ON TESTING EXPONENTIALITY AGAINST NBARFR LIFE DISTRIBUTIONS

M. A. W. Mahmoud, N. A. Abdul Alim

1. INTRODUCTION AND DEFINITIONS

Testing exponentiality against various classes of life distributions has got a good deal of attention. With respect to testing against IFR, see Proschan and Pyke (1967), Barlow (1968), and Ahmed (1975) among others. For testing against IFRA, see Deshpande (1983), Linmk (1989), Aly (1989), and Ahmed (1994). For testing against NBU, see Hollander and Proschan (1972), Koul (1977), Kumazawa (1983) and Ahmed (1994). For testing against NBUE, NBUER and NBAFR classes, we refer to Klefsjo (1981, 1982), Deshpande *et al.* (1986), Aboammoh and Ahmed (1988), Loh (1984) and Hendi *et al.* (2000). Recently Mahmoud and Abdul Alim (2002) studied testing exponentiality against NBURFR based on a U-statistic for censored and noncensored data.

Now let T be a non negative random variable with life distribution F(t), where F(t) = 0 for t<0 and F(0) may not be zero. The corresponding survival function of new system $\overline{F}(t)$, for t>0 and the density function is given by f(t). The failure rate at time t is defined by $r_F(t) = f(t)/\overline{F}(t)$, $t \ge 0$. In the long run, if a device is replaced by sequence of mutually and identically distributed, the remaining life distribution of the system under operation at time t is given by stationary renewal distribution as follows:

$$W_F(t) = \mu_F^{-1} \int_0^t \overline{F}(u) du , \ 0 \le t < \infty ,$$

where μ_F is the mean life of the random variable T, $\mu_F = \int_0^\infty \overline{F}(u) du < \infty$.

The corresponding renewal survival function is given by

$$\overline{W}_F(t) = \mu_F^{-1} \int_t^\infty \overline{F}(u) du \,.$$

The density function of the renewal distribution $W_F(t)$ is given by

$$w_F(t) = \frac{d}{dt} \left(\mu_F^{-1} \int_0^t \overline{F}(u) du \right) = \mu_F^{-1} \overline{F}(t) = -\frac{d}{dt} \overline{W}_F(t), \quad 0 \le t < \infty.$$

The failure rate of the renewal distribution $W_F(t)$ is given by

$$r_F(t) = \frac{w_F(t)}{\overline{W}_F(t)} = \frac{F(t)}{\int_t^{\infty} \overline{F}(u) du} = \left(\mu_F(t)\right)^{-1} \text{ for } 0 \le t < \infty,$$

where $\mu_F(t)$ is the mean remaining life distribution of a used unit at time t.

Definition 1.1. F is new better than average renewal failure rate (NBARFR) if

$$r_F(0) \leq t^{-1} \int_0^t r_{W_F}(u) du, t > 0.$$

Equivalently $r_F(0) \leq -t^{-1} \ln \overline{W}_F(t)$, where $\overline{W}_F(0) = \mu_F^{-1} \int_0^\infty \overline{F}(u) du = 1$, *i.e* the failure rate of a new system is less than the average renewal failure rate of a used system.

Definition 1.2. F is new worth than used average renewal failure rate (NWARFR) if

$$r_F(0) \ge t^{-1} \int_0^t r_{W_F}(u) du, t \ge 0$$

Equivalently $r_F(0) \ge -t^{-1} \ln \overline{W}_F(t)$, *i.e* the failure rate of a new system is greater than the average renewal failure rate of a used system (see Abouanmoh and Ahmed, 1992).

Theorem 1.1. The life distribution F or its survival \overline{F} having NBARFR iff

$$\int_{t}^{\infty} \overline{F}(u) du \leq \mu_{F} e^{-tr_{F}(0)}, t \geq 0.$$

Proof. Let F be a life distribution with failure rate r(.), F is NBARFR means

 $r_F(0) \leq -t^{-1} \ln \overline{W}_F(t)$

then

$$-tr_F(0) \ge \ln \overline{W}_F(t)$$
,
 $\overline{W}_F(t) \le e^{-tr_F(0)}$.

