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1. INTRODUCTION

In many medical studies, Imatinib, the first member of a new class of agents that act by
specifically inhibiting a certain enzyme that is characteristic of a particular cancer cell,
rather than non-specifically inhibiting and killing all rapidly dividing cells, is supposed
to have a significant clinic effect on chronic myeloid leukemia (CML) in chronic phase as
well as in blast crisis. However, many patients in blast crisis who are being treated with
Imatinib relapse at a relatively early time, suggesting that leukemia cells tend to acquire
resistance to Imatinib. So far, such innate mechanism of resistance is poorly understood,
but some evidences suggest that activation of alternative oncogenic pathway may confer
to CML cells a BCR-ABL protein independent survival. To understand the complex-
ity of the regulation of gene expression, genetic networks have been used (Schlitt and
Brazma, 2007,for more details). Genetic networks are usually constructed using proba-
bilistic models such as Gaussian Graphical Models (GGMs) (Dempster, 1972; Edwards,
2000). Briefly, if we consider an undirected graph with G vertices, a Gaussian graphical
model is the family of multivariate normal distributions NG(µ,Σ), where the mean µ
is an arbitrary vector and the covariance matrix Σ is assumed to be positive definite
with its elements equal to zero whenever there is no edge between the corresponding
elements in the graph. Unfortunately, when we have microarray data as in our case,
their practical application is strongly limited by the amount of available experimental
data. Indeed, in a typical microarray data set the number of genes exceeds the sample
size. To overcome this problem, Schäfer and Strimmer (2005a) proposed an empirical
Bayesian framework to improve the inference on a GGM. However, this method does
not consider an important property of a genetic network: the property of community
structure (Segal et al., 2003). Aim of this paper is to define a statistical framework to
identify central modules in a Gaussian Graphical Model estimated by gene expression
data measured on a sample of patients with negative molecular response to Imatinib.
We define central a module that includes differentially expressed genes.
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2. THE DATA SET

To obtain the data, the Real-time RT-PCR amplifications were run on an ABI Prism®

7900Ht Sequence Detection System (Applied Biosystems, Foster City, CA, USA). The
resulting cards were quantified separately using the SDS 2.1 software package. In the
preprocessing step, genes not observed in∼75% of patients were removed by our study.

Then, using the results given in Troyanskaya et al. (2001), we used the method based
on the k-nearest neighbors to estimate the missing values. For each gene with missing
values, the algorithm finds the k nearest neighbors using the Euclidean metric, confined
to the columns for which that gene is not missing. Each candidate neighbor might be
missing some of the coordinates used to calculate the distance. In this case the algorithm
averages the distance from the non-missing coordinates. Having found the k-nearest
neighbors for a gene, the method imputes the missing elements by averaging those (non-
missing) elements of its neighbors.

Log-scale was used to stabilize the variance of the cycle threshold (Ct ) values. Fi-
nally, in order to remove differences due to sampling, that is differences in total RNA
quantity and quality, glyceraldehyde 3-phosphate dehydrogenase (GAPD) was used as
internal control gene (Livak and Schmittgen, 2001). The log Ct , relativized to the en-
dogenous control (∆ log Ct ), was used for our analysis. All calculations were performed
using the statistical environment R (R Development Core Team, 2009) and Biocon-
ductor software (Gentleman et al., 2004), while graphs were visualized using Graphviz
software (Gansner and North, 2000).

3. CENTRAL MODULES IN A GAUSSIAN GRAPHICAL MODEL

In recent years, the analysis of genetic regulatory networks has received a major impetus
from the huge amount of data made available by high-throughput technologies such as
DNA microarrays. To better understand how genes are related to each other, graphical
models are usually used. For example, Friedman (2004) proposes to use a Bayesian
network and Costa et al. (2008) use Gaussian graphical model to identify pathways using
gene expression data. However, these methods do not consider the modularity structure
of a genetic network. To overcome this problem we propose a method based on the
following two steps:

i. we use the method proposed in Schäfer and Strimmer (2005a) to estimate a GGM
on a sample of patients with negative molecular response to Imatinib. To gain
more insight about the estimated GGM, some of the most important centrality
measures are used (Freeman, 1978);

ii. we use the method proposed in Newman and Girvan (2004) to find modules
which simplify the structural complexity of the estimated GGM. Using a sam-
ple of patients with positive molecular response to Imatinib, a module which
contains a differential expressed gene is defined central in our analysis.
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4. GGMS IN PATIENTS WITH NEGATIVE MOLECULAR RESPONSE

