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1. INTRODUCTION

In BISDN/ATM networks, IP packets or cells of voice, video, data etc are sent over a common
transmission channel on statistical multiplexing basis. The performance analysis of statistical
multiplexer whose input consists of a superposition of several packetized sources is not a
straightforward one. The difficulty in modeling this type of traffic is due to the correlated
structure of arrivals. A common approach is to approximate this complex non renewal input
process by analytically tractable arrival process, namely discrete autoregressive process (DAR). The
impact of autocorrelation in traffic processes on queueing performance measures such as mean
queue length, mean waiting times and loss probabilities in finite buffers, can be very dramatic

The discrete auto regressive process of order 1 [DAR(1)] is known to be a good model for
VBR coded teleconference traffic as in (Elwalid et al., 1995). Hwang et al., 2002 obtained the wai-
ting time distribution of the discrete time single server queue with DAR(1) input. Again (Hwang
and Sohraby, 2003) obtained the closed form expression for the stationary probability generating
function of the system size of the discrete time single server queue with DAR(1) input. (Hwang et
al., 2004) analyzed the queueing behavior of multiple first-order autoregressive sources. (Choi and
Kim, 2004) analyzed a multiserver queue fed by DAR(1) input. (Kamoun, 2006) analyzed the di-
screte-time queue with autoregressive inputs revisited.

A queueing system with discrete autoregressive arrivals is analyzed by Kim et al., 2007).
Mean queue size in a queue with discrete autoregressive arrivals of order p is obtained by (Kim et
al., 2008). Analytic approximations of queues with lightly- and heavily-correlated autoregressive
service times is discussed in (Dieter et al., 2011). (Jose and Bindu, 2011} analyzed the DAR(1)/D/s
queue with Quasi negative Binomial -II distribution as marginal.

In this paper we focus on the analysis of a multiserver ATM multiplexer queue with s servers
(s 20) of constant service rate and VBR coded teleconference traffic as input. We can model the
VBR coded teleconference traffic as discrete autoregressive process of order 1 [DAR(1)]. Here we
analyze the multiserver queue in which the input process is DAR(1) with discrete Mittag-Leffler
distribution DML (&) with parameter (¢t)as marginal distribution. The one step transition
probability matrix of this Markov process is of M/G/1 type as presented in (Neuts, 1989). We
construct a Markov renewal process at embedded epochs from the original Markov process. We
then compute the stationary distribution of the constructed Markov renewal process by matrix
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analytic methods. From this stationary distribution we calculate the stationary distribution of the
system size of the original Markov process by using the theory of Markov regenerative processes.
Also the stationary distribution of the waiting time of the arbitrary packet is obtained..

The rest of the paper is arranged as follows. Discrete Mittag-Leffler [DML (¢¢) ] distribution is
given in section 2. Input traffic as DAR(1) with DML () as marginal distribution is described in
section 3. Analysis of DAR(1)/D/s Queue with DML () is given in section 4. Stationary distri-
bution os system size and waiting time of an arbitrary packet is derived in section 5. The empirical
analysis of the quantitative effect of the stationary distribution of system size and waiting time on

the autocorrelation function as well as the parameters of the input traffic is illustrated numerically
and graphically in section 6. The model is applied to a real data in section 7.

2. DISCRETE MITTAG-LEFFLER DISTRIBUTION

Recently Mittag-Leffler functions and distributions have received the attention of mathematicians,
statisticians and scientists in physical and chemical sciences. (Pillai, 1990a) introduced the Mittag-
Leffler distribution in terms of Mittag-Leffler functions. (Pillai and Jayakumar , 1995) introduced a
new class of discrete distributions, namely discrete Mittag-Leffler distributions (DML () ) which
is a generalization of geometric distribution and developed a first order autoregressive process with
discrete Mittag-Leffler marginal distribution. (Jayakumar, 2003) and (Jose and Pillai, 1996) have
done extensive studies on Mittag-Leffler distribution and its applications. (Jose et al., 2010)
extended this to develop a more generalized Mittag-Leffler model. Autoregressive process with
marginals follow bivariate discrete Mittag-Leffler distribution is developed by (Jayakumar et al.,

2010).
Consider a sequence of independent Bernoulli trials in which the k  trial has probability of

success a / k,k=1,2,3.... Let N be the trial number in which the first success occurs. Then the

probability mass function P[ N =x] is given by

(24

<

f(x) =P[N=x]=(-a)1-%)..(1-
2 x—1 x

@

0 a@ -1 (@=x+1)
= ' ,x=1,2,...
X.