This is equivalent to the form

$$\int_{t}^{\infty} \overline{F}(u) du \le \mu_F e^{-tr_F(0)}, t \ge 0.$$
(1)

If (1) is satisfied, then it is easy to proof the NBARFR property.

By using " \geq " instead of " \leq " , the proof of the following theorem can be conducted.

Theorem 1.2. The life distribution F or its survival \overline{F} having NWARFR iff

$$\int_{t}^{\infty} \overline{F}(u) du \geq \mu_{F} e^{-tr_{F}(0)}, t \geq 0.$$

The main purpose of this article is testing H_0 : F is exponential against H_1 : $F \in \text{NBARFR}$ and not exponential, based on a random sample X_1, X_2, \dots, X_n from a continuous life distribution F (noncensored data), and also (censored data) based on (Z_i, δ_i) , $i=1,2,3,\dots n$, where $Z_i = \min(X_i, Y_i)$ and

$$\delta_i = \begin{cases} 1 & \text{if } Z_i = X_i \\ 0 & \text{if } Z_i = Y_i \end{cases},$$

where, Y_1, Y_2, \dots, Y_n be i.i.d according to a distribution G.

2. TESTING AGAINST NBARFR CLASS FOR NONCENSORED DATA

Nonparametric testing for classes of life distributions have been considered by many authors (see Ahmed, 1975, 1994, 1995; Ebrahimi *et al.*, 1992; Hendi, 1999; Hendi *et al.*, 2000; Mahmoud and Abdul Alim, 2002). In this section we derive a nonparametric U-statistic test for testing :

 $H_0: F$ is exponential against $H_1: F \in NBARFR$ and not exponential.

For more details about U-statistics see Lee (1989).

Here, the problem is based on sample $X_1, X_2, ..., X_n$ from F. Since F is NBARFR, this means

$$\int_{t}^{\infty} \overline{F}(u) du \leq \mu_{F} e^{-t r(0)} = \mu_{F} e^{-t f(0)} \text{ for all } t,$$

we use the following measure of departure from H_0

$$\delta_F = E(\mu_F e^{-t f(0)} - \int_t^\infty \overline{F}(u) du) = \int_0^\infty \omega(0) e^{-t f(0)} dF(t) - \int_0^\infty \omega(t) dF(t) \ge 0.$$

Note that $\delta_F = 0$ under H_0 and under H_1 , $\delta_F > 0$. To estimate δ_F let X_1, X_2, \dots, X_n be a random sample from F; then F(t), $\omega(t)$ and f(0) will be empirically estimated. So the empirical form of δ_F is as follows:

$$\hat{\delta}_{F_n} = \frac{1}{n^2} \sum_{i}^{n} \sum_{j}^{n} X_i e^{-X_j \hat{f}_n(0)} - (X_i - X_j) I(X_i \ge X_j).$$
(2)

Since (Hardle, 1991)

$$\hat{f}_n(0) \xrightarrow{p} f(0), \text{ as } n \to \infty,$$

therefore we can write

$$\phi(X_1, X_2) = X_1 e^{-X_2 f(0)} - (X_1 - X_2) I(X_1 \ge X_2)$$

and define the symmetric kernel

$$\psi(X_1, X_2) = \frac{1}{2!} \sum_R \phi(X_{i1}, X_{i2}),$$

where, the summation over all arrangements of X_{i1}, X_{i2} , then $\hat{\delta}_{F_n}$ is equivalent to U-statistic

$$U_n = \frac{1}{\binom{n}{2}} \sum_{R} \psi(X_i, X_j).$$
(3)

Since the order of the kernel in (3) is two, this procedure is simple to calculate. It also has asymptotic properties. The following theorem summarizes the asyptotic normality of $\hat{\delta}_{F_n}$.