4.1. Fitting a GGM

Gaussian graphical models are undirected probabilistic graphical models based on the
assumption that the observed data matrix X is drawn from a multivariate normal dis-
tribution NG(µ;Σ), where G is the number of genes. To obtain a GGM, usually the
following procedure is employed. From the given data, the empirical covariance matrix
is computed and inverted; then the empirical partial correlations ρ̂i j are computed. The

distribution of |ρ̂i j | is inspected, and edges (i , k) corresponding to significantly small

values of |ρ̂i j | are removed from the graph. However, when we work with a microarray

data set the number of genes (variables) exceeds the sample size: for this reason the sam-
ple covariance matrix is not positive definite and cannot be inverted. To overcome this
problem, we use the method proposed by Schäfer and Strimmer (2005a), namely, in the
first step the estimated partial correlation coefficients are obtained using the shrinkage
approach proposed by Schäfer and Strimmer (2005b). Denoted by Π the partial correla-
tion matrix, the authors propose a shrinkage estimator based on the following weighted
average

S̃ = λT +(1−λ)S , (1)

where S is the empirical covariance matrix and T is a diagonal matrix, with elements
representing the variances, supposed unequal, of the variables Xi with i = 1,2, . . . ,G.
Other possible models can be used in the expression (1) (see Schäfer and Strimmer
(2005b) for more details). To obtain the shrinkage estimator of Π, it is sufficient to

parameterize the matrix S̃ in terms of partial correlation coefficients, namely

s̃i j =
r̃i j

p

si i s j j

.

To estimate the shrinkage parameter λ, the authors propose an analytic result based on
the Ledoit-Wolf theorem (Ledoit and Wolf, 2003).

In the second step a mixture distribution is used to address the statistical testing
problem of non-zero partial correlations. Formally, we assume that the partial correla-
tion coefficients ρ̂i j across all edges in the network follow a mixture distribution

f (ρ̂i j ) =π0 f0(ρ̂i j ,κ)+ (1−π0) f1(ρ̂i j ) (2)

where π0 is the prior for the null distribution

f0(ρ̂i j ,κ) = (1− ρ̂
2
i j
)(κ−3)/2

Γ(κ/2)

π1/2Γ((κ− 1)/2)
(3)

with κ the degrees of freedom, while f1(ρ̂i j ) is assumed to be the density function of a

uniform random variate from -1 to 1.
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(a)

(b)

Figure 1 – Panel (a) shows the estimated components of the mixture distribution (2). Panel (b)
shows the estimated Gaussian graphical model.
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The (3) is the density function of the distribution of the sample of normal correla-
tion coefficients under H0 : ρi j = 0. In a standard setting, the resulting degrees of free-

dom are κ=N−G+1, then the sample size N cannot be smaller than G. To overcome
this problem, Schäfer and Strimmer (2005a) propose to estimate the degrees of freedom
and the parameter π0 fitting the mixture distribution (2) to the observed data. Using
an empirical Bayesian approach, non-zero partial correlations are identified using the
value 0.9 as threshold for the empirical posterior probability of an edge being present.
Using a sample of 9 patients with negative molecular response to Imatinib a Gaussian
graphical model consisting of 197 genes and 895 edges is obtained. In figure 1, panel (a)
shows the null component and the alternative component of the mixture distribution
(2), while panel (b) shows the estimated GGM in patients with negative molecular re-
sponse to Imatinib. We can see that the estimated network is characterized by a high
level of structural complexity. To gain more insight about the estimated relationships
among the considered genes, in the following paragraph we study the estimated GGM
using some of the most important centrality measures present in literature.

