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1. INTRODUCTION

Survey researchers frequently use statistical models. However, such models, known as
superpopulation models (Deming and Stephen, 1941), are generally used to describe fi-
nite populations of interest and have been used earlier for evaluation, sampling design
development and making inferences on either the relevant superpopulation or the fi-
nite population parameters. In an analytic use of survey data (Deming, 1953) where the
main goal is to address various scientific questions, inferences for the superpopulation
parameters are more important than those for the finite population parameters. In an
excellent review article, Graubard and Korn (2002) discussed the importance of infer-
ences for superpopulation parameters using survey data and cited a number of practical
examples such as the estimation of superpopulation means, linear regression and logistic
regression coefficients using complex survey data from the U.S. National Health Inter-
view Survey, the third National Health and Nutrition Examination Survey and the 1986
National Hospital Discharge Survey.

Model selection among different plausible models has received considerable atten-
tion in statistical literature. The Institute of Mathematical Statistics (IMS) monograph
on model selection edited by Lahiri (2001) contains four long review articles that criti-
cally examine various classical and Bayesian approaches to model selection. For further
important developments in the Bayesian literature on the subject see Spiegelhalter et al.
(2002). The impact of the superpopulation model misspecification has been studied in
the literature. See Holt et al. (1980), Hansen et al. (1983), and others. However, to our
knowledge the related issue of model selection, especially the well known likelihood-
based methods such as the Bayesian Information Criterion (BI C ), has received little
attention in survey research literature.

One important feature that distinguishes a superpopulation model selection for a
finite population from that for a hypothetical infinite population is that we must de-
rive the superpopulation model selection criterion from the knowledge of the observed
sample. Finite populations studied in social and economic surveys are generally very
complex and heterogeneous. Moreover, if we are interested in a regression model for a
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response variable, possible covariates are limited to those measured in other questions of
the same questionnaire or those available from administrative records that can be linked
to survey responses on a statistical unit basis. Moreover, if prediction of finite popu-
lation means or totals is one of the goals, as it is often the case, the choice is further
restricted to those for which population means/totals are known. For this reason some
survey researchers feel that ‘most statistical models in finite population inference are
either wrong or (at best) incomplete’ (Kott, 1989).

The main goal of this paper is to find a model selection criterion that is capable of
discriminating among models even though some features of the models being consid-
ered are misspecified. In particular, we discuss a simple approximation to the BI C for
the analysis of complex survey data that avoids specification of the full superpopulation
likelihood. If the full specification of the superpopulation likelihood for the finite popu-
lation is possible and the sampling design is ignorable, there is conceptually no problem
in deriving the likelihood for the complex sample and so an extension of the BI C to
finite population sampling in such a situation is quite straightforward. However, this
may not be always the case. The sample and the population likelihood functions may
be different because of informative sampling (Pfeffermann, 2009) and their relationship
may be complex. Moreover, the effect of informative sampling may be present when
sampling design features (e.g., stratification, clustering and size variables) are not accu-
rately known to the data analyst.

In Section 2, we review the Bayes factor and its relation to the BI C for hypothetical
infinite population. In Section 3, we critically examine two possible ways to adapt the
BI C in the context of the finite population sampling. The first approach consists in
finding a formula for the BI C based on the superpopulation likelihood for the finite
population and then estimating this finite population BI C . We argue that this model
selection criterion does not even work for a simple hypothesis testing problem, a special
case of model selection, with data collected by a simple random sampling with replace-
ment. This approach makes the disagreement between the data and the null hypothesis
look more than it really is. The second approach is the BI C based on the sample likeli-
hood. This certainly provides us a meaningful model selection criterion. However, the
basic requirement for this approach is the specification of a full superpopulation likeli-
hood for the finite population. In Section 3, we discuss the impact of superpopulation
model misspecification on the BI C based on the sample likelihood.

