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MULTIVARIATE PERMUTATION TESTS IN GENETICS 
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1. INTRODUCTION 

The genetic statistical problem we are going to discuss is quite common in any 
context related to restricted alternatives, or more generally in testing under order 
constraints (Hirotsu, 1986, 1998; Khoury and Beaty, 1994). In the genetic 
configuration introduced by Chiano and Clayton (1998), the statistical problem 
can be formalized in the following way. Let us assume responses are bivariate: 

21, XX  and that observed subjects are partitioned into two groups (according to 

the typical case-control study), so that data may be represented as: 

2,1,,...,1, jniXX j2ji1ji ,X  (1) 

where responses are ordered categorical such as (AA, Aa, aa). Of course, in a 
more general setting we may also consider real valued responses, or any kind of 
ordered variables, with more than two dimensions and possibly with more than 
two groups. The ordering relationship on responses is generally induced by the 
nature of the problem at hand. 

The hypotheses we are interested in are: 
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against the special isotonic set of alternatives: 
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where, in each line, at least one inequality is strong. The XOR relation corre-

sponds to an exclusive OR, so that, under 1H , one and only one of two bivariate 

stochastic dominance relations is true. 
For convenience of interpretation, it is often useful to introduce a response 

model such as, for instance: hjihhjhji ZX , where hj  is the effect on 

the h-th variable in the j-th group, all other notation having obvious meanings 
(Di Castelnuovo et al., 2000). In accordance with this model, the hypotheses 

may be written as: 11: 210H  against 11: 211H XOR 

11 21 , where at least one inequality in each “sub-alternative” is 

strong.
In our genetic context, this happens when a gene is associated with a given dis-

ease so that, on affected individuals (cases), at least one of the genotype frequen-
cies with putative allele increases XOR decreases with respect to non-affected 
individuals (controls). 

Of course, as under the null hypothesis, the pooled data set X is a set of suffi-
cient statistics for the problem, partial tests to take into consideration are: 

.2,1,*
1

*
2

* hXXT
i ihi ihh  (4) 

In the present problem, under 1H , p-values of partial tests are either stochasti-

cally smaller than  or stochastically larger than 1 – . Thus, if responses are k-
dimensional, we need to state the following assumptions: 

all partial tests khTh ,...,1, , are marginally unbiased and significant either for 

large or small values, so that their permutation distributions under 1H  are either 

stochastically larger or smaller than under 0H .

all partial tests khTh ,...,1, , are consistent. 

Furthermore, we also need to modify the properties of combining functions 
(Di Castelnuovo et al., 2000) to: 

a continuous combining function  must be monotonically decreasing in 

each argument: ,......, h ,......, h , if khhh ,...,1, ;

it must attain its supremum positive value , possibly non finite, when at 

least one argument attains 0 (zero): 0,...)(..., hh if ; moreover it 

must attain its infimum negative value , possibly non finite, when at least one 

argument attains 1: 1,...)(..., hh if ;

0 , its acceptance region is bounded ''
2/1

''''
2/ TTT .

If 1ˆ21 " , then reject 0H at significance level .
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If the exchangeability property is satisfied under 0H , the nonparametric com-

bination method leads to exact, unbiased and consistent permutation tests (Pesa-
rin, 2001). 

An allele A at a gene of interest is said to be associated with the disease if it oc-
curs at a significantly higher or smaller frequency among affected individuals
compared with control individuals. For a bi-allelic locus with common allele a
and rare allele A, individuals may carry zero copies of allele A (subjects with 
genotype aa), one (subjects with genotype Aa) or two (subjects with genotype 
AA).

Therefore, conventional testing for allelic association implies testing for the 
joint equality in distribution of genotype frequencies against an alternative of XOR

dominance of cases with respect to controls by using a proper test statistic. In 
doing this, it should be taken into consideration that, by referring to genotype-
specific risks (Lathrop, 1983) 21 hhh ffR , h = AA, Aa, aa, (where 2,1, jf hj ,

are respectively the observed frequencies in cases and controls) the effect of an 
allele can be expressed in only one of the following ways: 

1. Recessive: there is an effect only in the presence of two copies of A allele 
(genotype AA), whereas the behaviour in heterozygous condition (genotype Aa) is 
the same as the reference and most common condition (genotype aa), so that: 

