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TESTING FOR SEASONAL FRACTIONAL INTEGRATION 
IN QUARTERLY TIME SERIES 

Paramsothy Silvapulle 

1. INTRODUCTION 

In recent years, much attention has been given to the study of fractionally inte-
grated or long-memory processes1, which is a characteristic of time series that 
exhibits strong dependency between distant observations.  

The discovery of the so-called Hurst effect (Hurst (1951)) initiated the devel-
opment of stochastic models with this property. 

Consequently, Granger (1980, 1981), Granger-Joyeux (1980), Diebold-
Rudebusch (1989) and Hosking (1981) studied separately the autoregressive 
fractionally integrated moving average (ARFIMA) process, given as 

t
d YBB )1)(( teB)( , with d as the integration parameter. When d lies in the 

range 0.1 to 0.5, this process is known to possess the long-memory property, 
which is found to be useful in modelling and forecasting time series (see Baillie 
(1996) for a recent survey of long-memory processes).  

This survey also reviews the growing number of applications in a variety of 
fields. It has been found in the literature that many climatological time series have 
the tendency for large values to be followed by large values of the same sign 
(Mandelbrot and Wallis, 1968, 1969). 

This property, persistent statistical dependence, does not appear to result from 
ordinary serial dependence, but rather from a special kind of dependence with an 
infinite memory called `non-cyclic long-run statistical dependence'.  

The series, which are long-term-dependent, exhibit `trends' and `cycles' of var-
ying lengths (Mandelbrot and Wallis, 1969, Mandelbrot, 1972). 

1 There are several definitions of the property of long memory in the literature.  
According to McLeod-Hipel (1978), a time series (say) ty , is said to possess the long memory 

property if 
0k

k  is infinite, where k is the autocorrelation function at lag k or, alternatively, the 

spectral density of ty  (say) f( ) is unbounded at low frequencies. For other definitions of long 

memory, see Baillie (1996). 
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Many economic time series have been found to possess long memory, which is 
not surprising, since many economic variables (e.g., agricultural production and 
commodity prices) are related directly to climatological variables (see Mandelbrot, 
1970). Most applied work using the above-mentioned techniques depends on the 
asymptotic results to make small-sample inferences. 

Therefore, it is very important that the tests used to detect fractional unit roots 
at different frequencies in a time series model have correct sizes and good powers, 
particularly in finite samples, because failure to reject the null hypothesis when it 
is false may lead to unsubstantiated claims regarding the stochastic behaviour of 
the time series. 

Cheung (1993) examined the finite sample behaviour of the fractional integra-
tion tests such as the GPH test, the modified rescaled range (MRR) test devel-
oped by Lo (1991) and the two LM tests proposed by Robinson (1991), however 
they were limited to the zero frequency. His results show that both the GPH and 
MRR tests perform better than Robinson's LM tests.  

Since the long-run characteristics of a process can be captured by the fractional 
differencing parameter d, its testing is necessary for modelling the time series. A 
number of procedures have been suggested in the literature for testing the pa-
rameter d at zero and seasonal frequencies (see, for example, Porter-Hudak, 1990, 
Hassler, 1994, Robinson, 1994, Silvapulle, 1999, 2001 and others). 

Porter-Hudak extended the non-seasonal estimation and testing procedure of 
d, developed by Geweke and Porter-Hudak (1983) (GPH), to the seasonal case, 
but only at the zero frequency. Hassler used the GPH technique to estimate and 
test the fractional parameters at zero and seasonal frequencies in a rigid and/or 
flexible time series model. On the other hand, Robinson proposed a frequency 
domain score statistic for testing fractional integration at seasonal frequencies. 
Furthermore, based on ideas presented by Robinson (1994), Silvapulle more 
recently derived time domain score statistics for testing fractional integration at 
zero and seasonal frequencies. 

The score test is computationally attractive, particularly for the current testing 
problem and is likely to be preferred by applied researchers unfamiliar with the 
frequency domain approach.

The score-type tests statistics are very popular for two reasons. Firstly, only the 
model under the null hypothesis needs to be estimated, which is considerably 
simpler than the model under the alternative hypothesis. Other tests, such as 
likelihood ratio and Wald-type, are generally difficult to apply because the full 
model under the alternative hypothesis needs to be estimated. 

