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1. INTRODUCTION

The historically first approach applied for modeling financial data is based on the nor-
mal distribution. Fama (1976) found that the normal assumption provides a good fit in
case of data taken with a monthly or smaller frequency. From the other side, heavy-
tailed distributions should be maintained for more frequent observations. Fama (1965)
proposed to use the mixture of normal distribution, while Blattberg and Gonedes (1974)
compared the ability of the multivariate t -distribution and the symmetric stable distri-
bution to fit real data. All these distributions belong to the class of elliptically contoured
distributions which has been already applied in modeling financial data. For instance,
Owen and Rabinovitch (1983) extended several well-known in finance theorems, like,
Tobin’s separation theorem, Bawa’s rules of ordering certain prospects to elliptically
contoured distributions. Chamberlain (1983) showed that this family of distributions
implies mean-variance utility functions. More recently, Berk (1997) proved that the one
of the necessary conditions of the validity of the capital asset pricing model (CAPM)
is an elliptical distribution of the asset returns. Zhou (1993) and Hodgson et al. (2002)
suggested tests for the CAPM under the assumption of the elliptical symmetry, while
Bodnar and Gupta (2009a) derived an exact confidence set for the efficient frontier as-
suming that the matrix of the asset returns follows a matrix variate elliptically contoured
distribution.

Following Fang and Zhang (1990) a random vector X of dimension k is elliptically
contoured distributed if its density function exists and has a form

f (x) = d e t (Σ)−
k
2 h((x−µ)′Σ−1(x−µ)) , (1)

where h : [0,∞)→ [0,∞). This distribution is denoted by Ek (µ,Σ, h). In case h(x) =

(2π)−
k
2 e x p(−x/2) the random vector X has a k-variate normal distribution. Note that

the density function of the elliptically contoured distributed random vectors does not
obviously exist. The more general definition of the family is based on the characteristic
function. However, in the present paper we restrict ourselves to the subclass of elliptical
distributions that possess the density function and they are defined by Eq. (1). One
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of the most important property of the elliptically family, which makes it attractive for
financial applications, is that the linear combinations of the vector X have the same type
of distribution as the vector X itself, e.g. for each p×k dimensional matrix of constants
L the distribution of LX is Ep (Lµ,LΣL′, h).

The stochastic representation of the random vector X is essential in the theory of
elliptical distributions. It holds that X∼ Ek (µ,Σ, h) if and only if X has the same distri-

bution as µ+ R̃Σ1/2 U, where U is a k-variate random vector uniformly distributed on

the unit sphere in IRk , R̃ is a nonnegative random variable, and R̃ and U are independent

(see Fang and Zhang (1990)). The expression µ+ R̃Σ1/2 U is a stochastic representation
of X, i.e. it holds that

X
d
=µ+ R̃Σ1/2 U , (2)

where the symbol A
d
= B says that the two random variables A and B have the same

distribution. The variable R̃ is called the generating variable of X and it fully determines

the distribution of X. The distribution of R̃2 is equal to the distribution of ‖X−µ‖2
Σ

,
where ‖y‖

Σ
is the norm of the vector y with respect to the positive definite matrix Σ

equal to
p

y′Σ−1y. If X is absolutely continuous, then R̃ is also absolutely continuous
and its density is

fR̃(r ) =
2πnk/2

Γ (nk/2)
r nk−1 h(r 2) (3)

for r ≥ 0 (cf. Fang et al. (1990, Theorem 2.9)).
When the random vector X follows a mixture of normal distributions then the

stochastic representation (2) transforms to

X
d
=µ+RΣ1/2 ǫ , (4)

where R = R̃/‖ǫ‖Ik
, ǫ ∼ Nk (0,Ik ), and R, ‖ǫ‖Ik

, ǫ are mutually independently dis-

tributed. Ik is an identity matrix of size k. In this case both densities of X and R do
exist for all k ≥ 1.