Theorem 2.1.

i) As $n \to \infty$, $\sqrt{n} \left(\delta_{F_n} - \delta_F \right)$, is asymptotically normal with mean 0 and variance σ^2 that is as in (4). Under H_0 , $\sigma_0^2 = 1/12$.

ii) If *F* is continuous NBARFR, then the test is consistent. *Proof.*

i) Using standard theory of U-statistic (Lee, 1989), we need only evaluate the asymptotic variance, which is equal to

$$\sigma^{2} = \operatorname{Var} \left\{ \operatorname{E}[\phi(X_{1}, X_{2}) \mid X_{1}] + \operatorname{E}[\phi(X_{1}, X_{2}) \mid X_{2}] \right\}$$

Recall the definition of $\phi(X_1, X_2)$, thus it is not difficult to show that

$$\mathbf{E}[\phi(X_1, X_2) \mid X_1] = X_1 \int_0^\infty e^{-xf(0)} dF(x) - X_1 \int_0^{X_1} dF(x) + \int_0^{X_1} x dF(x).$$

Similarly, we have

$$\mathbf{E}\left[\phi(X_1, X_2) \mid X_2\right] = e^{-X_2 f(0)} \int_0^\infty x dF(x) - \int_{X_2}^\infty x dF(x) + X_2 \int_{X_2}^\infty dF(x) dF$$

Hence,

$$\sigma^{2} = \operatorname{Var} \left\{ X \int_{0}^{\infty} e^{-uf(0)} dF(u) + \int_{0}^{X} u dF(u) + \mu_{F} e^{-Xf(0)} + X(1 - 2F(X)) - \int_{X}^{\infty} u dF(u) \right\}$$
(4)

Under H_0 , $\sigma_0^2 = \operatorname{Var}\left\{-\frac{1}{2}X - e^{-X} + 1\right\} = 1/12$.

ii) δ_F can be written in the form

$$\delta_F = \int_0^\infty (\omega(0)e^{-tf(0)} - \omega(t))dF(t).$$

Let $D(t) = \omega(0)e^{-t f(0)} - \omega(t)$. Since F is NBARFR and continuous, then D(t)>0 and since F is not exponential then D(t)>0 for at least one t, call it t_0 .

Set $t_1 = \inf \{ t \mid t \le t_0 \text{ and } \overline{F}(t) = \overline{F}(t_0) \}$. Thus

$$D(t_1) = \omega(0)e^{-t_1 f(0)} - \omega(t_1) \ge \omega(0)e^{-t_0 f(0)} - \omega(t_0) = D(t_0) > 0$$

and $F(t_1 + \delta) - F(t_1) > 0$, and since t_1 is the point of increase of F, thus $\delta_F > 0$.

To conduct the test, calculate $\sqrt{12 n} \hat{\delta}_{F_n}$ and reject H_0 if this value exceeds Z_{α} , the standard normal variate at level α .

Lower and upper percentile points of the statistic $\hat{\delta}_{F_n}$ is based on 5000 simulated samples from the standard exponential distributions of order 5(1)50 are computed as in table 3.

3. TESTING AGAINST NBARFR CLASS FOR CENSORED DATA

In this section, a test statistic proposed to test H_0 versus H_1 with randomly right censored samples. In the censoring model, instead of dealing with $X_1, X_2...X_n$, we observe the pair (Z_i, δ_i) , i=1,2,3,...n, where $Z_i = \min(X_i, Y_i)$ and $\delta_i = 1$ if $Z_i = X_i$, $\delta_i = 0$ if $Z_i = Y_i$, where $X_1, X_2...X_n$ denote their true life time from a distribution F and $Y_1, Y_2, ...Y_n$ be i.i.d according to distribution G. Also X's and Y's are independent. Let $Z_{(0)} = 0 \le Z_{(1)} \le Z_{(2)} \le ...Z_{(n)}$ denote the ordered Z's and $\delta_{(i)}$ is the δ_i corresponding to $Z_{(i)}$, respectively. Using the Kaplan and Meier (1958) estimator in the case of censored data (Z_i, δ_i) , i=1,2,... n:

$$\hat{\overline{F}}_{n}(X) = 1 - \hat{F}_{n}(X) = \prod_{(i < Z_{(i)} \le X)} \left[\frac{n-i}{n-i+1} \right]^{\delta_{(i)}}, X \in [0, Z_{(n)}],$$

and Tanner (1983), hazard rate estimate with censored data

$$\hat{r}(t) = \frac{1}{2R_k} \sum_{i=1}^n \left[\frac{\delta_{(i)}}{n-i+1} K\left(\frac{t-Z_{(i)}}{2R_k}\right) \right],$$

where:

 R_k is the distance between point t and its k-th nearest failure point

K(.) is a function of bounded variation with compact support on the interval [-1,1].