( aaAaAA RRR , in presence of a protective effect) XOR ( aaAaAA RRR for a 

deleterious effect). 
2. Co-dominant: there is an ordering on effects associated with the A allele: 

genotype Aa is of risk (or protection) in comparison with the genotype aa, and 
AA is of risk (or protection) in comparison with the genotype Aa. Obviously, AA
is of great risk (or of great protection) in comparison with the genotype aa, so 

that ( aaAaAA RRR , for a protective effect) XOR ( aaAaAA RRR for a delete-

rious effect). 
3. Dominant: the effect of the A allele is the same in the AA and Aa geno-

type. In this situation, there is no relative risk (or protection) between AA and Aa,

but only between AA (or Aa) and aa, so that: ( aaAaAA RRR , protection) XOR

( aaAaAA RRR , risk). 

For these reasons, differences in risk should be tested for over the restricted 
parameter space, which properly fits the plausible biological models, defined as: 
( aaAaAA RRR ) XOR ( aaAaAA RRR ).

Following Chiano and Clayton (1998), in order to reduce the analysis 
from three to two dimensions, because in a 2×3 contingency table there are 
only 2 degrees of freedom, we may consider odds ratios of genotype- 
specific relative risks, which contain all relevant information and are defined as 

AaAAAA RR and aaAaAa RR , respectively. Thus, the hypotheses under 

testing may be equivalently expressed as: 1:0 AaAAH , against 

11:1 AaAAH XOR 11 AaAA , where at least one inequality 
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in each direction is strong. This system of hypotheses is equivalent to the previous 
one.

In order to solve the problem within the permutation approach, it should be 
noted that relation defining the null hypothesis: 

11:0 AaAAH (5) 

is equivalent to: 

,

:

,,,,

,,,,0

controlsAacasesaa

d

controlsaacasesAa

controlsAAcasesAa

d

controlsAacasesAA

ffff

ffffH

 (6) 

which is easier for computations because it is expressed in terms of products of 
frequencies.

The permutation solution is based on two partial test statistics: 

,

,

,,,,

,,,,

controlsAacasesaacontrolsaacasesAaAA

controlsAAcasesAacontrolsAacasesAAAA

ffffT

ffffT
 (7) 

suitable for testing for the following two system of hypotheses: 

1:0 AAAAH  against 1:1 AAAAH or 1AA

1:0 AaAaH  against 1:1 AaAaH or 1Aa  (8) 

Note, in fact, that: 

1AA .,,,, controlsAAcasesAa

d

controlsAacasesAA ffff  (9) 

The permutation tests *
AAT  and *

AaT  are calculated by using a Conditional 

Monte Carlo (CMC) procedure (Pesarin, 2001). For example, the estimation of 
partial p-value AA  is obtained using B CMC-iterations: 

.
)(#ˆ

*

B

TT oss
AAAA

AA  (10) 

This partial p-value is distributed as U(0,1) and leads to reject AAH0  if 

2/ˆ
AA , or 2/1ˆ

AA , at a significance level . By using the same B

CMC-iterations, we also estimate: 
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TT sAAAA
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Now, we adapt Liptak’s combining function to construct the combined test for 
the system of hypotheses in (3). The global p-value L is estimated by: 

.
)]}ˆ1()ˆ1([)]ˆ1()ˆ1({[#ˆ

11'1'1

B

AaAAsAasAA
B
s

L  (12) 

This p-value also follows a distribution U(0,1). Furthermore, if ,2/ˆ
L  we 

consider the rare allele to be of risk, whereas if 2/1ˆ
L we consider it to be 

of protection. 

2. EXACT EXPLORATION OF THE PERMUTATION SPACE 

We can represent the previous problem by a simple case-control contingency 
table (table 1). 

It should be noted that in all these types of studies, the data may be represented 
in a contingency table (in this case 3×2) with fixed marginal values. The total 
cases, M, and the total controls, N, are given and are obtained from experimental 
observations. At the same time, the number of genotypes AA, in cases and con-
trols together, S1, is also given, and the same holds also for S2 and S3.