In Section 4, we propose a new model selection criterion that is essentially the Wald
statistics based on a survey-weighted estimator of the superpopulation parameter of in-
terest and its randomization-based variance estimator. Our model selection criterion is
robust and can be used, for example, to test the significance of a regression coefficient
with unspecified distribution for the error term using complex survey data. We show
that under certain regularity conditions, the new model selection criterion is indeed an
approximation to the BI C for a large sample. In Section 5, we verify the regularity
conditions for two commonly used sampling designs. We provide results from a Monte
Carlo simulation study in Section 6. Our simulation results demonstrate good perfor-
mance of the new criterion in a complex situation involving clustered binary data with
unknown intra-cluster correlation.



A design-based approximation to the B I C 291

2. THE BAYES FACTOR AND THE BI C

The Bayesians frequently use the Bayes factor (BF ) in hypothesis testing and model selec-
tion problems. To illustrate the BF , let ys = (y1, ..., yn ) be an independent and identically
distributed sample from a distribution belonging to a family of probability distributions
parameterized by (β,θ) with d i m(β,θ) = m and d i m(β) = m0. Consider the follow-
ing hypothesis testing problem:

M0 : θ = θ0 versus Ma : θ ∈Rm−m0 . (1)

The BF is defined as the ratio of the aposteriori and the apriori odds in favour of the
larger model M:

BF =
p r ob (M |ys )

p r ob (M0|ys )

�

p r ob (M )

p r ob (M0)
=

∫

p (ys |β,θ)π (β,θ)dβdθ
∫

p (ys |β,θ0)π0 (β)dβ
, (2)

where π(β,θ) and π0(β) are the joint prior distribution ofβ and θ and marginal prior
distribution of β, respectively. The calculation of the BF requires a full specification
of the prior distributions for the parameters in both M0 and M . In many applications
rules for ‘objectively’ selecting priors have been proposed (see Berger and Pericchi, 2001).
Alternatively, one can use a suitable approximation to the logarithm of the BF . One
popular approximation is the Bayes Information Criterion (Schwartz, 1978) given by:

S = λ−
m−m0

2
log n,

where λ= ℓ(β̂, θ̂)−ℓ0(β̂0,θ0) is the logarithm of the likelihood ratio; ℓ(β̂, θ̂) is the log-

likelihood evaluated at the maximum likelihood estimator (β̂, θ̂) of (β,θ) under model

M ; ℓ(β̂0,θ0) is the log-likelihood evaluated at the maximum likelihood estimator β̂0 of
β under model M0.

The statistic S is based on the Laplace approximation to the integrals appearing in
the numerator and denominator of Eq. (2). See Kass and Wassermann (1995) for details.
The quality of the approximation S to the logarithm of the Bayes Factor depends on the
prior distributions of the unknown parameters under M0 and M . In general, it is rather
crude since it neglects terms up to a constant order. Nonetheless, Kass and Wassermann
(1995) showed that for a suitable choice of the prior distributions (e.g., unit information
prior)

S = log BF +Op (n
−1/2).

Moreover, the Bayes Information Criterion is popular among frequentists because it
incorporates a penalized deviance criterion.

In a hypothesis testing problem, S can be compared against the scale of evidence
introduced by Jeffreys (1961) as an alternative to the frequentist scale of evidence intro-
duced by R.A. Fisher in the 1920s. For a discussion and the comparison between the
Jeffreys’ and Fisher’s scales of evidence, see Efron and Gous (2001). It should be stressed
that S is a consistent model selection method, i.e., if one of the hypotheses (models) be-
ing tested is true, the BI C selects the true hypothesis with probability 1 as the sample
size tends to infinity. For the problem (1), S goes to +∞ (−∞) with probability 1 if
M (M0) is true. This property is enjoyed by all penalized deviance criteria with penalty
factors of the order o(n).
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3. TWO POSSIBLE APPROACHES TO ADAPT BI C TO THE FINTE POPULATION

SAMPLING

For this section and the rest of the paper, we need a few notations. Let U = {1, . . . ,N}
denote the units of a finite population of known size N . Let yU = (y1, ..., yN ), where yi
is the value of a characteristic of interest for the ith unit of the finite population (i =
1, . . . ,N ). Let p(s) be the probability of drawing a particular sample s from the universe
of all possible samples S. Thus, p(s) ≥ 0 and

∑

s∈S p(s) = 1. Let ds = {di : i ∈ s},
where di contains all possible design and other auxiliary information on the unit i ∈ s .
For example, di may contain information on the label and sampling weight wi for the
unit i ∈ s . The sampling weight wi is defined as the inverse of the inclusion probability
for the unit i and represents a certain number of units in the finite population. Define
ys = {yi : i ∈ s} and zs = [ds , ys ]. In the following two subsections, we discuss two
possible approaches to extend the BI C to select model for the superpopulation for yU .

