and Y (Kendall and Stuart, 1973; Fuller, 1987). 

Even if the only parameter of interest is , the remaining nuisance parameters 
in (4) can be split into structural and incidental. Structural nuisance parameters 

0  and 2 , common to all observations, are related to the form of the FDC.

Incidental nuisance parameters are specific to individual observations and to the 
structural relationship of model (4). There are as many incidental parameters as 
the observed values, and they are the actual values of indentation depth. There-
fore if there are n pairs of measurement data, there are n+3 unknown parameters 
to be estimated (table 1). 

TABLE 1 

Classification of the parameters 

PARAMETERS 

OF INTEREST  NUISANCE 

Structural Incidental 

0 2 xi with i=1,…,n 

Model (4) is an example of a change-point problem, whose behaviour depends 
on the unknown contact point parameter . In practice, since  can be considered 
a threshold parameter, model (4) can also be termed a threshold model. 

For the sake of concision let us resort to matrix notations. Let 
x=(x1,…,xn)

T  Rn be the vector of n actual values of the mathematical variable x;

X=(X1,…,Xn)
T  Rn be the vector of the corresponding random variables. The 

same notation can be used for the dependent variables y=(y1,…,yn)
T  Rn,

Y=(Y1,…,Yn)
T  Rn and 

2

20 ii xy , with i = 1, 2, …, n. According 

to the previous notation, the vector of the unknown parameters is: 

3R,, nTTT x
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where 2
20 R, T  is the vector of the structural nuisance parameters. 

Consequently, the relation (2) between mathematical variables can be expressed 
in matrix form: 

),( xAy  (5) 

where ,22 R)   (),( n
nn 11xA , nn

ix ,Rdiag  and T
n )1,...,1( 1 .

3. MAXIMUM LIKELIHOOD ESTIMATORS 

In the calibration process of force and indentation measuring instruments sys-
tematic errors are compensated for and instrumental uncertainties are evaluated. 
Therefore, error random variables can be assumed independent and normally 
distributed, with zero average and known standard deviation. The performance of 
an indentation measuring instrument is assumed to be constant over its range; 
therefore indentation depth errors 

iX  have common standard deviation 
X

.

On the contrary, errors 
iY  in the measured force as a rule increase with y. Such 

dependence is compatible with a linear model ibYa
iY

, with i = 1, 2, ..., n,

where a represents the absolute component and b takes account of the effect of 
force. These assumptions on measurement errors can be summarized as: 

nT
n X

N 212
2 R,~ WW0  (6) 

where TT
YX ,  R2n, X  and Y are, respectively, the error vectors of inden-

tation and force determinations. The weighted matrix W is a block diagonal 
matrix:

nn

nn

D0

0I
W

with In being the identity matrix and }/diag{
iYXnD .

The hypothesis introduced on error distribution enable the log-likelihood 
function to be written as: 

2
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XX

T

T

 (7) 

where
x,AY

xX
Wg )(  R2n.
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The Maximum Likelihood Estimator (MLE) of the unknown parameter vector 

 is obtained by maximizing (7) or, equivalently, 
2

2
)(

2

1
g . This is a non-

linear problem which can be solved by means of the Gauss-Newton iterative 

method, since vector )(g  is non-linear in . The solution )(k  at the k-th step 

of the iteration method is achieved by solution of the linearised form obtained 
from expansion of )(g  in the Taylor series truncated at the first term. Then, the 

linearised problem at the k-th iteration is: 

2

2

)(1)()()(

2

1
max kkkk Jg  (8) 

where )( )()( kk gg  and )( )()( kk JJ  is the Jacobian of )(g . If )(kJ  has a full 

rank, the solution of (8) is: 

.)()(
1

)()()()1( kTkkTkkk gJJJ  (9) 

Otherwise it is necessary before that, to resort to a QR decomposition of )(kJ .