Secondly, the score-type tests are asymptotically equivalent to the likelihood 
ratio test. In this paper, we assess and compare the finite sample behaviour of 
Hassler's extension of the GPH semi-parametric test, Robinson's frequency 
domain score test and Silvapulle's time domain test for testing hypotheses in the 
following cases: (i) H0:: I(0) process against H1: fractional integration at different 
frequencies and (ii) the same hypotheses in (i), but with AR(1) present under 
both hypotheses.  
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This paper is organised as follows: (i) Section briefly discusses the models and 
the tests; (ii) Section 3 presents the experimental design; (iii) Section 4 reports the 
results and (iv) the final section provides concluding remarks. 

2. MODELS AND TEST PROCEDURES 

In this section, we present a brief description of the data-generating processes 
and procedures developed for testing fractional integration at zero and seasonal 
frequencies in quarterly time  

2.1 Models: definitions and properties 

Consider the following Auto-Regressive Seasonally Fractionally Integrated 

Moving average (ARSFIMA) model: t
ddd yBBBB 210 )1()1()1)(( 2 = (B)et,

t = 1,……n, where  (B) = 1 - 1B - …- pB
p is a p-th order AR polynomial, 

 (B) = 1 + 1B +…+ qB
q is a q th order MA polynomial, B is the lag operator 

defined as Byt = yt-1, d0, d1 and d2 are unknown fractionally integrated parameters 

at zero and seasonal frequencies  /2 and  respectively and et is a white noise 
process. For d0 = d1 = d2, (Hassler 1994) argued that the type of filter (1-B4)d is 
fairly rigid in that the contributions of half-yearly and yearly oscillations and 
long-run behaviour are all governed by one common d.

He argued further that the importance of fractional integration at zero and sea-
sonal frequencies can be separated by means of a flexible filter (1-B)d

0 (1+B)d
1

(1+B2)d
2 , where d0, d1 and d2 may not be integers.  

This class of model is useful, as it is a natural generalisation of seasonally inte-
grated models introduced by Hylleberg et al. (1990).  

The memory property of (1) depends on the value of di, i = 0, 1, 2.

The process yt is both stationary and invertible if all roots of  (B) and  (B)

areoutside the unit circle and di  (-1/2,1/2) for all i. Model (1) includes the 
seasonal ARIMA model as a special case where di = 1 for all i ; this model reduces 
to a standard ARMA model for di = 0 for all i. When di = 0 for all i, the autocor-
relations of yt decay geometrically at a rate proportional to k.

Thus, a stationary ARMA model has a short memory, because the dependence 
between observations k periods apart decays rapidly as k increases.

For di  (0, 1/2) for all i , yt is still stationary, however the autocorrelations of 
yt show a hyperbolic decay at a rate proportional to k2d-1, in contrast to a faster 
geometric decay of a stationary ARMA process (see Hosking, 1981). 

Due to the presence of such significant dependence between distant observa-
tions, the ARSFIMA process is often called a long-memory process, providing 
superior long-run forecasts to the ARIMA models. 
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The long-memory behaviour of yt in (1) can be seen also from its spectral den-

sity, say, fy( i). For di > 0 for all i, fy( i) is unbounded at frequency i = 0, rather 

than bounded as for a stationary ARMA process. When di (1/2) ,1) for all i, the 
process yt is covariance-non-stationary, because its variance is not finite (see 
Hosking, 1981). 

Nonetheless, the process is mean-reverting, since an innovation has no perma-
nent effect on the value of yt. This is in contrast to an I(1) process, which is both 
covariance-non-stationary and mean-averting.  

The effect of an innovation on an I(1) process is persistent forever (Cheung 
and Lai, 1993). 

2.2 Tests 

In this study, we consider the following procedures for testing fractional inte-
gration at zero and seasonal frequencies in quarterly time series models: (a) the 
generalised GPH tests proposed by Hassler (1994); (b) the frequency domain 
score test developed by Robinson (1994) and (c) the time domain score test 
derived by Silvapulle (1995). 