The probability generating function of N is given by G(z)=1-(1-2)%,0<a <1. Let

Xy, X,..X, beindependent and identically distributed as N. Let G be geometric with parameter p

so that P(G=k)= qkp,/e =0,1,2.0<p<l,g=1-p. Then X;+X, +..+X; has generating

function

P 1 .
= - hp=1/
P(z) (2% 1re_2° with p=1/(1+c¢) @)

The distribution with probability generating function (2) is known as discrete Mittag-Leffler
distribution with parameter (DML ())
1. DML(¢e) is geometrically infinitely divisible and hence infinitely divisible.



DAR(1) with DML(ct) as marginal 319

2. DML(@) is normally attracted to stable & .

3. Mittag-Leffler distribution ML(¢x) is obtained as the limit of a sequence
of DML(«)

4. The probability generating function of DML(@) is expanded as

Pz)= 5 ppe"
zZ) = zZ =
n=0pn 1+c(1-2)%

5. DML(«) distribution function [ F,, ] satisfies the renewal equation

1
F*F, where F, =—+L

1+4¢c 1+c¢

and F is the distribution function of N as (1).
6. By Steutel and van Harn [1979] DML( ) is in discrete class L.

Pz) _ a  (1=p?

P(l—p+pz) A+c(1-2)%) ©)

The right hand side of (3) is a probability generating function being the weighted
average of two probability generating functions.

7. DML(@) is directly attracted to discrete stable & .

2.1.  Simulated sample path of DML(cx)

Let X be DML(«& ) with probability generating  function P(z).
By expanding P(z) = Z§=OP(X =n)z" , we can calculate the probabilities as

P(X-0) -
1+c¢
P(X=1) =—2
(1+¢)

P(X =n)= :16[13[)( — (n—D]a - aCyPLX = (n—2D)]+...+(~1)" LaC,PLX = oﬂ

Simulated sample path of discrete Mittag-Leffler distribution is given in the figure 1.
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Figure 1 - Simulated sample path of discrete Mittag-Leffler distribution for n=100 (a) p =0.9 and
a=070b)p=07and a=0.5 (c) p=0.5and «=0.9() p=0.3 and a=0.3 (¢) p=0.5 and
a=1
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3. INPUT TRAFFIC OF THE QUEUE AS DAR(1) WITH DML(«&) AS MARGINAL

Various Markovian processes have been found wuseful models for traffic arising in
telecommunication networks, especially when the traffic exhibits high autocorrelations. Many
authors modeled correlated arrival processes as MAPs(Markovian arrival processes) which
generalize MMPPs( Markov modulated Poisson processes) in a continuous time frame-work and
MMBPs(Markov modulated Bernoulli process) in a discrete time frame work. However the draw
back of these models is the need to estimate many parameters of MAPs which should be extracted
from the marginal distribution and the correlation structure of the measured data and such
estimations require time consuming work. Consequently in order to reduce the number of
parameters , we use the two state MMPP or MMBP simply because they have only four parameters
or fewer to estimate and their autocorrelations are exponentially or geometrically decaying, which
is one of the salient features of the traffic in telecommunication networks such as ATM.

Among time series, the discrete autoregressive process of order I[DAR(1)] is a Markov process
with geometrically decaying autocorrelation function, which can exhibit any general distribution.
The DAR process, constructed and analyzed by (Jacobs and Lewis, 1978) , has developed into one
of several standard tools for modelling input traffic in telecommunication networks. Also DAR[1]
is much simpler than the BMAP (Batch. Markovian arrival process) which can also exhibit general
distribution The input ATM multiplexer with VBR coded teleconference traffic
{X(@):t=t=0,1...} is assumed to be DAR(1) with Discrete Mittag - Leffler distribution as

marginal. From McKenzie [2003], the first -order autoregressive equation can be in the following
form.