In the zero-point problem the Gauss-Newton iterative method is not ill-

conditioned and quickly converges to ˆ . If ˆ  is a local maximum, then it is the 

MLE. Unfortunately,  is not twice continuously differentiable because its 

second derivatives are discontinuous in x and . Nevertheless, if there is a neigh-

bourhood of ˆ  exists in which  is twice continuously differentiable and the 

Hessian matrix in it is negative definite, then ˆ  is the MLE. The use of a trust 
region strategy (Dennis and Schnabel, 1983) can improve the Gauss-Newton 
method. In such case, formula (8) is solved by checking the step length by means 

of the trust region rkk

2

)()1( , where r is the trust region radius. 

In order to achieve fast convergence and low computational time, the initial 
value of the iterative requires careful selection. Moreover, practical reasons suggest 

that the choice of an initial value )0(  should not be left to the user alone and that 
an automatic estimation procedure should be adopted. The proposed suggestion 
is based upon the use of profile likelihood (Barnforff-Nielsen and Cox, 1994) to 
estimate the initial values both of the zero-point and of the structural nuisance 
parameters, relaxing the assumptions on measurement errors. In fact, if errors in 
indentation measurements can be neglected, then X  is the null vector and the 

unknown parameters are 
TT

s , . Besides, if the relative component of force 

uncertainty, b, is assumed not to be significant, then force measurements errors 

are homoschedastics and nn Y
N I0Y

2,~ . Under less strict assumptions, the 

structural relationship (4) becomes a classic non-linear regression model: 
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.)( YAY  (10) 

The vector s  of unknown parameters is made up of two parts, one is the pa-

rameter of interest , the other is the vector of structural nuisance parameters .

The parameter  may take values in (Xmin, Xmax), where Xmin and Xmax are, respec-
tively, the minimum and the maximum measured depth; over this interval the 
profile log-likelihood function (figure 4) of the model is: 

2

2
2|

ˆ)(
2

1
max AY

Y
s

sP  (11) 

where ˆ  denotes the maximum likelihood estimate of  for a given value of .

If  is fixed, equation (10) becomes a polynomial regression model and ˆ  is 

obtained from the well-known formula: 

.)()()(ˆ 1
YAAA TT

The profile likelihood estimate of the zero-point, P
ˆ ,can be obtained by maxi-

mizing the profile log-likelihood evaluated at a finite number of points q , for 

q=1,2,…,m.
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Figure 4 – Graph of the Profile log-Likelihood Function: P  is plotted against the parameter of 

interest .

Consequently, P
ˆ  and 

P
ˆ

ˆ  are the estimates of the unknown parameters of 

model (10) and they can be used as start values of  in the Gauss-Newton itera-
tive method together with the observed vector X used for setting the start value of 
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x. The algorithm for the automation calculus of the initial value of  consists in 
the following steps: 

Step 1  Fix mqXXq ,...,2,1, maxmin ;

Step 2  For q from 1 to m:

compute
q

ˆ ,

evaluate qP ;

Step 3  Estimate  from qPPP maxˆ ;

Step 4 Start the Gauss-Newton iterative method with use of the initial 
unknown parameter: 

X
P

P

ˆ
(0) ˆ

ˆ

.

By substitution of )0(  in (9), the starting value of the Gauss-Newton iterative 
method, the maximum likelihood estimate of  is obtained.  

Asymptotically, the variance-covariance matrix of the MLEs may be estimated 
by:

.ˆˆˆ
1

2 JJV
T

X
 (12) 

It is well-known (Seber and Wild, 1989) that MLEs of structural parameters are 
not necessarily consistent, when incidental parameters exist. Unfortunately the 
presence of incidental parameters doesn’t guarantee that MLEs are unbiased. 
Nevertheless, Monte Carlo simulations (see section 4) showed that such a devia-
tion is less than 5% and therefore compatible with the usual metrology require-
ments of uncertainty expression. 