3.1. An estimator of the finite population BI C

Let the observations yi (i = 1, . . . ,N ) of the finite population be generated randomly
from N (θ, 1). Consider the following hypothesis testing problem, a special case of model
selection:

M0 : θ = 0 Ma : θ 6= 0. (3)

If all units of the finite population were observed, then it is easy to see that the BI C
based on all the observations in the finite population is given by

SPOP (yU ) =
N

2
ȳ2

U −
1
2

log N . (4)

We call SPOP (yU ) the finite population BI C . Of course, we cannot use SPOP (yU ) since
ȳU is unknown. Let ˆ̄yU be a design-consistent estimator of ȳU . An estimator is design-
consistent estimator for the corresponding finite population parameter if it converges to
the true finite population parameter as n→∞, where the convergence is with respect
to probability induced by the sample design. We observe that, since n ≤ N , the limit
n→∞ makes sense only in a setting in which the population size N is also allowed to
increase. We assume a mathematical definition of the limit for n→∞ that is consistent
with most literature on inference in finite population sampling. A description of this
framework may be found in Isaki and Fuller (1982). Replacing ȳU by a design-consistent
estimator ˆ̄yU , the following naïve model selection criterion is obtained:

SP l u g in (zs ) =
N

2
ˆ̄y

2
U −

1
2

logN . (5)

We note that the simple plug-in approach as described above does not work even
for a simple random sampling with replacement. Under this sampling design, when
N is very large compared to n (the sample size), one would expect a reasonable finite
population sampling implementation of S to be very close to the following standard
BIC SI I D obtained under the assumption of independently and identically distributed
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observations from a normal population:

SI I D (ys ) =
nȳ2

s

2
−

1
2

log n. (6)

This is a reasonable expectation since in this case simple random sampling from a finite
population can be regarded as a random sample from the assumed hypothetical super-
population. But, if we replace ȳU in (5) by the usual design-consistent estimator ȳs , we
obtain:

SP l u g in (zs )− SI I D (ys ) =
(N − n)

2
ȳ2

s −
1
2

ln
�

N

n

�

. (7)

This difference tends to 0 when n→N but, for N fixed, it diverges to infinity as N →∞
and not to 0 as we would like. This implies that for N large enough, Eq. (5) provides
stronger evidence against M0 than Eq. (6). The reason is that Eq. (5) approximates S we
would have obtained if all the units in the finite population were observed and thereby
making the disagreement between the data and the null hypothesis look more than it
really is.

3.2. The BI C based on the exact likelihood for the sample

Like in the standard BI C calculation for a hypothetical infinite population, this ap-
proach is also based on the sample likelihood. However, we must obtain the sample
likelihood using the superpopulation model for the finite population and the sampling
design used. Survey populations usually have complex structures and misspecification
of the assumed model is quite likely (see Kott, 1991). This is a serious issue in large scale
sample survey. Since the BI C is based on the sample likelihood it may be subject to
model misspecification. We now illustrate this point through a simple example.

Let the observations in the finite population be normally distributed with common
mean θ. We assume that the observations within the same cluster are equally correlated,
the common intra-cluster correlation being τ. Furthermore, observations from two
different clusters are assumed to be uncorrelated. We consider the same testing problem
on the overall population mean θ as in Eq.(3).