XO)=(1-Ze)XE-1)+ZQ)Y ).t =1,2,.... )

where {Z(t):t=0,1,2,...} are iid. binary rwvs with P[Z(t)=0]=p80<f<1) and
PlZk)=1]=1-8. {Y(t):t=0,1,2,...} is a sequence of i.id random variables assume only
positive values. {Z(¢):t=0,1,2,...} is assumed to be independent of {Y(¢):t=0,1,2,...},
b(x) = P[Y(t) = x]

where b(x) is taken as the discrete Mittag Leffler (@ = 1) distribution. DAR(1) is determined by
the parameter B and the distribution {b(x):x=0,1,2,...} of Y(@&). So that

X©0)=Y©0)

X(t) = X(@t-1) with probability p
VO with probability 1-B,0< <1

The properties of DAR(1) are as follows

1. {X(@):t=0,1,2..} isstationary
2. The probability distribution of X(¢) is the same as the distribution of Y'(¢)
P[X(t)=x]=by,x=0,1,2...
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3. The autocorrelation function Y(¢) for X(t) at lag t is ﬂt,t=0,1,2... the

parameter f3 is the decay rate of the autocorrelation function.

If X(0) is also sampled from DML (a =1) then (4) generates a stationary process X(t)whose
marginal distribution is DML (& = 1). The model defines the current observation to be a mixture
of two independent r.v.s: it is either the last observation, with probability S, or another,

independent, sample from the same distribution. The sample path of DAR(1) process with discrete
Mittag Leffler (@ =1) as marginal distribution is shown in figure (2). The conditional mean of

X(t) given X(¢—1) is linear in X(¢ —1). The conditional variance is quadratic in X(¢—1). In
addition, X(¢) is a Markov chain with transition probability matrix given by AI+(1-3)Q

where I is the identity matrix and Q is a matrix each of whose rows have the distribution

DML (a =1).

3.1 DAR (p) model

The model (4) can be extended to higher orders. The p-th order model, DAR(p), is given by
X(t) =(1-Z@) X - o)+ Z()Y (1), =0,1,...

where {Z(t):t=0,1,2,...} and {Y(t):t=0,1,2,...} are same as before and
{@p(t) :t =t =0,1...} is asequence of i.i.d random variables taking values in the set {1,2..p} with

P[(/)(t) = l) = ¢l’l = 1,2P

The processes {Z(¢):t=0,1,2,...}, {¥Y(¥)::=0,1,2,...} and {p(t):t=t=0,1...} are

assumed to be independent The regression equation can be  written @ as

Y (2) with probability 1-f
X(t=1)  with probability ~ Bo
X(t) = X(¢=2) with probability ~ B, G)

X(t—p) with probability By

It is seen that {X(¢):t=t=0,1..} is stationary and stationary distribution of
{X(¢):t=t=0,1...} is same as the distribution of {Y(¢);t=0,1...}. The autocorrelation

function 7y (k) satisfies the Yule Walker equations

p
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Figure 2: - Simulated sample path of the DAR(1) process with discrete Mittag-Leffler (¢ =1) as
marginal distribution for n=100 @) #=1 (b) f=09() =07 d) f=05() =03 @
p=0.1
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4. ANALYSIS OF DAR(1) /D/S QUEUE WITH DML(a) AS MARGINAL

Assume that the input process is DAR(1) with discrete Mittag-Leffler distribution as the marginal
distribution and there are s servers(s > 0) whose service occurs at constant rate. In this integer

valued time queue, the time is divided into slots of equal size and one slot is needed to serve a
packet by a server. Assume that packet arrivals occur at the beginning of slots and departures occur

at the end of the slots. Here {X(¢):t=t=0,1...} represents packet arrivals so that X(¢) is the
number of packets arriving at the beginning of the t ? glot. Let N(t) be the number of packets in

the system say system size , immediately before arrivals at the beginning of the t? slot. Then
{(N(),X(t):t=0,1,2...} is a two dimensional Markov process of M/G/1 queue type. The state

space is Uj,>0l(7) = Un,iZO{(”,i)} = FE{0,1,2,...}x{0,1,2...} . The number of phases is infinity.