TABLE 1 

Case-control contingency table for allelic association study 

Genotype/ haplotype: Cases Controls 

AA g1 l1 S1 = g1 + l1 

Aa g2 l2 S2 = g2 + l2 

Aa g3 l3 S3 = g3 + l3 

Size M = g1 + g2 + g3 N = l1 + l2 + l3 S = M + N = S1 + S2 + S3 

With the usual representation of the data file, we have the following structure: 

Observation 1 2 3 4 … M M + 1 … S = M + N
Genotype Aa AA AA aa ... Aa Aa ... AA
Permutation order u1 u 2 u 3 u 4 ... u M u M+1 ... u S

Figure 1 – Data representation. 

where, in the first M observations (or subjects), we have g1 genotypes AA, g2

genotypes Aa and g3 genotypes aa. It does not matter what order we have among 
the first M subjects (or in the second N subjects), because the contingency table 
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does not change if we take two random permutations into these sub-vectors, and 
frequencies g1, g2, g3, l1, l2 and l3 remain the same. 

Thus, if we consider the overall permutation space associated to data (in the 
previous paragraph), its cardinality is S! and it may be too large to explore exhaus-
tively.  

Les us look at those specific combinations and recombinations of the permu-
tated genotypes/haplotypes in the table which gives the cells a particular structure 
displayed in table 2. 

The marginal sums are identical for any permutation, only the frequencies in 
the cells may change. The relative data file is illustrated in figure 2, where 

},...,1{,,,,,),(, '''****''
'' Sjjiiandjjwhereuuanduuiiii

jiji . Furthermore, 

in the first M observations (or subjects) we have *
1g  genotypes AA, *

2g  genotypes 

Aa and *
3g  genotypes aa. Again, the order of the elements in the two sub-vectors 

(firstly M elements and secondly N elements) is not important. 

TABLE 2 

A particular result of a permutation in the dataset 

Cases Controls 
AA g*1 l*1 S1

Aa g*2 l*2 S2

aa g*3 l*3 S3

M N S

We see that there are no S! different results for each permutation, but many 

permutations give a specific structure of the cells *
1g , *

2g , *
3g , *

1l , *
2l and *

3l .

Observation 1 2 3 4 … M M + 1 … S = M + N

Genotype aa Aa Aa AA ... aa Aa ... Aa

Permutation order u*1 u* 2 u*3 u* 4 ... u* M u* M+1 ... u* S

Figure 2 – Representation of the permuted data file. 

Thus, we can construct the exact permutation distribution for the test statistics, 
associating the related frequencies to the statistics, i.e. the number of times these 
values of the statistics appear in the S! permutations. In the exploration of 
the overall permutation space we are looking for the frequencies associated 
to all possible different configurations in table 2, i.e. all possible sets 

{ *
1g , *

2g , *
3g , *

1l , *
2l , *

3l } where at least one cell is different from the others. 

For data in table 2, we can obtain all possible different table configurations, 
that are: 

1) )];,min(),,0[max( 11
*
1 SMNSg

2) ;*
11

*
1 gSl
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3) )];,min()),([max( 2
*
1

*
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4) ;*
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*
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3 ggMg

6) .*
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*
3 gSl

Then, for a specific set i { *
1gi , *

2gi , *
3gi , *

1li , *
2li , *

3li } we have the frequency: 
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*
3

*
2

*
1

*
3

*
2

*
1321

*
3

3

*
2

2

*
1

1*

lllgggSSSNM

g

S

g

S

g

S
NMf

iiiiii

iii

i
 (13) 

and, of course, the sum of all the frequencies is: 

);!()!(* SNMf
I

i
i  (14) 

where the total number of all these different configurations is: 

;)))]((,0max(1),[min(
),0max(1),min(

*
1122

*
1

11

*
1

NSSM

g

gSNSSgMI   (15) 

so that the relative frequencies are )!/(** Sfp ii .

Of course, the highest relative frequency is associated to the configuration whe-

re *
1g  and *

2g  are maximally close (if possible, equal) to *
1l  and *

2l  respectively, 

which, in general, coincides with the case of no association between cases and 
controls.

3. extension of the permutation solution to multivariate problems 
In this paragraph we consider an extension of the previous solution to multi-

variate genetic testing problems (Cappuccio et al., 2000; Cheung and Kumana, 
2000; Chowdhury, 2000; Gambaro et al., 2000). 

Of course, we may have multiallelic loci such as (A1, A2, A3), where loci A2 and 
A3 can both be rare. In this case we can construct the previous nonparametric 
tests separately for locus (A1, A2) and (A1, A3), because the interest is in making 
comparisons between the rare alleles and the more common ones. We are not 
interested in knowing the association between two rare alleles (maybe one is of 
risk and the other of protection or one is neutral and the other of risk, etc.). It is 
then possible to repeat the previous test for both possible associations: rare1-
common, rare2-common (figure 3), where abbreviations CA and CO stands for 
cases and controls respectively). 