For the finite population described in the previous paragraph, a cluster sampling is
often employed. Suppose we have a finite population of size N divided into M clusters
each of size Nc . A sample of m clusters is selected by simple random sampling (with
replacement) and all the units of the sampled cluster are selected. Thus, n = mNc . In
this case a suitable model for ys is given by

yi j = θ+α j + ei j ,

where α j and ei j ’s are all uncorrelated with V (α j ) = τ and V (ei j ) = 1 − τ for j =

1, . . . , m, i = 1, . . . ,Nc . Note that marginally V (yi ) = 1 so we are consistent with the
model assumed in the iid case. This leads to ȳs as the maximum likelihood estimator of
θ and to the following BIC:

S (zs ) =
1
2

nȳ2
s

{1+(Nc − 1)τ}
−

1
2

log n. (8)
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We note that

SI I D (ys )− S(zs ) =
nȳ2

s

2

�

(Nc − 1)τ

1+(Nc − 1)τ

�

,

where SI I D (ys ), given in Eq. (6), is the appropriate BI C when there is no clustering of
the population units. The error increases with τ > 0. In other words, if we neglect the
clustering of the population units and τ > 0, we reject the null hypothesis more often
than we really should.

Unfortunately, unlike the previous example the likelihood for the sample may be
very complicated. To this end, reconsider the same hypothesis testing problem of Eq. (3)
based on a probability proportional to size with replacement sampling in which the
size variable X is positively correlated with the target variable Y . One can consider
a model for f (ys |ds = xs ). However, we are interested in testing a hypothesis for the
superpopulation mean θ that characterizes the marginal distribution of Y and not the
mean conditional on X . Since the sampling design is not simple random sampling and
larger values of Y are more likely to be observed, we need to obtain a marginal likelihood
for ys by integrating out xs :

f (ys ) =

∫

f (ys |xs ) f (xs )d xs .

This is certainly not as simple as the previous example. Actually, when analyzing
data from complex surveys we observe a sample from Y |ds . A researcher may not be
interested in f (y|ds ) but may be interested in an appropriate marginal model – one that
averages out some of the population features incorporated in the sampling design. For
instance, one may be interested in testing hypothesis about the overall population mean,
ignoring possible differences among the means of different subgroups of the population.
In general, some degree of aggregation in modelling may be necessary in complex sur-
veys from a finite population (see Holt , 1989).

In any case, the calculation of the BI C based on the sample likelihood requires that
we use all information needed to specify a suitable model for f (ys |ds ). This may not be
the case in many applications. It is typical that the analyst may not be provided with all
the information about the sample design but only with the sampling weights, defined
as the inverse of the inclusion probabilities and adjusted for post-stratification and non-
response.

4. A ROBUST DESIGN-BASED APPROXIMATION TO THE BI C

Let yU be a realization from an underlying superpopulation distribution characterized
by a parameter θ. We are interested in testing M0 : θ = θ0 vs Ma : θ 6= θ0. In this case

the BI C is given by S = λ− 1
2 log n, where λ = ℓ(θ̂)− ℓ(θ0) is the logarithm of the

likelihood ratio.
As noted in the previous section, it is often difficult or even impossible to obtain an

exact expression for the sample likelihood due to a complex superpopulation model as
explained in section 3.2 and informative sampling. In this section, we consider a design-
based approximation to S that essentially involves an estimator of θ using the following
method and its design-consistent variance estimator.
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Let f (yU ,θ) = 0 be an estimating equation for θ. The solution T (yU ) of the equa-
tion f (yU ,T (yU )) = 0 is known as the corresponding descriptive population quantity

(CDPQ) of θ. We can estimate T (yU ) by a design-based estimator T̂ (zs ). For example,

T̂ (zs ) could be obtained using the pseudo-maximum likelihood approach. A thorough
discussion of this class of methods can be found in Särndal et al. (1992).

We propose the following model selection criterion:

SDB =
1
2

WDB −
1
2

log n, (9)

where WDB =
¦

V̂D

�

T̂ (zs )
�©−1 �

T̂ (zs )−θ0

�2
and V̂D

�

T̂ (zs )
�

is a consistent estimator

of VD

�

T̂ (zs )
�

, the variance of T̂ (zs ) under the randomization distribution. It may be
noted that the use of the total sample size n in Eq.(9) may be misleading in some cases.
The ‘effective’ sample size is often a more relevant measure of sample information. Ac-
tually, we can obtain a different model selection criterion if we replace n by n∗ = n/Deff
in Eq. (9), where

Deff=
VD

�

T̂ (zs )
�

VSRS

�

T̂ (ys )
�

and VSRS

�

T̂ (ys )
�

is the randomization variance of the un-weighted estimator T̂ (ys ) of
T (yU ) under a simple random sampling of size n. However, we note that the order of

log(Deff) is often small compared to ℓ(θ̂)− ℓ (θ0) . Thus, asymptotically SDB (n
∗) ∼=

SDB (n) in most cases since log (n∗) = log (n)− log (Deff).
The following theorem shows that SDB approximates S well, the error of approxi-

mation is of lower order than the error of approximating log BF by S.