So the computation of stationary distribution of {(N(¢), X(¢)):¢ =0,1,2...} is not easy to work

out. The stationary distribution of system size and waiting time of an arbitrary packet is computed
by matrix analytical method and using the Markov regenerative processes
In practice by matrix analytical method and using the theory Markov regenerative processes

we compute the stationary distribution of a new process at the embedded epochs {t;,7=0,1,2...}

0< tg <ty <ty <tz..as follows

0, =0
tr=9.
T {mf{t>tz__1:Z(t)=1orOSX(t)Ss—1}, r=1,2..
Let

N, = N(t,), 7 =0,1,2...
Jo=s

I X(t;) ifZ(t;)=0 7=1,23..
T s ifZ(t,) =1, 7=1,2,3..

The packet arrivals at and after £, are independent of the information prior to ¢, given [, .

From this, it is observed that {(N,],):7=0,1,2,...} is the new Markov renewal process with
state space E ={0,1,2..}x{0,1...s}. The probability transition matrix of the Markov renewal

process is computed as follows.

1. For n=0,1,2... and 1=0,1,...s-1
(max {n—s+1,0},i) with probability
(n,1) >
(max {n—s+1,0},s) with probability 1-p

2. For n=0,1,2.....
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(n,s) >

where

5710 =

8 =

8 = hies- B
4

b

1

0

(max {n—s+1,0},1)

(n—s+1,s)

©.s)

(n+1,s)

ifn=0

ifn>1

Ly

:Z=

with probability b;f0 <i <s-1,
with probability b;(1- f)s—n+1<i<s-1,

min{s—n,s—1}
2 b=+ g%

with probability

with probability gll >0,n+[>0

1,2,...

The transition probability matrix P is as follows

where

A$+1 As+2
1A Ay
Ay 4
A A
4 A4
0 4y
0 0

A1 Ay A
Aygp Ayq Ay
A, A A

s s+1 s+2
As—l As As+1
AS—Z As—l Ag

AS—3 AS—2 As—l

0 0 0
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4.1,  Stability condition

Here the input process is taken as DAR(1)/D/s with discrete Mittag-Leffler (o =1) as marginal

distribution, then

1- 1-
E() =~ V() =—

p p

The parameter p can be estimated by the method of moments, which in this case happens to

yield maximum likelihood estimates of p. For the first variant let & =Fky,...,k,, be a sample

nn

PN
A 1=l .
where /ei >1 for i =1,...,n. Then p can be estimated as p = (— > /eij In order to derive the

A
stationary distribution, the stability condition p =— <1. should be satisfied. Here the service
SH

rate is constant then the offered load should be i < 1 which means
s

A= E[X(0)]= 3 xby =120 <
_ S by -
x=1 p

is the stability condition to be satisfied in the DAR(1)/D/s queue with discrete Mittag-Leffler
distribution (o = 1) as the marginal distribution.

4.2. The stationary distribution of the Markov renewal process

Consider {(N;,];),7=0,1,2..},and 7, = lim;_yoo P{N; =n,]; =i},n20,0<i<s
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Here we assume non exponential interarrival and service time distribution. In order to find the
steady state probabilities of the queueing systems we apply matrix analytic method as described
below: The transition probability matrix P has infinite order, so that it would have to be
truncated before we implement matrix analytic method. We assume that there exists some index N

such that Ap; =0 for all 2> N . That is we assume that the Markov chain does not jump more

than N steps at a time so that the matrix is of finite order, see (Latouche & Ramaswamy, 1991).
For a numerical illustration, consider the case when s=5 and N=14. Then the transition

probability matrix P can be a matrix of M/G/1 type, which underlines the similarity to the

embedded Markov chain of the M/G/1 queue. With respect to the levels , the Markov chain is

called skip free to the left, since in one transition the level can be reduced only by one

ooooo:ooooo}oooo,:§'>:,_°~’J,\?JKSC’_,EUU.‘ch

A5 Ag A

49 | A
Ay | Ag
A | A
4 | A
As | A
Ay | A
Ay | A
A | A
A | A
A |4
o | 4
o | o
o | o
o | o
o | o
o | o
o | o
o | o
o | o
o | o

Ay
A0

o O O

O O O O O

A
Ay

Mo

Az Ay
Ay Az |
App A |
Ao Ay |
A9 Ap |
4 A9 |
47 Ay |
4 A7 |
A5 Ag |
Ay As |
Ay Ay |
4 43|
A 4
4 A