Table 1 summarizes the above mentioned multivariate models with their univariate
counterparts. They all have a similar stochastic representation, where µ denotes the
location vector and Σ the scale matrix. The only difference is in the behavior of the
so-called pseudo-generating variable R2, which is independent of the standard normally
distributed random vector ǫt . In case of the normal distribution it is just a constant equal
to 1. For the multivariate t -distribution with n degrees of freedom it is the square root of
n divided on a χ 2-distributed random variable with n-degrees of freedom. For the sym-
metric stable law R2 follows an univariate non-symmetric stable distribution with the

index of stability equals to α/2, the mean 0, the variance (cos(πα/4))
2
α , and the skew-

ness parameter 1 (see Samorodnitsky and Taqqu (1994)). The similar structure we also
observe for the univariate GARCH process, i.e. the conditional volatility σt and ǫt are
independently distributed (see, e.g. Bollerslev (1986), Pawlak and Schmid (2001)). We
preserve this property for the suggested in the paper multivariate generalization given
in Section 2. One of the main advantages of the approach is that it satisfies the necessary
and sufficient conditions of the capital asset pricing model derived by Berk (1997). From
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TABLE 1
Univariate and multivariate models of financial data. In the table ǫt is a random variable normally
distributed with the mean 0 and the variance σ 2. ǫt has a k-dimensional normal distribution, ut is

a k-dimensional random vector uniformly distributed on the unit sphere in IRk . U= (v1, ...,vn )
with vec h(U) to be uniformly distributed on the unit sphere in IRnk . Sα(γ ,µ,σ 2) denotes an

univariate α-stable distribution with the skewness parameter γ , the mean µ and the variance σ 2.

Name Univariate Multivariate
Normal Xt =µ+ 1 · ǫt Xt =µ+ 1 · ǫt

tn -distribution Xt =µ+
ǫtp
χt /n

, χt ∼ i iχ 2
n Xt =µ+

ǫtp
χt /n

, χ ∼ i iχ 2
n

α-symmetric stable Xt =µ+
p

Atǫt Xt =µ+
p

Atǫt ,

At ∼ i i Sα/2(1,0, (co s (πα/4))
2
α ) At ∼ i i Sα/2(1,0, (co s (πα/4))

2
α )

Mixture of normal Xt =µ+Rt · ǫt Xt =µ+Rt · ǫt

Multivariate Elliptical Contoured Xt =µ+ R̃t ·Σ1/2ut

Matrix Elliptical Contoured (X1 , ...,Xn )
′ =µ+R · (ǫ1 , ...,ǫn )

′ (X1, ...,Xn ) =µ+ R̃ ·Σ1/2U

GARCH Process Xt = σt ǫt ,
σ2

t = α0+
∑p

i=1
αi X 2

t−i
+
∑q

j=1
β jσ

2
t− j

the other side it possesses the generality of the multivariate GARCH processes keeping
the time varying structure of the conditional covariance matrix.

The autoregressive method has already been applied for modeling a density function
of the returns. For example Hansen (1994) used it to design the process that is based on
the t -distribution with time varying degrees of freedom. Rockinger and Jondeau (2002)
considered the process with time varying higher moments, i.e. the conditional time
varying skewness and kurtosis were modeled. In the present paper the autoregressive
technic is used to forecast the future values of the generating variable of the multivariate
process, that fully specifies the unconditional distribution of the process.

The rest of the paper is organized as follows. In the next section the multivariate
elliptically contoured autoregressive (MElAR) process is suggested. Its distributional
properties are studied in Section 2.1. The two-stage maximum likelihood estimator of
the process parameters is given in Section 3. In Section 3.1, we derived the Stein-Haff
identity for the introduced stochastic model. An empirical example is presented in Sec-
tion 4. Here, we fit the MElAR process to real data of the EUR/USD and EUR/JPY
exchange rate returns and show that the non-diagonal elements of the dispersion matrix
are slowly varying in time. Final remarks are given in Section 5.