The situation is more complicated when the association study involves more 
than two locus, such as (a,A) and (b,B) where A and B are the rarest. 
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We suppose interest lies in knowing the specific effect of all the multiple possi-
ble configurations (figure 4). 

The main topic in this situation is to reconstruct the possible effect that one 
locus may have, given a specific configuration of the other locus. Then we use six 
different (3×2) contingency tables, one for each specific configuration (figure 5). 
Note that in figure 5, for simplicity, cell frequencies are not reported. 

Genotype Case Control

A1A1 f A1A1 CA f A1A1 CO

A1A2 f A1A2 CA f A1A2 CO

A2A2 f A2A2 CA f A2A2 CO

A1A3 f A1A3 CA f A1A3 CO

A3A3 f A3A3 CA f A3A3 CO

A2A3 f A2A3 CA f A2A3 CO

nCA nCO

Figure 3 – Multiallelic problem. 

Genotype Case Control

Aa, bb f aa,bb CA f aa,bb CO

Aa, Bb f aa,Bb CA f aa,Bb CO

Aa, BB f aa,BB CA f aa,BB CO

Aa, bb f Aa,bb CA f Aa,bb CO

Aa, Bb f Aa,Bb CA f Aa,Bb CO

Aa, BB f Aa,BB CA f Aa,BB CO

AA, bb f AA,bb CA f AA,bb CO

AA, Bb f AA,Bb CA f AA,Bb CO

AA, BB f AA,BB CA f AA,BB CO

n CA n CO

Figure 4 – Multiloci extension. 

First test using the 
(3×2) table given 
by the two alleles 
A1A2.

Not of interest

Second test using 
the (3×2) table 
given by the two 
alleles A1A3.
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1) aa CA CO 2) Aa CA CO 3) AA CA CO

bb … … bb … … bb … …

Bb … … Bb … … Bb … …

BB … … BB … … BB … …

4) bb CA CO 5) Bb CA CO 6) BB CA CO

aa ... ... aa ... ... aa ... ...

Aa ... ... Aa ... ... Aa ... ...

AA ... ... AA ... ... AA ... ...

Figure 5 – Possible configurations. 

For example, in the first table, we carry out a permutation test to investigate 
the association at locus (b,B) conditional to the genotype aa (more common) in 
the other locus. This procedure is an extension of the bivariate case (presented in 
section 1). If we consider the case of two loci with three alleles each, then we 
obtain two contingency tables for each of the six configurations; and if we have 
more than two loci together, the analysis of each type of association may be very 
difficult.

In the last situation, before carrying out the specific test for each configuration, 
it is helpful to carry out an overall test to study if there is any type of significant 
association in at least one of the configurations (it does not matter, for the mo-
ment, if it is of risk or protection). Then, we may suppose that k polymorphic 
genes are jointly examined and that (with the usual notation) {(aa)r, (Aa)r, (AA)r, r
= 1,…,k} is the set of related genotypes. In this situation we express the null 
hypothesis in terms of odd ratios as follows: 

,)]1()1[(:
1

0 raarAa

k

r

H  (16) 

which means that all k genes are jointly irrelevant for discrimination. The alterna-
tive of interest may assume two different expressions. The first is 

,

)1()1(

)1()1(

:
1

1

raarAa

raarAa
k

r

XORH  (17) 

where, of course, at least one inequality in each of the 2 × k lines is strict. The 
interpretation of this alternative is that at least one gene exists which is relevant 
for discriminating cases with respect to controls. The aim of this alternative is not 
to know if all genes are of risk (XOR protection), but to know if we can admit 
that some genes may be of risk, some of protection, and the remaining neutral. 

In order to solve this specific problem, let us suppose that: 
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a) data are organized in a unit-by-unit representation: 
controlcasejnikrY jjir ,,,...,1,,...,1, , where jirY  is the genotype of the r-th

gene on the i-th subject of the j-th group (i.e. jirY  may assume one of the values: 

aa, Aa, AA);
b) permutations exchange units between groups, so that k-dimensional vec-

tors are exchanged; 
c) for each gene r, r = 1,...,k, calculate partial tests as 

***** / controlsAArcasesAarcontrolsAarcasesAArAar ffffT  and

krffffT controlsAarcasesaarcontrolsaarcasesAaraar ,...,1,/ ***** , and all tests are sig-

nificant for either large or small values; 
d) within each gene calculate a second order combined test and related 

p-value ,ˆ ''
r  in accordance with the method previously discussed in section 1; 

e) according to the nonparametric combination theory (Pesarin, 2001), we 

combine k second order transformed p-values |1ˆ2|1 ''
r  through any combin-

ing function  to obtain a third order overall combined test and related p-value

'''ˆ ;

f) if '''ˆ , then reject the overall null hypothesis. 
A second type of alternative of interest is: 