0 A |

o 0o |

o 0 |

o 0o |

o 0o |

o 0o |

At

A7
A1
A5
Ay
A3

By arranging the transition probability matrix into (§X §) matrices we get

By By B

A A
0 Ay 4
0 0 4

or equivalently P =

By Ay A4

A A4
0 Ay A
0 0 4

In general we can symbolize the transition matrix P as

A9
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BO Bl BZ Bn::-_l
I A A A
4 A4 4 s+
A A A * N+s+1
po| 0 Ay Ay A, | Nestl
. . s
0o 0 0 Ay
or equivalently
BO Az A3 cove An:;-
A A Ay o A
4 A 4 s+
P= 0 AO Al ceee A ;:—_2 n::- =M_1
T s
0o 0 o0 Ay
The elements of P can be written as
By A5+1 AZs—l
. BS_l AS “ee AZS_Z
By = : : :
Asp A As(n+1)—1
R A1 Asn As(n+1)—2 .
Ay = : : n=01,2.7n,
As(n—l)+1 As(n—1)+2 Asn

A A

B,=A, n=12..n

By the matrix analytic method we proceed as follows

Step1: Find the minimal nonnegative solution G of the matrix equation

0 A n
G= XY A,G
n=0
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G can be given by the following iteration See ( Breuer, 2005)

GO = O
G = 4
G kilAG” k=23
/€ = n=1An k 1) = 4y
G = EG

b1 R

G is a stochastic matrix ,s0 we can stop the iteration procedure when |1-G.1|< & reaches where
& =0.0001. From this iteration we obtained the upper limit of k & let » =% —1. From this

n  we come to know the truncated index N at which G become stochastic

Step 2: Find
7o ,
H= % B,G
n=0
and a positive row vector h satisfying
hH = h
Step 3:
ks > Y —1
O RSy G|l 1-5 4 G 1,20
Xp = xoigo ot +l§1xli§O il _iEO i m=12..n

Step 4: Finally
((7[7’25,0 ""ﬂ-nS,S )...(ﬂ'(n_'_l)s_l,o...7[(”+1)5_1’S )) = an,n = 0,1,27’1

% -1
where C = [ZZ_Oxne:| and e is the s x (s+ 1) dimensional column vector whose components are

all ones

5. STATIONARY DISTRIBUTION OF {N(t), X(¢),t =0,1,2...}

Observe that  {(N;,J;),t7),7=0,1,2...} is a Markov renewal process and
{(N@+1t;), X +t;)):t=0,1,2..}given  {(N(v),X()),0<v<t;,N;,J;)=(n1)} s
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stochastically  equivalent to  {N(2),X(t):£=0,1,2...} given {Np,Jq=(n7)} Hence
{N(@),X(t):t=0,1,2...} is a discrete time Markov regenerative process with the Markov renewal

sequence {(N,J;),t;):7=0,1,2...} . Now we consider the following theorem

THEOREM 5.1 (Choi) Let {Z(t),t >0} be a discrete time Markov regenerative process on the
countable state space S with Markov renewal sequence {(Yk’S/e ),k=0,1,2,...}. Let E be the

countable state space of the Markov process {Y/e 1k=0,1,2...} andfor ic E and | €S,

;= E[S /Yy =i, @)
§-1
% =E| 2 Y z@-jy 1Yo~ ®

Suppose that the discrete time semi-Markov process {Y(¢):t=0,1,2,...} defined by Y (z) = Y/e

for Sk <t < S/e+1 is irreducible, aperiodic and positive recurrent. Then for k€ E and j €S,

2 70

limy oo PAZ() = ]| Yy = by = 2EE— = ©)
,ZE”iﬂi
S

where 7 = (7z'l~ )ieE is a stationary measure of the Markov process {Y/e 1k=0,1,2...}

THEOREM 5.2 The stationary distribution or the limiting probabilities
Pwi = lim,_,  P{(N(t),X(t)) = (n,7)},m, 7 = 0,1,2... of {(N@®),X({1)):¢t=0,1,2...}

are given by

-1 .
7, (ﬂ'n]--i-ﬂ'nsbj), 0<j<s—1
_ ) -1 Tpsbs .
pn] =14 1-p ’ ]=s
-
-1 i
M2 Tni(jos)sbiF s 25

© -1
where (l—ﬂZbr) =u
r=s

THEOREM 5.3 The distribution of the waiting time W of an arbitrary packet is given by P(W=w)
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1( sw o { \ S(‘w—il)—l g { \
=— - min {n=7—sw,s}+ - min {s(w+1)—n,;

A\ n=0 /'=5fw—n+1pn] ! n=sw+1 j=1pn] ( )=
for w=0,1,2...