2. MULTIVARIATE ELLIPTICALLY CONTOURED AUTOREGRESSIVE PROCESS

In this section we introduce a new class of elliptically contoured processes, that allows
us to model the dependence between the process realizations in a non-trivial way. More-
over, the presented model puts together the conditional time varying properties of mul-
tivariate GARCH processes and the elliptical symmetry of mixtures of normal distribu-
tions.

Let Xt = (Xt ,1, ...,Xt ,k )
′, t = 1,2, ... be a sequence of k-dimensional random vectors.
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The model is given by

Xt = µ+RtΣ
1/2ǫt , (5)

R2
t = α0+

p
∑

i=1

αi R2
t−i , (6)

where α0 > 0 and αi ≥ 0 for i ∈ {1, ..., p}.
The assertion we denote by {Xt } ∼ M E l ARk (µ,Σ, p). ǫt ’s are assumed to be indepen-
dently identically normally distributed with mean vector 0 and covariance matrix Ik ,
i.e. ǫt ∼ N (0,Ik ). Let Ft denote the information available up to time point t . We
assume that ǫt is independent of Ft−1. As a special case of this assumption we get that
Rt and ǫt are independent for all t = 1,2, ... as well since Rt is fully determined by the
previous information.

The idea behind the MElAR process is to replace in Eq. (4) the unobservable pseudo-
generating variable R by its forecast Rt given the information available at time point
t . From Eq. (5) and the independency of Rt and ǫt it follows that Xt is elliptically
contoured distributed, i.e Xt ∼ Ek (µ,Σ, h) for some function h(.). More precisely, Xt
follows a mixture of normal distributions with an unknown shape of elliptical symme-
try. Its density function does always exist and it is completely specified by the density
function of Rt (see Eq. (3) and Fang et al. (1990, Section 2.6)).

The designed process possesses both generality of the GARCH process and symmet-
ric properties of elliptical distributions. On the other side, the model (5) and (6) cannot
be considered as a special case of a multivariate GARCH-type process. First, the idea
behind the process (5) and (6) is to model the conditional density, whereas the multi-
variate GARCH processes are models for the conditional covariance matrix. Second,
the unconditional distribution of any multivariate GARCH process is not elliptically
symmetric since the generating variable Rt is replaced by a conditional covariance ma-
trix in the definition of a multivariate GARCH process.

Similarly to the multivariate GARCH process the model (5) and (6) assumes that
the conditional covariance matrix Σt |t−1 = RtΣ is time varying, whereas the dispersion

matrix Σ is time invariant. The last assumption can be violated by considering the time
varying dispersion matrixΣ. This generalization is not treated in the paper, but presents
a possible extension of the obtained results and it is left for future researches. Moreover,
a further extension of the M E l ARk (µ,Σ, p) process can be considered. It is given by
the model (5) and

R2
t = α0+

p
∑

i=1

αi R2
t−i +

q
∑

j=1

β j ‖Xt− j −µ‖2Σ , (7)

where β j ≥ 0, j = 1, ..., q . This process we denote by M E l ARk (µ,Σ, p, q). The main

properties of the process (5) and (7) are given in Section 2.1.
The one of the most important application of the MElAR process leads to the port-

folio theory. Because of its elliptical structure the suggested process satisfies the neces-
sary conditions of the validity of the CAPM model derived by Berk (1997). Fitting the
process (5) and (6) allows us to model the expected utility portfolio with time-varying
coefficient of the investor’s risk aversion. Moreover, since the dispersion matrix Σ is
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time invariant, it holds that the expected return of the global minimum variance port-
folio is time invariant. The only two parameters of the efficient frontier (the set of the
all mean-variance optimal portfolios) that depend on R2

t are the variance of the global
minimum variance portfolio and the slope parameter (see Bodnar and Gupta (2009a)).