THEOREM 1. Under the following regularity conditions:

i) θ̂−θ0 =Oξ
�

n−1/2
�

, under model Ma , where Oξ
�

n−1/2
�

denotes a stochastic order with
respect to the superpopulation distribution ξ ;

ii) ℓ(θ) is twice differentiable with −ℓ′′(θ̂) = I (θ0)+Oξ
�

n−1/2
�

, where

I (θ0) =−E
¦

∂ 2 l (z,θ)
∂ θ2

©

θ=θ0

is the Fisher information matrix evaluated at θ0;

iii) T̂ (zs ) = θ̂+ oDξ

�

n−1/2
�

where oDξ

�

n−1/2
�

denotes a stochastic order with respect to
the compound model/randomization distribution Dξ ;

iv) V̂D

�

T̂ (zs )
�

= {I (θ0)}
−1+ oDξ

�

n−1
�

.

We have
S − SDB = oDξ (n

−1/2).

PROOF. Using the Taylor series expansion of ℓ(θ) around θ̂, and evaluating it at θ0,
we have

λ= ℓ(θ̂)− ℓ(θ0) =−
1
2
ℓ′′(θ̂)(θ0− θ̂)

2+ oξ

h

(θ0− θ̂)
2
i

so that regularity conditions (i) and (ii) imply

−
1
2
ℓ′′(θ̂)(θ̂−θ0)

2 =
1
2

I (θ0)(θ̂−θ0)
2+ oξ (n

−1/2).
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Now using regularity conditions (iii) and (iv), we have

WDB = I (θ0)(θ̂−θ0)
2+ oDξ (n

−1).

The theorem now follows from the fact that SDB =
1
2WDB−

1
2 log n and S = λ− 1

2 log n.
✷

We note that the regularity conditions of Kass and Wassermann (1995), given in their
section 2, are analogous to our assumptions i) and ii). Thus, we can conclude that under
(i) and (ii) and unit information priors

log BF = SDB +ODξ (n
−1/2).

5. TWO EXAMPLES

In this section we verify the regularity conditions needed to prove Theorem 1 for two
well-known sampling designs and the associated superpopulation models.

5.1. One-stage cluster sampling and the associated one-way random effects model (as in
Skinner, 1989, p. 37)

Consider a clustered finite population described by the following superpopulation model

yi j = θ+α j + ei j ,

where α j and ei j are uncorrelated with V (α j ) = τσ
2
0 and V (ei j ) = (1 − τ)σ

2
0 , j =

1, . . . , M , i = 1, . . . ,Nc . Note that τ can be interpreted as the intra-cluster correlation
coefficient. Suppose we are interested in testing M0 : θ = θ0 vs Ma : θ 6= θ0 based on
a one-stage cluster sample in which m clusters are selected by simple random sample
without replacement.

For the one-way random effects model, we have θ̂ = ȳs . Condition (i) is a standard
property of the maximum likelihood estimator in regular problems. In order to verify
condition (ii), note that I (θ0) =

n

[1+(Nc−1)τ]σ2
0
, (see Searle et al., 1996, p. 80) and the

fact that the log-likelihood function is a quadratic form with −ℓ(θ̂) free from θ and ys .

Under the sampling design, T̂ (zs ) = θ̂ so condition (iii) is trivially verified. Turning to

condition (iv), we note that under the cluster sampling design: T (yU ) = ȳU , T̂ (zs ) = ȳs .