4.2. Central genes in a GGM

In order to gain more insight about the underlying biological processes, we evaluated
the vertices (genes) of the estimated GGM using some of the most important central-
ity measures (Freeman, 1978). The central genes are of particular interest because they
might play the role of organizational hubs. Each centrality measure is related to a par-
ticular structural attribute of the graph. The simplest centrality measure that we can
compute on a given graph is the degree of a gene (vertex), namely, the number of genes
that are adjacent to it. The second centrality measure that we have used to rank the
observed genes is the betweenness of a gene. Betweenness is useful as index of the poten-
tiality of a point to control the communication within a network. Another important
centrality measure that we have used in this study is the closeness measure of a gene,
which is related with the notion of geodesic distance on a graph, namely, the number
of genes in the geodesic path joining the considered gene with another gene. Closeness
of a gene is defined by the inverse of the average length of the shortest path to reach the
other genes in the graph. According to the considered centrality measures, the first 10
genes (∼10% of all the genes) have been selected (table 1). Table 1 shows a key role of the
two transcription factors EGR1 and IRF7 within the estimated network. The protein
encoded by the EGR1 belongs to the EGR family of C2H2-type zinc-finger proteins.
It is a nuclear protein and works as a transcriptional regulator. The products of target
genes that this protein activates are required for differentiation and mitogenesis. Studies
suggest that this protein is a cancer suppressor gene. IRF7 encodes interferon regulatory
factor 7, a member of the interferon regulatory transcription factor (IRF) family. IRF7
has been shown to play a role in the transcriptional activation of virus-inducible cellu-
lar genes, including interferon beta chain genes. Inducible expression of IRF7 is largely
restricted to lymphoid tissue. In our analysis, EGR1 is directly related with 62 genes
and 50% of these are characterized by a negative partial correlation coefficient, while
IRF7 is directly related with 44 genes and 32% of these are characterized by a negative
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TABLE 1
Top first 10 genes obtained using the centrality measures degree, betweenness and closeness. This

table shows a central role of the two transcription factors EGR1 and IRF7.

Degree Betweenness Closeness
1 EGR1 EGR1 EGR1
2 IRF7 IRF7 IRF7
3 TUBA1 TUBA1 STK6
4 MGC27165 MGC27165 TUBA1
5 ADFP ADFP MGC27165
6 STK6 STK6 EPB49
7 NP CDW52 NP
8 EPB49 BCL2 TRAF5
9 BCL2 NP KLF4

10 ORC2L EPB49 ABCC4

partial correlation coefficient.

5. CENTRAL MODULES IN THE ESTIMATED GGM

Since the estimated Gaussian graphical model is characterized by a high level of struc-
tural complexity, we use the statistical approach proposed in Horvath and Dong (2008)
in order to increase the comprehension of the obtained network. In the first step, we
simplify the identified global network using the method proposed by Newman and
Girvan (2004). Then, we use a sample of 8 patients with positive molecular response to
Imatinib to identify a set of differentially expressed genes.

5.1. Finding modules

As observed by Barabasi and Oltvair (2004), cellular functions are likely to be carried
out in a highly modular manner, namely, consisting in a division of the network nodes
into groups where the network connections are dense within the group, but are sparser
between the groups. The ability to find and to analyze such modules can provide invalu-
able help in understanding and visualizing the structure of a gene association network.
In order to identify central modules related with the negative molecular response to
Imatinib, we apply the method proposed by Newman and Girvan (2004) to identify a
set of modules in the estimated GGM. This method is based on the idea that edges con-
necting separate modules have high edge betweenness, since all the shortest paths from
one module to another have to cross them. Then, modules are identified gradually re-
moving the edge with the highest betweenness score. Figure 2(a) shows the modularity
index (Newman and Girvan, 2004) as function of the number of identified modules.
The peak corresponds to 58 subnetworks; however, figure 2(b) shows that only five
subnetworks are characterized by a notable number of genes. As we are going to see
in the following paragraph, only four modules are related with a set of genes that are
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(a) (b)

Figure 2 – Panel (a) shows the modularity index as function of the number of modules identified
in the estimated gene association network. The circled point corresponds to the optimal number
of modules. Panel (b) shows the number of genes as function of the module ordering.

considered differentially expressed.

5.2. Central modules

In order to identify modules related with the negative molecular response to Imatinib,
a sample of 8 patients with positive molecular response to Imatinib is used to iden-
tify a set of differentially expressed genes. A first list of differentially expressed genes
is defined combining the results obtained using the significant analysis of microarrays
(SAM) proposed by Tusher et al. (2001) and the empirical Bayes analysis of microarrays
(EBAM) proposed by Efron et al. (2001). In order to make this paper self-container, in
this section we briefly review these methods.