2.1. Distributional Properties

The first property of the MElAR process follows directly from its elliptical behavior.

LEMMA 1. Assume that {Xt } ∼ M E l ARk (µ,Σ, p, q). Let L be k × k nonsingular
matrix of constants. Then {LXt } ∼M E l ARk (Lµ,LΣL′, p, q) given by

LXt = Lµ+Rt LΣ
1/2ǫt , (8)

R2
t = α0+

p
∑

i=1

αi R2
t−i +

q
∑

j=1

β j ‖LXt− j −Lµ‖2LΣL′ , (9)

The coefficients in the recursive equations for R2
t are the same in both the formu-

las (7) and (9). Note, that the similar property does not hold for matrices L of order p×k,
p < k. The result follows from the fact that ‖LXt−i − Lµ‖2LΣL′ = bp/2,(k−p)/2‖Xt−i −
µ‖2
Σ

, where the random variable bp/2,(k−p)/2 has a beta-distribution with parameters p/2

and (k− p)/2, and bp/2,(k−p)/2 and ‖Xt−i −µ‖2Σ are independently distributed (see Fang

et al. (1990, p. 39)). Correspondingly, it follows that a linear combination of the com-
ponents of the M E l ARk (µ,Σ, p, q) process {l′Xt } does not follow an univariate GARCH
process. Although the process {l′Xt } has a similar structure to the GARCH process,
the coefficients in the conditional variance equation are positive random variables. If
{Xt } ∼M E l ARk (µ,Σ, p) it follows that {LXt } ∼M E l ARp(Lµ,LΣL′, p)with the same

coefficient α0, αi , j = 1, ..., q for all p × k matrices L. Moreover, {l′Xt} is an univariate
GARCH(0,p) process.

An important problem is a statement not only about the distribution of Xt but
also about the joint density of the arbitrary sequence of (Xt1

, ...,Xts
) generated by the

MElAR process. In order to shed light on the problem, first, we study the independency
structure of the process.

LEMMA 2. Let {Xt } ∼ M E l ARk (µ,Σ, p, q). Then for each s, t1, ..., ts the sequences
(Rt1

, ..., Rts
) and (ǫt1

, ...,ǫts
) are independently distributed.

The result of the lemma follows from the fact that for each ti the generating variable
R2

ti
depends on ǫ j , j < ti only through the quadratic forms ‖ǫ j ‖2Σ.

Because (...,‖ǫ0‖2Σ, ...,‖ǫts
‖2
Σ
) and (...,ǫ0, ...,ǫts

) are independently distributed the same

holds for (Rt1
, ..., Rts

) and (ǫt1
, ...,ǫts

). From Lemma 2 we get that the joint uncondi-

tional distribution of (Xt1
, ...,Xts

) is a matrix mixture of normal distributions.

COROLLARY 3. Let {Xt } ∼ M E l ARk (µ,Σ, p, q). Then the random matrix Xt1,...,ts

= (Xt1
, ...,Xts

) is matrix elliptically distributed with the stochastic representation given by

(Xt1
, ...,Xts

)
d
=Σ1/2(ǫt1

, ...,ǫ ts
)d ia g{(Rt1

, ..., Rts
)} ,



308 T. Bodnar and A.K. Gupta

where (ǫt1
, ...,ǫts

) and (Rt1
, ..., Rts

) are independently distributed. Moreover, the sequence

(ǫt1
, ...,ǫ ts

) consists of independently identically distributed random vectors ǫti
∼Nk (0,Ik ).

The results of Lemma 2 are also used to derive the moments of the MElAR process.

COROLLARY 4. Let {Xt } ∼M E l ARk (µ,Σ, p, q). Then
a) E(Xt ) =µ;
b) V ar (Xt ) = E(R2

t )Σ, where E(R2
t ) =

α0

1−∑p
i=1
αi

;

c) C ov(Xt ,Xt−i ) = 0.