Thus, θ̂= T (yU ) and

V̂D (ȳs ) =
N − n

N

[1+(Nc − 1)τ]

n
s2
y ,

where s2
y = (n− 1)−1∑

i∈s
(yi − ȳs )

2. Condition (iv) can now be verified by showing that

E
¦

V̂D (ȳs )
©

= {I (θ0)}
−1 + o
�

n−1
�

and V
¦

V̂D (ȳs )
©

= o
�

n−2
�

, where E and V denote
the expectation and the variance with respect to both the sampling design and the model.
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5.2. Two-stage sampling and the associated one-way random effects model

We consider the same one-way random effects model and the same testing problem for
a two-stage sampling where m clusters are selected by simple random sample without
replacement and nc second-tage units are randomly selected from each sampled cluster.

In this case, it can be shown that θ̂ = ȳs and I (θ0) =
n

[1+(nc−1)τ]σ2
0
. Verification of con-

ditions (i)-(iii) is similar to that of one-stage cluster sampling case. To verify condition
(iv), we first note that T (yU ) = ȳU , T̂ (z) = ȳs , and

V̂D (ȳs ) =
N − n

N n
s2
y t +

1
N

�

N0

n0

− 1
�

s2
ye ,

where s2
y t =

nc

m−1

m
∑

j=1

�

ȳ j − ȳs

�2
and s2

ye =
nc

m(n0−1)

m
∑

j=1

nc
∑

i=1

�

yi j − ȳ j

�

(see Cochran, 1977,

Theorem 10.2).
Noting that s2

t y =
n−1
m−1

1
nc
[1+(nc − 1)τ] s2

y , we have

V̂D (ȳs )≃
N − n

N n
[1+(nc − 1)τ] s2

y +
1
N

�

Nc

nc

− 1
�

s2
ye .

Verification of condition (iv) is now similar to that of Example 1.

6. MONTE CARLO SIMULATION

As mentioned in the introduction, the main advantage of our proposed model selection
criterion SDB is that it can be applied even when the exact BI C (SE ) cannot be obtained
because of the unavailability of the exact sample likelihood. However, it is important
to understand its performance when the sample likelihood can be fully specified so we
can compare with the exact BI C , the gold standard. In this section, we achieve this goal
using a Monte Carlo simulation. In our simulation study, we include a naïve BI C (SN ),
a BI C that ignores the sampling design, to understand the role of the sampling design.
Consider an artificial finite population that consists of M = 200 clusters each of size
Nc = 10. Thus, the size of the finite population is N = 2000. Suppose we are interested
in a binary variable Y . We assume that for i = 1, . . . ,Nc , j = 1, . . . , M :

yi j
ind∼ Be r (π j ),

π j
ind
∼ Be t a

�

µ

γ
,
1−µ

γ

�

. (10)

Note that the above model implies that the common marginal proportion and the com-
mon intra-cluster correlation are µ and γ (γ + 1)−1, respectively. For this simulation
study, γ is assumed to be positive and thus the higher the value of γ the higher the intra-
cluster correlation.

Let us consider the following hypothesis testing problem:

M0 :µ= 0.25 M1 :µ 6= 0.25.
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TABLE 1
Different settings for model parameters

Setting Population mean Mixing parameter Sample size
1 µ= 0.25 γ = 1 n = 30 (m = 3)
2 µ= 0.25 γ = 1 n = 60 (m = 6)
3 µ= 0.25 γ = 0.3̄ n = 30 (m = 3)
4 µ= 0.25 γ = 0.3̄ n = 60 (m = 6)

The choice µ = 0.25 suggested by the null hypothesis allows fairly skewed sampling
distribution of the number of ‘ones’. In generating finite populations we consider two
different values of γ , γ = 1 and γ = 0.3̄, which correspond to intra-cluster correlation
coefficients of 0.5 and 0.25, respectively. As far as the sampling design is concerned,
we assume simple random sampling (with replacement) of clusters and consider two
different sample sizes: n = 30 and n = 60 (i.e., a sample of 3 and 6 clusters). In summary,
we consider four different settings characterized by the values summarized in Table 1.