SAM method is a permutation method for identifying differentially expressed genes
based on a modified t -test statistic called relative distance, namely,

d (i) =
x̄n − x̄p

si + s0

, (4)

where x̄n and x̄p are the average levels of expression for i -th gene in patients with nega-

tive and positive response to Imatinib, respectively, and si is the standard deviation. The
positive constant s0 is added in order to ensure that the variance of the test statistic (4)
is independent from the gene expression. To identify differentially expressed genes, the
relative distance d (i) is plotted versus the expected relative distance, dE (i), defined as the
average of the relative distance computed over all the possible permutations of the class
labels. When the i -th gene is differentially expressed, then the point (dE (i); d (i)) is far
from the d (i) = dE (i) line more than a threshold∆, fixed using the false discovery rate.
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As it is known, the false discovery rate (FDR) control is a statistical method used in
multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hy-
potheses, FDR controls the expected proportion of incorrectly rejected null hypotheses
(type I errors). In practical terms, the FDR is the expected false positive rate.

The EBAM method can be considered as a Bayesian version of the SAM method.
Let π the probability that a gene is differentially expressed. We denote with Ei the
event that the i -th gene is differentially expressed. Let f0(d ) and f1(d ) be probability
density functions of the test statistic d under the assumption that a gene is normal and
differentially expressed, respectively. Using the mixture density

f (d ) = (1−π) f0(d )+π f1(d )

and applying the Bayes’s rule, the probability that the i -th gene is differentially ex-
pressed given the value di is computed by the following expression

P (Ei |di ) = 1−
(1−π) f0(di )

f (di )
. (5)

The logistic regression model is used to estimate the ratio f0(d )/ f (d ). To identify the
differentially expressed genes, the false discovery rate can be related to the expression
(5) (see Efron et al. (2001) for more details).

In order to make comparable the results given by the two methods, we chose 0.01
as optimal false discovery rate. Figure 3(a) shows the estimated false discovery rate as
function of the number of differentially expressed genes for our data set. The highest n

corresponding to an estimated false discovery rate lower than 0.01 is chosen as number
of differentially expressed genes. Using this criterion, SAM leads to the identification
of 19 differentially expressed genes, while EBAM leads to the identification of 16 genes,
with thirteen of these that are found with the SAM. Figure 3(b) shows the results for the
SAM method. The positive part of the modified t -statistics axis corresponds to under-
expressed genes, while negative values of t -statistics indicate over-expressed genes when
compared to positive molecular response. In order to obtain a good representation to
discriminate between responders and non-responders, we prefer to use the − log scale
for p-values; the dashed line is related to a p-value of 0.004 and represents the p-value cor-
responding to the chosen optimal false discovery rate. Any point above the dashed line
represents a differentially expressed gene. Analyses lead to the identification of genes
only by means of the negative values of the test statistics; in other words, we can dis-
criminate between different molecular responses to Imatinib only if a subset of genes is
over-expressed with respect to positive responses. Genes resulting from all the analyses
are selected to be compared with a new list of genes obtained by penalized logistic re-
gression with recursive feature elimination (plr-rfe) proposed by Zhu and Hastie (2004).
The authors propose to use a logistic regression model with a L2-penalty function de-
fined on the parameter space to identify important genes that allow the classification of
the patients in two categories: responders and no responders. Since a L2-penalty func-
tion does not remove unimportant genes from the considered model, the authors use
the recursive feature elimination method originally proposed by Guyon et al. (2002) as
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(a) (b)

Figure 3 – Panel (a) shows the plot of the estimated false discovery rate as function of the num-
ber n of differentially expressed genes. Dashed red line corresponds to the chosen optimal false
discovery rate, while circled points correspond to the number of differentially expressed genes.
Panel (b) shows the − log(p-value) as function of the modified t -statistics used in SAM analysis.
The dashed line represents the chosen level of false discovery rate.

support vector machine. This iterative method is based on the univariate ranking of the
genes obtained using the score function. Starting with a L2-penalized logistic regression
model that includes all the considered genes, at each step the model is fitted to the data
and then the gene with the smallest score function is removed from the model. This
procedure is repeated until the model with the only intercept term is obtained. The
final model is chosen using a cross-validation criterion. Using this method, the most
accurate classifier to discriminate between responder and non-responder patients is ob-
tained using a set of 26 genes, with ten of these that are included in the list previously
defined. Results from SAM, EBAM and plr-rfe methods are shown by a Venn diagram
in figure 4(a). If we do not consider the misclassified non-responder patients, hierarchi-
cal cluster analysis shows that the other samples have good separation between the two
classes, as we can see in figure 4(b). The used hierarchical clustering algorithm has been
performed using the euclidean distance and the complete algorithm. The annotated
gene list is shown in table 2.