PROOF. a) The statement follows directly from the definition of the MElAR process
and the fact that E(ǫt ) = 0.
b) The first assertion holds because of the elliptical properties of the MElAR process.
The identity E(R2

t ) = α0/(1−
∑ p

i=1
αi ) follows from the autoregressive structure of the

process {R2
t }.

c) It holds that

C ov(Xt ,Xt−i ) = E((Xt −µ)(Xt−i −µ)′) =Σ1/2E(R2
t R2

t−i )E(ǫtǫt−1)Σ
1/2 ,

where the last equality follows from Lemma 2. Because E(ǫtǫt−1) = 0 the statement of
part c) is proved. ✷

Next, we consider M E l ARk (µ,Σ, 1) process. For each t we obtain that

R2
t = α0+α1R2

t−1 = α0(1+α1)+α
2
1R2

t−2 = ... (10)

= α0

t−1
∑

i=0

αi
1+α

t
1R2

0 =
α0

1−α1

(1−αt
1)+α

t
1R2

0 . (11)

where R2
0 is the intial value of the process {R2

t }. The last equality yields

(X1, ...,Xt ) = Σ
1/2(ǫ1, ...,ǫt )d ia g{(

Æ

α0+α1R2
0, ...,

√

√

√

α0

1−α1

(1−αt
1)+α

t
1R2

0)} .

From the last presentation and Table 1 we conclude that the M E l ARk (µ,Σ, 1) process is
an extension of the matrix variate mixture of normal distributions that allow us to model
the time varying behavior of the generating variable. Moreover, because of its similarity
to the matrix variate elliptically contoured distributions, the distributional results of
the latter can be extended to the suggested model. We provide a further discussion of
this property in Section 3.1, where the Stein-Haff identity is generalized to the MElAR
process.

The necessary and sufficient condition of the M E l ARk (µ,Σ, p, q) process to be
weakly stationarity is given by

p
∑

i=1

αi + k
q
∑

j=1

β j < 1 . (12)
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The inequality (12) follows from the proof of Theorem 1 of Bollerslev (1986) and the
fact that E(‖Xt‖2Σ) = k for each t . The necessary and sufficient condition of the strictly
stationarity are similar to those given in Bougerol and Picard (1992) and it is based on
the top Lyapunov exponent (see Bougerol and Picard (1992) for details).

This section we finish with a further property of the MElAR process, which shows
its relationship to the ARMA time series. Let τt = ‖Xt −µ‖2Σ − R2

t . Then the Eq. (7)
can be rewritten in the following form

‖Xt‖2Σ = α0+
max{q ,p}
∑

j=1

(α j +β j )‖Xt− j‖2Σ+τt −
p
∑

i=1

αiτt−i . (13)

Hence, it holds

LEMMA 5. Let {Xt} ∼M E l ARk (µ,Σ, p, q). Then

{‖Xt−i −µ‖2Σ} ∼ARMA(max{p, q}, p).

3. ESTIMATION

First, we assume that the mean vector µ is known. Later, it is shown how this assump-
tion can be violated. The rest of parameters of the M E l ARk (µ,Σ, p) process we denote
by θ which are divided into two groups, i.e. θ= (θ1,θ2)with θ1 = (α0,α1, ...,αp )

′ to be

the vector of the parameters given in (6) and θ2 = vec h(Σ) corresponds to the elements
of the dispersion matrix Σ. For estimating the parameters of the MElAR process, the
two-stage quasi maximum likelihood method is applied (see, e.g. Engle (2002)). In the
first stage θ1 is estimated, whose estimator is used in the second stage for estimating θ2.