If vector g in (7) is adequately approximated by a linear function in the neigh-

bourhood of ˆ , a confidence interval for ˆ  (see section 5) can be evaluated from 

V̂ . In the zero-point problem, the validity of the linear assumption is confirmed 
by the computation of the parameter-effects curvature and intrinsic curvature 

indices, respectively TK max and NK max , according to Bates and Watts (1988): 

2max

)ˆ(

)ˆ(
max

uJ

uJu

u

TT

TK ,
2max

)ˆ(

)ˆ(
max

uJ

uJu

u

NT

NK  (13) 

where )ˆ(TJ  and )ˆ(NJ are the tangential and normal components of the first 

derivative of J evaluated at point ˆ . u is any versor in the parameter space .
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4. COMPUTER SIMULATION 

In order to investigate the properties of ˆ , we have resorted to the Monte 
Carlo method. The data for the Monte Carlo study were generated by means of 
the model (2) with  = 0, 0  = 0, 2  = 0.145 and a sample size of 60. Indenta-

tion measurement errors were generated as a random sample from normal distri-
butions having zero average and 

X
= 0.02 m, whereas force measurement 

errors having zero average and 
iY

= (0.04+0.001Yi) N. For this parameter set, 

104 samples were generated and for each sample the ML estimates of the structural 
parameters and of the variance-covariance matrix were evaluated. Results of 
estimations and statistical indices from these simulations are summarized in table 
2 and 3. The estimators do not exhibit large bias and their empirical distributions 
are not far from normal distributions. We obtained similar results from simula-
tions with different sets of parameters and different sample sizes. 

TABLE 2 

Monte Carlo indices of MLEs of structural parameters based on 104 samples.  

The samples were generated using model (2) with = 0, 0 = 0 and 2 = 0.145 

Estimator Mean Variance Percentile 25% Percentile 75%

ˆ 0.0005 4.26 × 10-4 -0.0138 0.0147

0
ˆ 0.0000 5.86 × 10-5 -0.0052 0.0051

2
ˆ 0.1450 3.11 × 10-7 0.1446 0.1454 

TABLE 3 

Monte Carlo indices of the variance-covariance matrix V̂  based on 104 samples.  

The interest is focused on the upper-left 3 3 part of V̂ , that is the 
variance-covariance matrix for the structural model parameters  and 

Variance / Correlation Mean Variance

2
ˆs

4.35 × 10-4 1.35 × 10-12

2

0
ˆs

5.90 × 10-5 4.11 × 10-15

2

2
ˆs

3.12 × 10-7 8.84 × 10-18

0
ˆ,ˆ

r 0.39 7.74 × 10-7

2
ˆ,ˆ

r 0.96 3.75 × 10-9

20
ˆ,ˆ

r 0.27 6.10 × 10-7
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5. CASE STUDY 

We implemented an automatic procedure to solve the zero-point problem, and 
used it to analyse the data recording for the 2nd International Conference of the 
European Society for Precision Engineering and Nanotechnology (EUSPEN). We 
performed some tests with the Primary Hardness Standard Machine of IMGC

(Istituto di Metrologia Gustavo Colonnetti) by following the relevant ISO stan-
dard specifications (ISO/DIS-14577-1:2000). Forces were generated by dead 
weights and measured by a load cell having 10 mN resolution and an uncertainty 
of (40+0.001Yi) mN. Displacements were measured with a laser interferometer 
system having 0.01 m resolution and 0.02 m uncertainty. In order to identify 

the zero-point, a number of 60 measurement points around it were selected. By 
solution of the simplified model (10) by means of the above algorithm, we com-
puted the initial values of the parameters: 

0 = 152.70 m;
0

0 = 0.01 N; 
0

2 = 0.1542 N -2m .

The ML estimates of the zero-point and of the structural parameters have been 
obtained by means of the Gauss-Newton iterative method: 

ˆ = 152.66 m;

0
ˆ = 0.00 N; 

2
ˆ = 0.1531 N -2m .

It must be noted that 0
ˆ  is an estimate of the systematic zero error of the force 

measuring transducer, negligible in this case, and 2
ˆ  is proportional to the 

Martens Hardness, an item of the information on the mechanical characteristics 
of the tested material given by “Instrumented Indentation Test”.  