Following is a brief description of the above tests: 
(a) The generalised GPH test Hassler (1994) generalised the GPH procedure 

to test the fractional parameter at zero and seasonal frequencies, as in Hylleberg et
al. (1990), who extended the procedures for testing unit roots at the zero fre-
quency to those at the zero and/or seasonal frequencies.  

To describe the testing procedure, let us consider the following regression models: 

Ikj = ck + dkRj + ukj, k = 0, 1 , 2 and j = 1,…, T,  

where Ikj = ln{Iy( (kj))}, Iy( kj) = n-1|
n

t 1
yt exp{k kjt}|

2 is the estimated spec- 

tral periodogram of yt at frequency kj , dk are the fractionally integrated pa- 

rameters at 0 and seasonal frequencies  /2 and  respectively (belonging to 
the sets of harmonic seasonal frequencies kj ), 0j = 2  j/n, 1j = (  /2) + 2  j/n, 

2j =  - 2  j/n, Rj = -ln{4sin2 (n-1  j )} , T = n  is the number of low frequency 

periodogram ordinates with  = 0.60, 0.50 and 0.40 considered in the simulation 
study conducted in Section \ref{sec-3} and n is the sample size. 

To test H0: dk = 0 against H1: dk  0, k = 0, 1, 2 in (2), the test statistics are de-

fined as 
)ˆ(

ˆ

k

k

dV

d
 , where kd̂  are the OLS estimators of dk and V( kd̂ ) are the 

estimated variance of kd̂ , defined as 2/6SR
2 for 0 and  frequencies and 

2

2

12 RS

for /2 frequency and SR
2 = 2

1

)( RR
n

j
j .
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The asymptotic distribution of the above statistics is the standardised normal 
distribution.

b) The frequency domain score test. Robinson (1994) proposed the frequency 
domain score statistic for testing fractional integration at zero and seasonal fre-
quencies.  

In what follows, the testing procedure is described. 
Consider model (1), where yt = 0, t  0; yt  may be an observable time series 

or the unobservable error term in the regression xt =  zt + yt, t = 1, 2, ..., n, zt

is a k 1 vector of stochastic or non-stochastic variables and  is a k 1 vec- 

tor of unknown parameters. To test H0: d = 0 against H1: d  0 , where 

d = (d0, d1, d2) and 0 = (0, 0, 0)in (1), the score statistics is defined as rrR ~~~
,

where r~  = aaAn ~,~~
)~/( 2/122/1 =-(2  /n)

'

j
( j )

eI~
 ( j ), 

eI ~ ( j )=(2  n)-1 | jit
n

t
tee

1

~ |2, )()(
2~ '

jj j
n

A , the primed sums are 

over sMMj ,...,1),1,1(,:, , such that 

s,...,1,  are the distinct poles of )(  on ( , ],

nje
n

jjjjj

n

t
t /2,cos2log),

2

1
cos2log(,

2

1
sin2log)(,~1

1

22 an

d te~ are the OLS errors in (1). 

The asymptotic distribution of the statistic tilde{R} has a chi-square distribu-
tion with three degrees of freedom.  

c) The time domain score test. Recently, Silvapulle (1995) derived a time do-
main score statistic for testing fractional integration at zero and seasonal frequen-
cies in a quarterly time series model.  

To describe the testing procedure, consider the ARSFIMA (p,d,q) model (1), 

where ty is an observable time series or the unobservable error term in the regres-

sion tttt zntyzx ,,...,1,  is a k 1 vector of stochastic or non-stochastic 

variables and is a k 1 vector of unknown parameters.  

Let us suppose ),(d , where d = ( 210 ,, ddd ) and ),,,( 2 .

Then, to test H0:0 against H1:d > 0 at 0 and seasonal frequencies 2 and ,

the score statistic is defined as dddd
ssTT 1'1

0 , where T = (n - 2m), n is the 

number of observations, m is the number of terms chosen from the expansion of 
log(1+B), selected as 5, 10 and 15 in the simulation study, the score vector ds  is 

the slope of the log likelihood function L( ) for n observations, defined as 



P. Silvapulle 638

,
)(

,
)(

,
)(

210 d

L

d

L

d

L
sd

n

td

L

1

2

0

)ˆ/1(
)(

tê
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thate  are the OLS errors in (1) under H0 , the information matrix of ds  under 

H0 is defined as 
d

ddd

H

L
E

2

2 )(
0

,

and the lower triangular part of dd  is given as 
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where the elements of d are all zero when the error term is white noise.  
The limiting distribution of the statistic 0T has a chi-square distribution with 3 

degrees of freedom; see Silvapulle2 (2001) for the expressions of d and the corre-
sponding test statistic when the error term follows a stationary ARMA process. 