,

)]1()1[(

)]1()1[(

:

1

1

'
1

raarAakr

raarAakr

XORH  (18) 

where again at least one inequality in each line is strict. This means that there is 
at least one gene which is of protection (XOR risk), whereas others are neutral. 

Again, in order to solve the problem, we must modify steps e) and f) respec-
tively into: 

e') according to the nonparametric combination theory, combine k second 

order p-values ''ˆ
r  through any suitable combining function to obtain a proper 

third order overall combined test and related p-value '''ˆ ;

f) if ,|1ˆ2|1 '''  then reject the overall null hypothesis. 

The third order combined tests and their p-values are always obtained by the 

CMC procedure used for obtaining distributions of partial tests *
hrT  and p-values 

hr
ˆ  and ''ˆ

r , h = aa , Aa, AA, r = 1,...,k.
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4. POWER AND SAMPLE SIZE SIMULATIONS 

We present some simulations for the nonparametric permutation solution il-
lustrated in section 1 by considering different types of population parameters and 
genetic models. We perform a set of power simulations considering different 
parameter types (allelic frequency in the population, the three genetic models for 
the allele effect, several values of the odds ratios) for the permutation solution. 
The number of simulations is 1000 and the number of CMC-iterations is again 
1000. 

Simulations are performed by using a single locus with two alleles, one more 
common and one rare, and the significance level =0.05. In figures 6-11 we show 
the power simulations for the permutation solution pointing out the sample size 
for cases and controls and the frequency of the rare alleles. 

As we can observe from the previous figures, the power of the nonparametric 
solution is very good for small sample sizes as well, and also for a low frequency of 
rare alleles. Of course, the situation where the rare allele is recessive is the worst, 
and generally, in this case, the number of subjects is large. 

In figure 12, we consider a simulation study for the permutation test with a 
frequency of 0.10 for the rare allele and significance level =0.05 for the case 
where the rare allele is co-dominant and the odds-ratios are equal to 2. 

Figure 6 – Cases = controls = 50, f = 0.05. Figure 7 – Cases = controls = 100, f = 0.05.

In figure 13, we consider simulations with a frequency of 0.10 for the rare al-

lele and a significance level  = 0.05 for the case where the rare allele is dominant 
and the odds-ratios are equal to 2. 

As we can see from the figures, even in these cases, the nonparametric permuta-
tion solution has a very good power behaviour. 
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Figure 8 – Cases = controls = 500, f = 0.05. Figure 9 – Cases = controls = 50, f = 0.10.

Figure 10 – Cases = controls = 100, f = 0.10. Figure 11 – Cases = controls = 500, f = 0.10.

Figure 12 – Co-dominant model with odds ratios = 2, f = 0.10,  = 0.05. 
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Figure 13 – Dominant model with odds ratios = 2, f = 0.10,  = 0.05.

5. CONCLUSIONS 

We would like to emphasise the role of nonparametric combination as a flexi-
ble methodology for solving complex problems.  

It should also be stressed that, since permutation tests are conditional with re-
spect to a set of sufficient statistics, the nonparametric combination, under very 
mild conditions, frees the researcher from the necessity to model the dependence 
relations among responses. Furthermore, several Monte Carlo experiments have 
shown that the unconditional power of the permutation solution has a very good 
behaviour even for small sample sizes and for a low frequency of rare alleles. 
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RIASSUNTO

Test di permutazione multivariati in genetica 

In questo lavoro vengono proposte alcune nuove procedure di verifica di ipotesi 
nell’ambito di problemi in genetica particolarmente riferiti alle analisi multivariate di 
associazione allelica. Viene inoltre proposto un esteso studio di simulazione per alcune 
soluzioni di permutazione. 

SUMMARY

Multivariate permutation tests in genetics 

In this paper we provide some new statistical results for hypotheses testing in genetics 
particularly referred to multivariate allelic association studies. An extensive power simula-
tion study is also provided on permutation solutions. 