Because Xt |Ft−1 ∼N (µ, R2
tΣ), the quasi-likelihood function is given by

QL(θ|Xt ) = −
1

2

T
∑

t=1

�

k log(2π)+ k log(R2
t )+ log(d e t (Σ))+

(Xt −µ)′Σ−1(Xt −µ)
R2

t

�

= −1

2

T
∑

t=1

�

k log(2π)+ k log(R2
t )+
(Xt −µ)′(Xt −µ)

R2
t

+ log(d e t (Σ))+
(Xt −µ)′Σ−1(Xt −µ)

R2
t

− (Xt −µ)′(Xt −µ)
R2

t

�

= k l1(θ1)+ l2(θ2|θ1) ,

where

l1(θ1) =−
1

2

T
∑

t=1

�

log(2π)+ log(R2
t )+
(Xt −µ)′(Xt −µ)/k

R2
t

�

(14)

is the quasi log-likelihood function of the univariate GARCH(0,p) process applied to the process
{(Xt −µ)′(Xt −µ)/k}.

In the second stage the dispersion matrixΣ is estimated by maximizing the normal likelihood
function

l2(θ2|θ̂1) =−
T

2
log(d e t (Σ))− 1

2

T
∑

t=1

(X̂′tΣ
−1X̂t ) (15)
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with X̂t = (Xt −µ)/R̂t . It leads to

Σ̂=
1

T

T
∑

t=1

(Xt −µ)(Xt −µ)′

R̂2
t

. (16)

Next, the asymptotic properties of the suggested estimators are studied. Here, we use the
results of Engle and Sheppard (2001) who considered the two-stage quasi maximum likelihood
estimation of the DCC process and argued that this estimation procedure can be presented as a
two stage GMM estimation studied by Newey and McFadden (1994) in detail. It is assumed that
Assumption 1: θ0 = (θ0

1,θ0
2)
′ is an identifiably unique interior in Θ = Θ1 × Θ2, where Θ is

compact. Moreover, it is assumed that Σ0 is positive definit, α0
0 > 0, and α0

i ≥ 0 for i = 1, ..., p.

Assumption 2: θ0
1 uniquely maximizes E(l n(l1(θ1))) and θ0

2 uniquely maximizes
E(l n(l2(θ2|θ1))).
Assumption 3: The first and second stage quasi log-likelihoods, i.e. l n(l1(θ1)) and l n(l2(θ2|θ1))
are twice continuously differentiable on θ0.
Assumption 4: E(s u pθ1∈Θ1

||l n(l1(θ1))||) and E(s u pθ2∈Θ2
||l n(l2(θ2|θ1))||) exist and are finite.

Assumption 5a: E(▽θ1
l n(l1(θ

0
1))) = 0 and E(||▽θ1

l n(l1(θ
0
1))||2)<∞.

Assumption 5b: E(▽θ2
l n(l2(θ

0
2|θ0

1))) = 0 and E(||▽θ2
l n(l2(θ

0
2|θ0

1))||2)<∞.

Assumption 6a: A11 = E(▽θ1θ1
l n(l1(θ

0
1))) is O(1) and negative definite.

Assumption 6b: B11 = E(▽θ2θ2
l n(l2(θ

0
2|θ0

1))) is O(1) and negative definite.

The asymptotic distribution of θ̂ is given in Theorem 6.

THEOREM 6. Let {Xt } ∼ M E l ARk (µ,Σ, p). Then

a) under Assumptions 1-4, θ̂1

P→ θ0
1 and θ̂1

P→ θ0
2;

b) under Assumptions 1-6, p
T (θ̂−θ0)

a∼N (0,A−1BA′ −1) ,

where

A=

�

E(▽θ1θ1
l n(l1(θ

0
1))) 0

E(▽θ1θ2
l n(l2(θ

0
2|θ0

1))) E(▽θ2θ2
l n(l2(θ

0
2|θ0

1)))

�

and

B=V a r (
T
∑

t=1

T −1/2▽θ1
l n(l1(θ

0
1)),

T
∑

t=1

T −1/2▽θ2
l n(l2(θ

0
2|θ0

1))) .

The proof of Theorem 6 follows from the proof of Theorems 1 and 2 of Engle and Sheppard
(2001).