Then the proposed test statistic is given by

$$\hat{\delta}_{F_n}^c = \int_0^\infty \left[e^{-tf(0)} \int_0^\infty \overline{F}_n(u) du \right] dF(t) - \int_0^\infty \left[\int_t^\infty \overline{F}_n(u) du \right] dF(t)$$
(5)

For computation use, $\hat{\delta}_{F_n}^c$ in (5) can be written as

$$\hat{\delta}_{F_n}^c = \sum_{i=1}^n \left\{ \sum_{j=1}^n \prod_{k=1}^{j-1} (C_{(k)})^{\delta_{(k)}} (Z_{(j)} - Z_{(j-1)}) - \sum_{j=i}^n \prod_{k=1}^{j-1} (C_{(k)})^{\delta_{(k)}} (Z_{(j)} - Z_{(j-1)}) \right\}$$
$$\cdot \left\{ \prod_{m=1}^{i-2} (C_{(m)})^{\delta_{(m)}} - \prod_{mm=1}^{i-1} (C_{(mm)})^{\delta_{(mm)}} \right\} e^{-Z_{(i)}\hat{f}(0)},$$

where

$$C_k = (n-k)/(n-k+1)$$
 and $dF_n(Z_j) = \overline{F}_n(Z_{j-1}) - \overline{F}_n(Z_j)$.

Table 4 gives the percentiles of $\hat{\delta}_{F_n}^c$ for sample size 5(1)50, 60, 70, 80, 81.

4. ASYMPTOTIC RELATIVE EFFICIENCY AND POWERS

Since the above test is new and no other tests known for NBARFR we compare our test to the smaller classes and choose NBU, NBUFR and NBURFR classes proposed in Ahmed (1994), Hendi *et al.* (2000) and Mahmoud and Abdul Alim (2002). We choose the following alternatives:

i) Linear failure rate family : $\overline{F}(t) = \exp(-t - \theta t^2/2), t > 0, \theta \ge 0$

ii) Makeham family
$$\overline{F}(t) = e^{-t - \theta(t + e^{-t} - 1)}$$

- *iii*) Pareto family $\overline{F}(t) = (1 \theta t)^{1/\theta}$
- *iv*) Weibull family $\overline{F}(t) = e^{-t^{\theta}}, t > 0, \theta \ge 0$
- *v*) Gamma family $\overline{F}(t) = \int_{t}^{\infty} e^{-u} u^{\theta-1} du / \Gamma(\theta), t > 0, \theta \ge 0$

Note that H_0 is attained at $\theta = 1$, in *iv*) and *v*), is attained at $\theta = 0$ in *i*) and *ii*), and is attained when $\theta \rightarrow 0$ in *iii*).

Direct calculations of the asymptotic efficiencies of the NBARFR class compared with NBU (Ahmed, 1994), NBUFR (Hendi *et al.*, 2000) and NBURFR (Mahmoud and Abdul Alim, 2002) in table 2.

For the previous alternatives, the powers for the proposed test are tabulated as in table 1 using simulated number of sample 5000 for sample sizes 10,20 and 30 and θ values 2,3 and 4.

	N		Powers		Powers		Powers
	10	θ =2	.914		.882	$\theta = 4$.858
LFR	20		.911	$\theta = 3$.860		.792
	30		.880		.795		.680
	10		.862	0 2	.686		.404
Pareto	20	θ =2	.805	$\theta = 3$.446	θ =4	.070
	30		.698		.197		.002
Weibull	10		1.000		1.000		1.000
weibuli	20	$\theta = 2$	1.000	$\theta = 3$	1.000	θ =4	1.000
	30		1.000		1.000		1.000
	10		1.000		1.000		1.000
Gamma	20	$\theta = 2$	1.000	$\theta = 3$	1.000	θ =4	1.000
	30		1.000		1.000		1.000

TABLE 1Powers for NBARFR class test

It is clear from table 1 that our test has a good powers specially in the case of Weibull and Gamma families. Table 2 shows that our test has much higher asymptotic efficacy for the linear failure rate and Makeham families compared with other two tests (Ahmed, 1994 and Hendi *et al.*, 2000). Also it shows acceptable AE for Weibull and Gamma families.