If we completely ignore the clustering of the observations, we can specify a binomial
likelihood and compute our maximum likelihood estimate of µ as µ̂ = n−1y, where y
is the number of ones observed in the sample. We refer to this solution as SN . On
the contrary, if we consider the clustered population model given by Eq. (10), we can
specify the exact Beta-Binomial likelihood for the parameter vector (µ,γ ). In this case,
the maximum likelihood estimate (µ̂, γ̂ ) cannot be obtained in a closed form, but can
be computed using a numerical method (see Griffiths, 1973, for details). The S statistic
based on this exact likelihood at the sample clustering level is referred to as SE . The
performances of SN and SDB are compared with SE .

As in section 6.1, in order to summarize the evidence provided by various statistics
in favour or against the null hypothesis, we consider the logarithm of the scale of evi-
dence proposed by Jeffreys (1961) and the same cut-off point of 1.1. Values larger than
1.1 are supposed to provide ‘positive’ evidence against the model suggested by the null
hypothesis.

The entries in Table 2 represent the percentage of samples with statistics lower than
1.1 over 1000 simulated samples, each drawn independently according to the sampling
design described above. Clearly, the effect of clustering on SN is very severe for all the
three cases, the acceptance rates being considerably lower than those using our gold stan-
dard SE . The difference between the SN and SE increases as the intra-cluster correlation
increases. The increase in the sample size contributes very little in resolving the differ-
ence. Our approximation SDB is tracking SE very well even for this non-normal situation
and for a moderate sample size. Needless to say, both SDB and SE are not affected by the
variation of the intra-cluster correlation.

In Table 3 we compare the behaviour of the three procedures under a few selected
alternatives: µALT 1 = 0.5, µALT 2 = 0.6, µALT 3 = 0.75, µALT 4 = 0.9. The entries of Table
2 and Table 3 have similar interpretations. Under all null hypotheses considered, SDB
and SE perform quite closely. They both seem to be rather conservative in rejecting the
null hypothesis compared to SN . We stress that SN underestimates the evidence against
the model suggested by the null hypothesis since it is derived from a model that does not
incorporate intra-cluster homogeneity. Settings 1-3 correspond to high intra-cluster cor-
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TABLE 2
Percentage of S statistics lower than 1.1 under M0

Setting SN SE SDB

1 57 97 87
2 51 96 93
3 75 99 86
4 77 99 93

TABLE 3
Percentages of various S statistics lower than 1.1 under different alternative hypotheses

Hypothesis Setting SN SE SDB

µALT 1 = 0.5

1 64 75 71
2 54 63 67
3 37 64 69
4 23 49 58

µALT 2 = 0.6

1 51 59 65
2 35 49 49
3 23 51 51
4 7 39 41

µALT 3 = 0.75

1 18 35 45
2 8 31 27
3 4 27 4
4 0 9 12

µALT 4 = 0.9

1 4 7 26
2 0 1 5
3 0 6 17
4 0 0 2

relation coefficient that reduces the effective sample size substantially. For this reason
both SDB and SE have problems in finding positive evidence against the wrong model
when it is quite close to the true one (e.g., null hypothesis 1). This effect is somewhat
weaker in settings 4 and 5, which correspond to a lower level of the intra-cluster corre-
lation coefficient.

7. CONCLUDING REMARKS

We have presented a robust approximation to the BI C that can be used with complex
survey data. Our method is expected to be useful in situations where it is not possible to
obtain the exact likelihood for the sample since our proposed method merely requires
an estimator of the superpopulation parameter with good design-based properties (e.g.,
psuedo-maximum likelihood) and its design-consistent variance estimator. Thus, this
paper fills in an important research gap in the analytic use of survey data. In the future we
plan to extend our proposed method to a general variable selection problem and compare
with an alternative informative sampling approach when a working superpopulation
model can be specified.



300 E. Fabrizi and P. Lahiri

ACKNOWLEDGEMENTS

The second author’s research was supported by the National Science Foundation SES-
085100.

REFERENCES

J. O. BERGER (2001). Objective Bayesian Methods for Model Selection: Introduction and
Comparison. In P. LAHIRI (ed.), Model Selection, Institute of Mathematical Statistics,
Lecture Notes - Monograph series, Vol. 38.

W. G. COCHRAN (1977). Sampling Techniques. John Wiley & Sons, New York.

W. E. DEMING, F. F. STEPHEN (1941). On the interpretation of censuses as samples.
Journal of the American Statistical Association, 36, pp. 45–49.