Up to now, the mean vectorµwas assumed to be known. Next, we simplify this assumption.

In Theorem 7, it is shown that µ̂= X̄= 1
T

∑T
1 XT is a consistent estimator of µ.

THEOREM 7. Let {Xt } ∼ M E l ARk (µ,Σ, p). Then µ̂
P→µ for T →∞.

PROOF. First, we note that µ̂= X̄ is an unbiased estimator of µwhich follows directly from
the definition of µ̂. Next, we calculate the mean-square error of the estimator µ̂. It holds that

M SEµ(µ̂) =V a r (µ̂) =
1

T 2

T
∑

i=1

V a r (Xi ) ,

where the last equality follows from Corollary 4. Hence,

M SEµ(µ̂) =
1

T

α0

1−∑p

i=1 αi

Σ→ 0 for T →∞ . ✷
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Because µ̂ is a consistent estimator of µ, the results of Theorem 6 do not change when µ
is replaced by µ̂. Hence, the estimation of the M E l ARk (µ,Σ, p) process can be perform in the
following three steps:
Step 1: Estimate µ by µ̂= X̄.
Step 2: Fit the univariate GARCH(0,p) process to (Xt − µ̂)′(Xt − µ̂)/k for estimating θ1.

Step 3: The dispersion matrix Σ is estimated as in (16), where R̂2
t are calculated recursively with

θ̂1 instead of θ1.

3.1. The Stein-Haff Identity

Since the seminal paper of Stein (1956) and James and Stein (1961), different estimators for the
covariance matrix of the normal distribution have been proposed (see, e.g. Haff (1980, 1991),
Dey and Srinivasan (1985)) with a detailed survey given in Kubokawa (2005). The performance
of every estimator is based on a risk function. In order to simplify the comparison of the risk
functions, the Stein-Haff identity was derived by Stein (1977) and Haff (1979a). This identity was
extended to the inverse Wishart distribution by Haff (1979b), while Kubokawa and Srivastava
(1999) and Bodnar and Gupta (2009b) obtained the Stein-Haff identity for different classes of the
matrix variate elliptically contoured distribution.

For estimating the dispersion matrix of an elliptically contoured distribution the sample co-

variance matrix is, usually, used which is given by S= X̃X̃′ where X̃= (X1−µ,X2−µ, ...,Xn−µ).
The stochastic representation of S is

S=XX′
d
=Σ1/2UR2U′Σ1/2 . (17)

Let G(S) be a k × k matrix such that the (i , j )t h element gi j (S) is a function of S. Let

{DSG(S)}i j =
∑

l

di l gl j (S) ,

where

di l =
1

2
(1+δi l )

∂

∂ si l

,

with δi l = 1 for i = l and δi l = 0 for i 6= l .
In Theorem 8 we generalize the results of Stein (1977) and Haff (1979a) to the case of the

MElAR process.

THEOREM 8. Let {Xt } ∼ M E l ARk (µ,Σ, p). We assume that gi j (S), i , j ∈ {1, ..., k}, is a linear

function of the elements of S. Let n > k and Σ be positive definite. Then we have

E(tr(G(S)Σ−1)) =
E(R2

1)

k
EF

Σ
((n− k − 1)tr(G(S)S−1)+ 2tr(DSG(S))) , (18)

where

EF

Σ
(h(XX′)) =

∫

h(X)|Σ|−n/2F (tr(Σ−1XX′))dX ,

with F (x) = 1

2

∫+∞
x

exp(−t/2)d t .

The proof of Theorem 8 follows from the proof of Theorem 1 of Bodnar and Gupta (2009b).
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Figure 1 – Daily EUR/USA and EUR/JPY exchange rate returns for the period from January 2,
1999 to November 30, 2009.