Genes that are called differential expressed using SAM, EBAM and plr-rfe methods,
are identified by means of four central modules. Figure 5 shows the four identified
central modules. Validating our results by PReMod, that is a data base of genome-
wide mammalian cis-regulatory module predictions (Ferretti et al., 2007), several iden-
tified central modules have been confirmed. Some of these interactions, like EGR1–
FOXO1A (see figure 5(d)), are also confirmed in a recent functional study indicat-
ing that FOXO1A, a gene belonging to the forkhead family of transcription factors
which are characterized by a distinct forkhead domain, behaves as a negative regulator
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(a) (b)

Figure 4 – Panel (a) shows the number of resulting genes obtained from the considered statistical
methods. Panel (b) shows the results obtained using a hierarchical cluster analysis of patients
with different molecular response to Imatinib. Hierarchical clustering has been performed using
Euclidean distance and complete algorithm.

TABLE 2
Features of 10 genes identified as associated with negative molecular response to Imatinib.

Label Assay ID modified t statistic p-value
CD34 Hs00156373_m1 −3.3351 0.0001
LYL1 Hs00245789_m1 −2.8746 0.0004
RFC2 Hs00267983_m1 −2.8669 0.0004
FVT1 Hs00179997_m1 −2.6265 0.0010
GATA2 Hs00231119_m1 −2.6248 0.0010
PEA15 Hs00269428_m1 −2.5994 0.0011
BAD Hs00188930_m1 −2.5532 0.0013
CORO1A Hs00200039_m1 −2.4640 0.0018
IRF7 Hs00242190_g1 −2.3607 0.0027
EEF1D Hs00260723_m1 −2.2897 0.0034
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(a) (b)

(c) (d)

Figure 5 – Identified central modules. Continuous lines correspond to positive partial correlation
coefficients, while dotted lines correspond to negative partial correlation coefficients.

of EGR1 expression (Cabodi et al., 2009). Moreover, the transcription factor EGR1,
central in the module reported in figure 5(d), has been described in a recent paper as a
potent tumor suppressor gene whose deregulation is involved in hematological malig-
nancies (Gibbs et al., 2008).

6. CONCLUSIONS

In this paper we have introduced a statistical framework to study the modularity struc-
ture of a Gaussian graphical model and to identify modules that are central within the
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estimated model. Our method is motivated by the necessity to gain more insight about
the genetic network of patients with negative response to Imatinib. The proposed
framework is based on two steps: in the first step of our analysis we use a sample of
patients with negative response to Imatinib to fit a Gaussian graphical model using the
method proposed by Schäfer and Strimmer (2005a). Using some of the most important
centrality measures (Freeman, 1978), we observe that two important transcription fac-
tors play a central role within the estimated network, namely EGR1 and IRF7. In the
second step of the proposed framework, we use the method proposed by Newman and
Girvan (2004) to study the modularity structure of the estimated Gaussian graphical
model. To identify modules that are central in our model we use a sample of patients
with positive molecular response to Imatinib. A module containing a differential ex-
pressed gene is defined central in the estimated model. Several identified central mod-
ules are confirmed in the medical literature. Some of these interactions, like EGR1–
FOXO1A are also confirmed in a recent functional study indicating that FOXO1A
behaves as a negative regulator of EGR1 expression (Cabodi et al., 2009). Moreover,
the transcription factor EGR1 has been described in a recent paper as a potent tumor
suppressor gene whose deregulation is involved in hematological malignancies (Gibbs
et al., 2008).
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SUMMARY

Identifying modularity structure of a genetic network in gene expression profile data

Aim of this paper is to define a new statistical framework to identify central modules in Gaussian
Graphical Models (GGMs) estimated by gene expression data measured on a sample of patients
with negative molecular response to Imatinib. Imatinib is a drug used to treat certain types of
cancer that in many medical studies has been reported to have a significant clinic effect on chronic
myeloid leukemia (CML) in chronic phase as well as in blast crisis. For central module in a GGM
we intend a module containing genes that are defined differentially expressed.

Keywords: Gaussian graphical models, modularity, differentially expressed genes.