6. EMPIRICAL ANALYSIS

Assume the number of servers to be s=3, and & =1. To satisfy the stability condition assume the

A
mean A =1.5,1.8,2,2.5 and 2.7 so that —<1. Figure (3)(a) displays the complementary
s

distribution function of the stationary system size when
A =2.7(p =0.27027) and p=0.1,0.3,0.5,0.7, and 0.9 and figure (3)(b) displays the
complementary  distribution  function of the stationary  system  size  when
B =05 and 1 =15,1.8,2,2.5 and 2.7 (p=04, 03571, 03333, 02857, and 0.27027)
respectively. The parameter S gives the information on the strength of correlation of the input
process. Stationary system size is larger for the large S . Also stationary system size is
stochastically larger for large variance of the input process (1 =2.7(p =0.27027) & variance=

9.99) than those for the case that the stationary distribution of the input process has a small
variance( A = 1.5(p = 0.4) & variance= 3.75). Figure (2) support this intuitive facts.

Table (1) and (2) display the stationary probabilities of the system size for different values
of 4 and B. Table (2) and (3) display the stationary probabilities of waiting time of an arbitrary

packet for different values of 4 and .

Figure (4)(a) displays the complementary distribution function of the waiting time of an
arbitrary packet,when A =2.7 and f=0.1,0.3,0.5,0.7, and 0.9 and figure (4)(b) displays the
complementary  distribution  function  of  the  stationary  system  size  when
L =0.5and 2=15,1.8,2,2.5, and 2.7 respectively. Stationary waiting time of an arbitrary
packet,is larger for the large B . Also stationary waiting time of an arbitrary packet,is
stochastically larger for large variance of the input process ( (4 =2.7(p = 0.27027) & variance=

9.99) than those for the case that the stationary distribution of the input process has a small
variance( A = 1.5(p = 0.4) & variance= 3.75). Figure (3)support this intuitive facts.
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TABLE 1
Py in DAR(1)/D/s with discrete Mittag-Leffler as marginal for ot =1, mean= 1 =2.7 ,
p=0.27027, f=0.9 ands=3