3. EXPERIMENTAL DESIGN 

A Monte Carlo simulation experiment was conducted to assess the finite sam-
ple behaviour of the fractional integration tests considered in this paper for testing 
the null of stationary short-memory process against seasonal long-memory alter-
natives (i.e. H0: id = 0 against 1H : id > 0, i = 0, 1 and 2) in (1) under various 

conditions. 

2 The OPG-LM tests proposed by Silvapulle (1999) performed as well as the score test of Sil-
vapulle (2001) when the error term is white noise, and under performed when the errors are 
correlated. The results are shown here for space reasons. 
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In this study, we considered sample sizes n=52, n=100 and n=252. The simu-
lation experiments were based on 2000 replications for calculations of rejection 
rates of statistics under the null and alternative hypotheses.  

These rejection rates were estimated at the 5 per cent nominal level. For all 
computations GAUSS programming software was used. 

The experiment was conducted in the following stages: 

3.1 Experiment 1 

The stationary process ttt eey , sim N(0,1) is generated under H0 for testing 

H0 : 1d = 0 against 1H : id > 0, i = 0, 1 and 2. 

Further, the seasonally fractionally integrated (SFI) process 

t
ddd yBBB 210 )1()1()1( 2  is generated for id = 0.1, 0.2, 0.3 and 0.4 for i = 0, 

1 and 2, under 1H .

When 0d = 1d = 2d , the expression of autocovariance function of the SFI of 

process ty can be defined as: 

cov 2
4 )1()1()(/)()21(),( ekktt kdddkddyy .

First, the desired T T covariance matrix  is constructed, then the rigid SFI 
process ty  generated as ty = tPe , where P is the lower triangular Choleski de-

composition of . When not all d's are equal, the flexible seasonal filter is con-
structed using the following formulae: 

i. j
p

j
j

j

j
j

ddd BBBBB
00

2 210 )1()1()1(

where the coefficients 

,..2,1,0,12,

2,

0
12

0
2

mmjc

mjc

m

k
kkm

m

k
kkm

j

are defined by the convolution of 

ii. j

j
j

d BaB
0

0)1(  with 0a =1 and 1
01

jj a
j

dj
a

iii. 1)1( dB j

j
j Bb

0

with 10b  and 1
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jj b
j
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j
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.
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The flexible SFI process ty  is generated as ty = ntee
p

j
jtjt ,...,1,/

0

2  where 

te and t are defined as above. 

The rejection rates of fractional integration tests under the null and alternative 
hypotheses (i.e, estimated sizes and power of the tests respectively) for testing H0 :

id = 0 against 1H : id > 0 are reported in Tables 3 and 4 respectively. 

3.2 Experiment 2 

The finite sample behaviour of the tests is explored when the data are generated 
as an ARFISMA(1,d,0) process under the null H0 : d

i
= 0 and alternative 1H : d

i
>

0 hypotheses. 
Under H0, the stationary AR(1) process tt eyB)1( , where te sim N(0,1), is 

generated for values of = 0.2, 0.5 and 0.7, with initial observations adjusted to 

ensure stationarity. Under 1H , when 0d = 1d = 2d , the covariance matrix of

the SFI process is constructed as in Experiment 1.  
Then the rigid ARSFIMA(1,d,0) process ty  is generated as ty = tPe , where P 

is the lower triangular Choleski decomposition of 1 , which is the covariance 

matrix of the AR(1) process. 
When 0d 1d 2d , the flexible seasonal filter is generated first using formulae 

(i) to (v) as in Experiment 1, then the flexible ARFISMA(1,d,0) process ty  is 

generated as nteey
p

j
jtjtt ,...,3,2,1,/

1
0

2 , where 1 , te  and t  are 

defined as above. The estimated rejection rates of the tests under the null and 
alternative hypotheses are reported in Tables 3 and 4 respectively.  