W. E. DEMING (1953). On the distinction between enumerative and analytic surveys.
Journal of the American Statistical Association, 48, pp. 244–255.

B. EFRON, A. GOUS (2001). Scales of Evidence for Model Selection: Fisher versus Jeffreys.
In P. LAHIRI (ed.), Model Selection, Institute of Mathematical Statistics, Lecture Notes
- Monograph series, Vol. 38.

B. I. GRAUBARD, E. L. KORN (2002). Inference for superpopulation parameters using
sample surveys. Statistical Science, 17, pp. 73–96.

W. E. DEMING (1953). Maximum Likelihood Estimation for the Beta-Binomial Distribu-
tion and an Application to the Household Distribution of the Total Number of Cases of a
Disease. Biometrics, 29, pp. 637–648.

M. H. HANSEN, W. G. MADOW, B. J. TEPPING (1983). An Evaluation of Model-
Dependent and Probability-Sampling Inference in Sample Surveys. Journal of the Amer-
ican Statistical Association, 78, pp. 776–793.

D. HOLT, T. M. F. SMITH, P. D. WINTER (1980). Regression Analysis of Data from
Complex Surveys. Journal of the Royal Statistical Society, Ser. A, 143, pp. 474–487.

D. HOLT (1989). Introduction to Part C. In C. J. SKINNER, D. HOLT, T. M. F. SMITH

(eds.), Analysis of Complex Surveys, John Wiley & Sons, Chicester, pp. 209–220.

C. T. ISAKI, W. A. FULLER (1982). Survey Design under the Regression Superpopulation
Model. Journal of the American Statistical Association, 77, pp. 89–96.

H. JEFFREYS (1961). Theory of Probability. Oxford University Press, Oxford.

P. LAHIRI (2001). Model Selection. Institute of Mathematical Statistics, Lecture Notes -
Monograph series, Vol. 38.

R. E. KASS, L. WASSERMANN (1995). A Reference Test for Nested Hypotheses and Its Re-
lationship to the Schwartz Criterion. Journal of the American Statistical Association,
90, pp. 928–934.



A design-based approximation to the B I C 301

P. S. KOTT (1989). Robust Small Domain Estimation using Random Effects Modelling.
Survey Methodology, 15, pp. 3–12.

P. S. KOTT (1991). A Model-Based Look at Linear Regression with Survey Data. The
American Statistician, 45, pp. 107–112.

D. PFEFFERMANN (2009). Inference under informative sampling. In D. PFEFFER-
MANN, C. R. RAO (eds.), Handbook of Statistics 29: Sample Surveys: Inference and
Analysis, Elsevier, Amsterdam, pp. 455–487.

C. E. SÄRNDAL, B. SWENSSON, J. WRETMAN (1992). Model Assisted Survey Sampling.
Springer-Verlag, New York.

S. R. SEARLE, G. CASELLA, C. E. MCCULLOGH (1996). Variance Components. John
Wiley & Sons, New York.

G. SCHWARTZ (1978). Estimating the dimension of a model. The Annals of Statistics, 6,
pp. 461–464.

C. J. SKINNER (1989). Introduction to Part A. In C. J. SKINNER, D. HOLT, T. M. F.
SMITH (eds.), Analysis of Complex Surveys, John Wiley & Sons, Chicester, pp. 23–28.

D. J. SPIEGELHALTER, N. G. BEST, B. P. CARLIN, A. VAN DER LINDE (2002).
Bayesian measures of model complexity and fit. Journal of the Royal Statistical Soci-
ety, Ser. B, 64, pp. 583–639.

SUMMARY

A design-based approximation to the Bayes Information Criterion in finite population sampling

In this article, various issues related to the implementation of the usual Bayesian Information Cri-
terion (B I C ) are critically examined in the context of modelling a finite population. A suitable
design-based approximation to the BIC is proposed in order to avoid the derivation of the ex-
act likelihood of the sample which is often very complex in a finite population sampling. The
approximation is justified using a theoretical argument and a Monte Carlo simulation study.

Keywords: Bayes factor; Hypothesis testing; Model selection; Pseudo-maximum likelihood; Clus-
ter sampling