n 0 1 2 3 4 5 6 7
0 0.19350| 0.14136 | 0.25616 | 0.07162| 0.00523 | 0.00381| 0.00278 | 0.00203
1 0.00074| 0.00056 | 0.01755| 0.00260| 0.00489 | 0.00014| 0.00010| 0.00007
2 0.00017| 0.00014 | 0.01898 | 0.00044 | 0.00444 | 0.00346| 0.00002 | 0.00001
3 0.00012| 0.00012 | 0.00014| 0.00033 | 0.00402 | 0.00014| 0.00252 | 0.00001
4 0.00008 | ©.00007 | 0.00010| 0.00024 | 0.00363 | 0.00312| 0.00010| 0.00183
5 0.00002| ©0.00005| 0.00004| 0.00018 | 0.00328 | 0.00014| 0.00002 | 0.00007
6 0.00003 | ©.00004 | 0.00004 | 0.00013| 0.00296 | 0.00282| 0.00227 | 0.00001
7 0.00002| ©.00002 | 0.00002| 0.00009 | 0.00267 | 0.00013| 0.00009 | 0.00001
8 0.00002| ©0.00001 | 0.00001| 0.00007 | 0.00241| 0.00254| 0.00002 | 0.00165
9 0.00001| ©.00001 | 0.00002| 0.00005| 0.00217| 0.00012| 0.00205| 0.00007
10 0.00001| ©.00001 | 0.00001| 0.00004 | 0.00196 | 0.00229| 0.00009 | 0.00001
11 0.00001| ©.00001 | 0.00000| 0.00003| 0.00177| 0.00011| 0.00002 | 0.00001
TABLE 2
Py in DAR(1)/D/s with discrete Mittag-Leffler as marginal for o =1, mean= A4 =1.5, p=0.4,
P =05 ands=3
n 0 1 2 3 4 5 6 7
0 0.34617 | 0.20768 | 0.14007 | 0.07064| 0.02119| 0.01272| 0.00763 | 0.00458
1 0.01305| 0.00805| 0.02210| 0.00535| 0.01224 | 0.00096 | 0.00058 | 0.00035
2 0.00395| 0.00255| 0.03445| 0.00153| 0.00656 | 0.00663| 0.00017 | 0.00019
3 0.00258 | 0.00180| 0.00127 | 0.00101| 0.00358 | 0.00066| 0.00392 | 0.00007
4 0.00159 | 0.00101| 0.00081 | 0.00063| 0.00198 | 0.00343| 0.00036 | 0.00233
5 0.00019 | 0.00061| 0.00040 | 0.00038| 0.00118 | 0.00046| 0.00012 | 0.00028
6 0.00057 | 0.00040 | 0.00028 | 0.00024| 0.00062 | 0.00176| 0.00199 | 0.00007
7 0.00034 | 0.00021| 0.00016 | 0.00014| 0.00035| 0.00023| 0.00019| 0.00004
8 0.00020 | 0.00013 | 0.00008 | 0.00009| 0.00026 | 0.00089| 0.00007 | 0.00117
9 0.00014 | 0.00010| 0.00007 | 0.00006| 0.00012 | 0.00012| 0.00145| 0.00014
10 | 0.00009 | 0.00005| 0.00004 | 0.00004| 0.00007| 0.00045| 0.00016 | 0.00003
11 | 0.00005| 0.00003 | 0.00002 | 0.00002| 0.00004 | 0.00007| 0.00004| 0.00002
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TABLE 3
P(W = @) in DAR(1)/D/s with discrete Mittag-Leffler as marginal for different values of 3
and A =27, a=1,ands=3.

B
[ 0.1 0.3 0.5 0.7 0.9
0 0.3892 0.4149 0.4181 0.403 0.372
1 0.2597 0.2353 0.1938 0.1353 0.0536
2 0.1437 0.1218 0.1028 0.0816 0.0416
3 0.0855 0.0704 0.0621 0.0543 0.0338
TABLE 4

P(W = @) in DAR(1)/D/s with discrete Mittag-Leffler as marginal for different values of A,
P=05, a=1,ands=3

A
[0 1.5 1.8 2 2.5 2.7
0 0.6684 0.5914 0.5455 0.4497 0.4181
1 0.1846 0.1978 0.2006 0.1978 0.1938
2 0.0721 0.0855 0.0921 0.1014 0.1028
3 0.0338 0.0433 0.0488 0.0593 0.0621
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Fignure 3 - Complementary distribution function of the stationary system size in DAR(1)/D/s with
discrete Mittag-Leffler as marginal when @) =1, A =27 (b) a =1, f=0.5
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Figure 4 - Complementary distribution function of the waiting time of an arbitrary packet in
DAR(1)/D/s with discrete Mittag-Leffler as marginal,when (@) ¢ =1 and 4=2.7 (b) o =1and
B =05
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7. REAL DATA ANALYSIS

Apply the model to a data on the passenger arrivals at a subway bus terminal in Santiago de Chile
for each 15-minute interval between 6:30 hours and 22 hours from 1-21 March 2005. This includes
all the busy periods as well as idle periods. http://robjhyndman.com/TSDL /BICUP2006.DAT is

the source of the data. The data can be treated as DAR(1), where X(¢) be the number of arrivals

waiting for the service is given in figure (5).

300
t

Figure 5 - Real data

The data set can be fitted as DAR(1) with marginal as discrete Mittag Leffler o =1
distribution as follows. To test whether there is a significant difference between an observed data
and the DAR(1) with marginal as discrete Mittag Leffler o =1, use Kolmogorov-Smirnov [K.S.]

test for Hy: DAR(1) with marginal discrete Mittag Leffler @ =1 distribution with parameter

p=0.1756 and §=0.8244 and S =0.8 is a good fit for the given data. Here the calculated
value of the K.S. test statistic is 0.0633 and the critical value corresponding to the significance level
0.01 is 0.0665, showing that the assumption for number of arrivals follow DAR(1) with marginal
discrete Mittag Leffler & =1 distribution is valid which is given in figure (6)