4. ESTIMATING THE DISPERSION MATRIX OF EUR/USA AND JPY/USA
EXCHANGE RATE RETURNS

Two of the most important conditions of a model application are an easiness in estimating of the
model’s parameters and an ability to forecast future values. In Section 3, we propose the two-
stage maximum likelihood method for estimating the parameters of the MElAR process. In the
present section, it is shown how the suggested model can be applied to real data by estimating
the dispersion matrix of the EUR/USA (i = 1) and EUR/JPY (i = 2) exchange rate returns. For
these purposes, we consider daily EUR/USA and EUR/JPY exchange rate returns data for the
period from January 2, 1999 to November 30, 2009 (see Figure 1).

For the comparison purposes we plot the rolling estimator of the unconditional covariance
matrix in Figure 2 given by

V̂=
1

n− 1

n
∑

i=1

(X− X̄)(X− X̄)′ .

The estimation window is set to be 250. In the figure, we observe that the estimator of the covari-

ance matrix is time varying. Significant increases in the elements of V̂ are present at the end of
2001 and during the financial crisis in 2008.

The M E l AR(µ,Σ, 1) process is fitted to the considered data by using the two-stage maximum
likelihood estimator of Section 3. It holds that α0 = 0.6944 α1 = 0.6605 which are both signif-
icant at 1% level of significance. Using these values, we calculate the realizations of the pseudo-

generating variable R̂2 . The dispersion matrix Σ̂ is estimated as in (16) by using the rolling estima-
tion with the estimation window of 250 days. The results are presented in Figure 3. We observe
that a large amount of the time variable behavior of the covariance matrix of the exchange rate
returns is included in the pseudo-generating variable of the process. It increases significantly in
the time periods, when the elements of the unconditional covariance matrix are larger. From the
other side we get the considerable reduction of the time variability in the dispersion matrix, espe-
cially, in the non-diagonal elements of the dispersion matrix which appears to be slowly varying
with time.

5. SUMMARY

In the present paper we suggest a new class of multivariate elliptically contoured processes. The
proposed process possesses both generality of the GARCH models and symmetric properties of
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Figure 2 – The rolling estimator for the unconditional covariance matrix with the estimation win-
dow of 250 days.
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Figure 3 – Estimators for the generating variable and the dispersion matrix of the daily EUR/USA
and EUR/JPY exchange rate returns for the period from January 2, 1999 to November 30, 2009.
For estimating of the dispersion matrix the rolling estimator is used with the estimation window
equals to 250 days.
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elliptically contoured distributions. Moreover, the number of unknown parameters of the model
is significantly reduced in comparison to other multivariate GARCH processes.

In the empirical study the daily EUR/USD and EUR/JAP exchange rate returns are used for
estimating the dispersion matrix of the MElAR process. The parameters of the process are esti-
mated by the two-stage quasi maximum likelihood method. The obtained results do not support
the volatile behavior of the dispersion matrix. The time variability of the covariance matrix is
explained by the time varying behavior of the generating variable that influences the coefficient
of the investor’s risk aversion (see, e.g. Bodnar and Gupta (2009a)).

The possible generalization of the obtained results can be done in two ways. First, heavy
tailed distributions, like the multivariate t -distribution, can be considered as a model for the er-
ror process. Second, the time varying dispersion matrix can be incorporated into the model. It
could be done by using the exponential smoothing or to model the time varying dispersion matrix
keeping the idea of the DCC process (see Engle (2002)).
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SUMMARY

Multivariate elliptically contoured autoregressive process

In this paper, we introduce a new class of elliptically contoured processes. The suggested process
possesses both the generality of the conditional heteroscedastic autoregressive process and the
elliptical symmetry of the elliptically contoured distributions. In the empirical study we find the
link between the conditional time varying behavior of the covariance matrix of the returns and
the time variability of the investor’s coefficient of risk aversion. Moreover, it is shown that the
non-diagonal elements of the dispersion matrix are slowly varying in time.

Keywords: multivariate autoregressive process; elliptically contoured distribution; Stein-Haff
identity