Since the rejection rates of the tests under the null are very high in many situa-
tions, we estimate the 5 per cent critical values, which in turn are used in the 
power calculations. 

4. RESULTS

In this section, we discuss the results of the estimated sizes and powers of the 
seasonal fractional integration tests, namely, the generalized GPH tests at 0, /2

and frequencies, denoted by )ˆ( 0dt , )ˆ( 1dt  and )ˆ( 2dt  respectively, the frequency 

domain score test denoted by R
~

 and the time domain score test denoted by 0T

for testing H0: id = 0 against 1H : id > 0, i = 0, 1 and 2 in (1) at the 5 per cent 

nominal level under various conditions discussed in the previous section.  
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Table 1 contains the empirical rejection rates of the tests under the null hy-

pothesis, computed using the 5% asymptotic 2
3x  critical value when the data were 

generated from the ARSFIMA(0,0,0) process under the null hypothesis. 

TABLE 1 

Estimated rejection rates of the seasonal fractional integration tests under the null for testing oH : id  = 0 

against 1H : id  > 0, i = 0, 1, 2 in ARSFIMA (0,d,0) at the 5 per cent level of significance 

n
)ˆ( 0dt

0.60 0.50 0.40 

)ˆ( 1dt

0.60 0.50 0.40 

)ˆ( 2dt

0.60 0.50 0.40 

R
~ T0

m
5 10 15 

52
100 
252 

.04 .05 .04 

.05 .04 .04 

.04 .04 .04 

.11  .11 .10 
(.05) (.05) (.05) 

.12  .11 .11 
(.04) (.05) (.06) 

.11  .10 .10 
(.04) (.04) (.04) 

.04 .05 .04 

.04 .04 .04 

.04 .04 .05 

.10 

.15 

.18 

.06 .06 .09 

.05 .06 .06 

.04 .05 .04 

Notes: 
(a) )(),( 10 dhattdhatt  and )( 2dhatt are the generalised GPH statistics at the frequencies 0, /2 and 

 respectively, proposed by Hassler (1994); R
~

 is the frequency domain score statistic developed 

by Robinson (1994); 0T  is the time domain score statistic proposed by Silvapulle (2001). 

(b) n is the sample size,  is a constant used to compute the number of low frequency periodogram 

ordinates and m is the number of terms chosen from the expression of log(1+B). Values in parenthe-
sis are the nominal size of the Hassler statistic at frequency /2 when the error variance is assumed 

to be 6/2  instead of 12/2 .

It is clear from Table 1 that, for all sample sizes, the tests had rejection rates 

close or equal to 5 per cent, except for the R
~

 test and the )ˆ( 1dt  when the vari-

ance was assumed to be 12/2 .

The rejection rates of the R
~

 test had the tendency to increase as the sample 
size increased.  

The finite sample behaviour of the seasonal fractional integration tests, used for 
testing H0: id = 0 against 1H : id > 0, i = 0, 1 and 2 in (1), were also explored 

when the data were generated from the ARSFIMA(1,d,0) process; the estimated 
rejection rates are presented in Table 2. 

It is clear from these results that the rejection rates of the generalised GPH tests 
at all frequencies were approximately similar to those obtained in Experiment 1.  

The R
~

test suffers from changes in the size of the samples, but above all its re-
jection rates increase with increasing .

On the other hand, the 0T  test had smaller rejection rates than the nominal 

level when compared to those observed in the Experiment 1. 
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TABLE 2 

Estimated rejection rates of the seasonal fractional integration tests under the null for testing oH : id  = 0 

against 1H : id  > 0, i = 0, 1 and 2 in ARSFIMA(1,d,0) at the 5 per cent level of significance 

N
52 0.2 

0.5 
0.7 

)ˆ( 0dt

=0.50 

.04 

.03 

.03 

)ˆ( 1dt

=0.50 

.11(.05) 

.10(.05) 

.11(.06) 

)ˆ( 2dt

=0.50 

.04 

.04 

.03 

R
~

.07 

.12 

.15 

T0

m = 10 
.05 
.03 
.03 

100 0.2 
0.5 
0.7 

.03 

.04 

.03 

.12(.06) 

.10(.05) 
.04 
.04 
.04 

.05 

.09 

.13 

.03 

.02 

.02 

252 0.2 
0.5 
0.7 

.04 

.03 

.03 

.11(.06) 

.11(.05) 

.11(.05) 

.04 

.04 

.04 

.08 

.12 

.15 

.02 

.03 

.02 

See footnotes (a) and (b) for Table 1.  is the autoregressive parameter 

Since the tests had varying rejection rates under the null hypotheses, power 
comparison using the asymptotic critical values was not informative. 