O Real data W DAR(L) with DML{===1) marginal
140
120 1
100 —H H
BO —
60
a0 -
i Mo m- - -
o 2 3 4 5 S 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 6 - The Probability histogram of Real data and DAR(1) with marginal Discrete Mittag Leffler
a =1 distribution with f) =0.1756 and q = 0.8244, 5 =0.8
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By applying matrix analytic method obtain the stationary distribution of system size and waiting
time of an arbitrary customer for the DAR(1)/D/s queue with marginal as discrete Mittag Leffler
a =1 distribution. Here the mean = A =4.855. To satisfy the stability condition assume the

number of servers as s=5.

TABLE 5

P in real data when [f=0.8, A =4.855,5=5.

ie A/5s=0.971<1 Also assume the value of autocorrelation
function g =0.8, p=0.1756 and §=0.8244. Table(5) and (6) display the stationary

distribution of waiting time of an arbitrary customer and system size.

P(W = @) in real data when 3 =0.8, A =4.855,s=5.

7. CONCLUSIONS

A DAR(1)/D/s queue with discrete Mittag-Leffler distribution as the marginal distribution is
analyzed in this chapter. ATM multiplexer with VBR coded teleconference traffic is taken as the

w p(w)

0 0.3602
1 0.1685
2 0.0452
3

0.0214

0 1 2 3 4 5 6 7

0 | 0.16506 | 0.1486 | 0.11094 | 0.07893 | 0.06589 | 0.02652 | 0.00403 | 0.00382
1 | 0.00065 | 0.00047 | 0.00045 | 0.00053 | 0.00749 | 0.00055 | 0.00008 | 0.00008
2 | 001017 | 0.00916 | 0.00912 | 0.00903 | 0.01476 | 0.01096 | 0.00167 | 0.00158
3 | 000019 | 0.0002 | 0.00014 | 0.00012 | 0.05716 | 0.00006 | 0.00001 | 0.00001
4 | 000019 | 0.0002 | 0.00014 | 0.00012 | 0.05716 | 0.00006 | 0.00001 | 0.00001
5 | 0.00004 | 0.00004 | 0.00012 | 0.00012 | 0.00015 | 0.00004 | 0.00001 | 0.00382
6 | 0.00018 | 0.00016 | 0.00016 | 0.00023 | 0.00025 | 0.0002 | 0.00003 | 0.00003
7 | 0.00021 | 0.00019 | 0.00019 | 0.00019 | 0.00023 | 0.00023 | 0.00003 | 0.00003
8 | 0.00016 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00017 | 0.00003 | 0.00002
9 | 0.00016 | 0.00014 | 0.00014 | 0.00014 | 0.00014 | 0.00017 | 0.00003 | 0.00002

TABLE 6
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input traffic. DAR(1) model is a good mathematical model for a multiserver ATM multiplexer
with VBR coded teleconference traffic. The stationary distributions of the system size and the
waiting time of an arbitrary packet are obtained with the help of the matrix analytic methods and
the Markov regenerative theory. From the definition of autocorrelation function, the larger the
parameter f3 , the slower the decay of the autocorrelation of the input process. So it is expected

that stationary system size and waiting time for the case of large B are stochastically larger than
those for the case of small B . Also the stationary system size and waiting time for the case that

the stationary distribution of the input process has a large variance are stochastically larger than
those for the case that the stationary distribution of the input process has a small variance.
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SUMMARY

Analysis of queneing system with discrete autoregressive arrivals having DML (@) as marginal

distribution

In this paper we analyze DAR(1)/D/s Queue with Discrete Mittag-Leffler [DML (¢¢) ] as marginal

distribution. Simulation study of the sample path of the arrival process is conducted. For this
queueing system, the stationary distribution of the system size and the waiting time distribution of
an arbitrary packet is obtained with the help of matrix analytic methods and Markov regenerative
theory. The quantitative effect of the stationary distribution on system size, waiting time and the
autocorrelation function as well as the parameters of the input traffic is illustrated empirically. The
model is applied to a real data on the passenger arrivals at a subway bus terminal in Santiago de
Chile and is established that the model well suits this data.