In order to prove the linear approximation, the two curvature indices of (13) have 

been calculated: TK max = 4.35 × 10-3 and NK max = 1.35 × 10-4. These results are com-

patible with the upper bound value suggested Bates and Watts (1988, p. 242) and 
linear approximation is reasonable. The variance-covariance matrix estimate is: 

.

10  0.410  5.110  3.1

10  5.110  8.710  7.7

10  3.110  7.710  7.4
ˆ

765

655

554

V

The estimate of variance of the abscissa of the zero-point is 4.7 × 10-4, so that 
the confidence interval at 95% results (152.62, 152.70) m.
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6. CONCLUSIONS 

Difficulties left unsolved by the traditional separate evaluation of the two parts 
of FDC are overcome by resorting to a single segmented model describing FDC,
and by adopting an appropriate statistical estimation methodology. In the thresh-
old model the abscissa of the zero-point is one of the estimated parameters. In the 
approach we propose, the solution is consequently always guaranteed, since the 
ill-conditioned matrix, associated with the intersection of the two separate curves, 
need not be considered. Moreover, with the proposed error-in-variables model the 
measurement uncertainty of the depth measuring instrument can also be consid-
ered. The maximum likelihood method does not give rise to computational 
problems and it converges quickly to MLEs even if the zero-point problem is non-
linear. Evaluation of the associated variances-covariance matrix, as required by the 
relevant standards to express the Hardness Martens uncertainty, is also made 
possible. Properties of the MLEs fully satisfy, therefore, the requirements of the 
hardness measurement process. Finally, the method proposed can be imple-
mented in an automatic procedure, where no a priori information is required 
besides that concerning the uncertainties of the measuring instruments. 
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RIASSUNTO

Un’applicazione della teoria asintotica ad un modello soglia per la stima della durezza 
Martens

Nel campo della metrologia meccanica un ruolo significativo è ricoperto dalle misure 
di durezza da sempre utilizzate per testare le caratteristiche dei materiali nei processi 
produttivi industriali. Un nuovo metodo di misura, detto durezza Martens, trae le infor-
mazioni dai dati dell’evoluzione di forza e spostamento durante l’intero ciclo di prova. La 
Curva Forza/Profondità che descrive la prova è formata da due parti unite nel cosiddetto 
zero-point. Viene proposto un modello di regressione a tratti basato sull’introduzione di 
un parametro soglia alfine di stimare l’ascissa dello zero-point. Il problema è particolar-
mente complesso, in quanto il legame tra le variabili forza e profondità è di tipo struttura-
le e la numerosità dei parametri di disturbo insegue quella delle misure effettuate. Una 
stima dei parametri incogniti del modello viene fornita mediate la teoria asintotica basata 
sulla verosimiglianza. Simulazioni effettuate con metodi Monte Carlo permettono di 
analizzare le proprietà degli stimatori al variare delle ipotesi introdotte sugli errori di 
misura e contribuiscono alla definizione delle condizioni di applicabilità del metodo 
proposto.

SUMMARY

An application of the asymptotic theory to a threshold model for the estimate of Martens 
Hardness 

Hardness measurements have a significant role in mechanical metrology, as they are 
frequently used to characterise materials properties relevant to industrial processes. A 
recently introduced method, called Martens Hardness, is based on force and indentation 
records obtained during a test cycle; the Force/Depth Curve, which describes the indenta-
tion pattern, is typically formed by two parts having a zero-point in common. A seg-
mented regression model is proposed in this paper, based on the introduction of a thresh-
old parameter in order to estimate the unknown zero-point. The problem is not trivial, 
since the relationship between observed force and indentation depth is structural and, 
moreover, the number of nuisance parameters grows with the number of measured data. 
The asymptotic likelihood theory leads to an estimate of the unknown parameters of the 
model. Monte Carlo simulations are resorted to in order to analyse the properties of 
estimators under different hypotheses about measurement errors, and to establish the 
applicability conditions of the method proposed. 