We therefore estimated the 5 per cent critical values under the null for all cases 
considered in this study, and these values were used in subsequent power calcula-
tions.

The estimated powers of the fractional integration tests at different frequencies 
when the data were generated from the rigid and flexible ARSFIMA (0,d,0) 
processes are reported in Table 3. 

TABLE 3 

Estimated powers of the seasonal fractional integration tests for testing 0H : id  = 0 against 

1H : id  > 0, i = 0, 1 and 2 in ARSFIMA (0,d,0) at the 5 per cent level of significance 

),,( 210 ddd N
)ˆ( 0dt

=0.50 

)ˆ( 1dt

=0.50 

)ˆ( 2dt

=0.50 

R
~ T0

m=10 

(.1,.1,.1)   52 
100 

.07 

.06 
.12(.06) 
.13(.07) 

.08 

.07 
.12 
.18 

.10 

.16 
(.1,.2,.3)   52 

100 
.08 
.09 

.14(.07) 

.13(.08) 
.09 
.09 

.17 

.22 
.15 
.21 

(.2,.2,.2)   52 
100 

.06 

.07 
.13(.08) 
:18(.08) 

.09 

.08 
.29 
.38 

.32 

.41 
(.3,.3,.3)   52 

100 
.07 
.11 

.18(.09) 

.25(.16) 
.08 
.12 

.53 

.62 
.54 
.65 

(.4,.3,.2)   52 
100 

.08 

.06 
.12(.09) 
.11(.07) 

.06 

.08 
.62 
.75 

.61 

.81 
(.4,.4,.4)   52 

100 
.12 
.17 

.21(.09) 

.36(.20) 
.09 
.21 

.78 

.89 
.82 
.95 

See footnotes (a) and (b) for Table 1 
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There is no notable changes in the powers of the )ˆ( idt test across all id , i = 0, 

1 and 2 and/or the sample size except when all sd i  are 0.4 and the sample size is 

100. 

Of three tests )ˆ( 1dt  dominates the other two counterparts. 

The powers of the R
~

 and 0T  are much higher than the t(.) tests, particularly 

when the values of sd  and the sample size are large. 

Comparing the performances of the R
~

 and 0T  tests, we can say that R
~

 domi-

nates 0T  in terms of power for small values of sd i , and, clearly, the reverse is true 

for large values of sd i .

Table 4 reports the estimated powers of the tests when the data were generated 
from the flexible ARSFIMA (1,d,0) process for varying values of d.

TABLE 4 

Estimated powers of the seasonal fractional integration tests for testing 0H : id  = 0 against 

1H : id  > 0, i = 0, 1 and 2 in ARSFIMA (1,d,0) at the 5 per cent level of significance 

),,( 210 ddd N
)ˆ( 0dt

=0.50 

)ˆ( 1dt

=0.50 

)ˆ( 2dt

=0.50 

R
~ T0

m=0 

0.2 (.1,.1,.1)   52 
100 

.08 

.07 
.09(.07) 
.11(.06) 

.06 

.07 
.21 
.32 

.15 

.28 
 (.1,.2,.3)   52 

100 
.06 
.07 

.15(.08) 

.15(.08) 
.07 
.06 

.25 

.40 
.23 
.39 

 (.2,.3,.4)   52 
100 

.06 

.09 
.14(.09) 
.20(.15) 

.08 

.12 
.36 
.52 

.38 

.61 
 (.4,.4,.4)   52 

100 
.09 
.16 

.20(.17) 

.31(.25) 
.13 
.17 

.70 

.89 
.82 
.95 

0.7 (.1,.1,.1)   52 
100 

.10 

.09 
.07(.06) 
.12(.10) 

.06 

.06 
.27 
.43 

.29 

.52 
 (.1,.2,.3)   52 

100 
.08 
.07 

.17(.09) 

.16(.06) 
.06 
.08 

.45 

.89 
.48 
.99 

 (.2,.3,.4)   52 
100 

.14 

.13 
.14(.11) 
.17(.13) 

.10 

.12 
.61 
.88 

.70 

.97 
 (.4,.4,.4)   52 

100 
.13 
.18 

.19(.12) 

.26(.19) 
.11 
.20 

.83 

.93 
.89 
1.0 

See footnotes (a) and (b) for Table 1, and footnote (a) for Table 2 

The results show that, in the case of the rigid ARSFIMA (1,d,0) process, all 

tests had good power properties, except for the generalised GPH tests )ˆ( idt  test 

across all i = 0, 1 and 2.

Being similar to the results reported in Table 3, )ˆ( 0dt  and )ˆ( 2dt  were found to 

have low powers in comparison with the )ˆ( 1dt  test.

The estimated powers of the R
~

 and 0T  tests are much higher than those of the 

t(.) tests for all values of id , and these powers increase as the values of  and the 

sample size increase.  
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Further, we note that the power of R
~

 test is higher than those of the 0T  test 

for small values of  and id  regardless of sample sizes, and the reverse is true for 

large values of and id .

5. CONCLUSION 

In this paper, we examine the finite sample behaviour of the seasonal fractional 
integration tests for testing the following hypotheses: (i) 0H : I(0) process against 

1H : fractional integration at different frequencies and (ii) the same hypotheses in 

(i) but with AR(1) present under both hypotheses in quarterly time series models. 
We consider the generalised version of the GPH test proposed by Hassler 

(1994), the frequency domain score test developed by Robinson (1994) and the 
time domain score test derived by Silvapulle (2001).  

Evidence from a Monte Carlo simulation study indicates that all tests have de-
sirable finite sample value properties, except for the frequency domain score test. 

The values of the latter can be much higher than the nominal level in large 
samples.

On the other hand, both the frequency and time domain score tests have better 
powers against the fractionally integrated processes than the generalised GPH 
tests. 

Department of Econometrics and Business Statistics 
Monash University, Australia 
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RIASSUNTO

Test per valutare le proprietà di serie storiche trimestrali 

Numerose serie storiche, come quelle riguardanti i prezzi dei prodotti agricoli, nonché 
le serie economiche e finanziarie, presentano una forte dipendenza a lunga memoria. 
Poiché molte di esse presentano anche regolarità stagionali, vengono presi in considera-
zione alcuni test statistici, e precisamente l’estensione di Hassler al test semi-parametrico 
GPH di Geweke e Porter-Hudak (1983), il test frequency domain score di Robinson e il 
test domain time di Silvapulle, per valutare le proprietà di lunga memoria delle serie 
storiche trimestrali al tempo iniziale e le frequenze stagionali. Le proprietà statistiche finite 
di questi test sono poco conosciute. In uno studio di simulazione, si trova che il test 
domain time è più potente degli altri. Valutare l’affidabilità di questi test nel finito è utile 
nella ricerca applicata.

SUMMARY

Testing for seasonal fractional integration in quarterly time series 

Many series, such as agricultural commodity prices and economic and financial series, 
exhibit strong dependence--long memory property.  

Since many time series also exhibit seasonal patterns, this paper considers a number of 
tests - namely Hassler's extension of Geweke and Porter-Hudak's (1983) (GPH) semi-
parametric test, Robinson's frequency domain score test and Silvapulle's time domain test 
- to assess the long memory properties of quarterly time series at zero and seasonal fre-
quencies. Very little is known about the finite sample statistical properties of these tests. 
In a simulation study, we find that time domain and semi-parametric tests generally have 
the rejection rates under the null hypothesis close to the nominal level, with the latter 
tests' rejection rates higher than the nominal level at the semi-annual frequency. In terms 
of power, the time domain score test was shown to be superior with respect to the others. 
Establishing the reliability of these tests in finite samples is very useful to applied research-
ers.