In section 1 and 2 the test statistics (2) and (5) for uncensored and right censored data respectively are derived. Using (2), (5) and tables 3 and 4 applications in medical science are presented to illustrate the theoretical results in section 5.

Efficienciy	F_1 Linear failure rate	F ₂ Makeham	F ₃ Pareto	F_4 Weibull	F5 Gamma
$\hat{\delta}F_n^{(1)}$ (Ahmed, 1994)	0.8056	0.2854			
$\hat{\delta}F_n^{(2)}$ (Hendi et al., 2000)	0.433	0.289	0.1880		
$\hat{\delta}_{F^{(3)}}$	1.2990	0.5774	1.2990		
δF_n	1.2990	0.5774	0.4330	0.9699	0.5196
$e(\delta F_n, \delta F_n^{(1)})$	1.6125	2.2277			
$e(\delta F_n, \delta F_n^{(2)})$	3.000	1.9975	2.3094		
$e(\delta F_n, \delta F_n^{(3)})$	1.000	1.000	0.33333		

TABLE 2

Asymptotic relative efficiency of δ_{F_n} to $\delta_{F_n^{(1)}}$, $\delta_{F_n^{(2)}}$ and $\delta_{F_n^{(3)}}$ of Ahmed (1994), Hendi et al. (2000) and Mahmoud and Abdul Alim (2002)

5. APPLICATIONS

Consider the data in Abouammoh *et al.* (1994). These data represent a set of 40 patients suffering from blood cancer (Leukemia) from one of Ministry of Health Hospitals in Saudi Arabia and the ordered values are:

115	181	255	418	441	461	516	739	743	789
807	865	924	983	1024	1062	1063	1165	1191	1222
1222	1251	1277	1290	1375	1369	1408	1455	1478	1549
1578	1599	1603	1605	1696	1735	1799	1815	1852	1599

It was found that the test statistic for the data set, by formula (2) is $\hat{\delta}_{F_n} = 869.0544$ and exceeds the critical value of table 3. Then we reject the null hypothesis of exponentiality.

Consider the data in Susarla and Vanryzin (1978). These data represent 81 survival times of patients of melanoma. Of them 46 represent whole life times (non-censored data) and the ordered values are:

13	14	19	19	20	21	23	23	25	26	26	27
27	31	32	34	34	37	38	38	40	46	50	53
54	57	58	59	60	65	65	66	70	85	90	98
102	103	110	118	124	130	136	138	141	234		

The ordered censored observations are:

1(21		50	5.5	(7	72	7(0.0	0.1	06	
16	21	44	50	>>	6/	/3	/6	80	81	86	95
100	108	114	120	124	125	129	130	132	134	140	147
148	151	152	152	158	181	190	193	194	213	215	

Now ignoring censored data, one can apply the methodology of section 2 to test the hypothesis Ho: the survival times are exponential against H_1 : the survival times follow nbarfr and not exponential.

Computing $\hat{\delta}_{F_n}$ from (2), we get $\hat{\delta}_{F_n}$ =38.949430 exceeds the critical point in table 3 at 95% upper percentiles. Then we accept H₁ which states that the set data have nbarfr property.

A simple computer program is written to calculate $\hat{\delta}_{F_n}^c$ for these data and the value we get leads to a $\hat{\delta}_{F_n}^c = 0.67681 \times 10{\text -}20$ less than the critical value in table 4 at 95% upper percentile. Then we reject H₁: which states that the set of data have nbarfr property.

6. CONCLUSIONS

Testing exponentiality against NBARFR distributions is considered. The percentiles and powers of our test are tabulated. Comparisons between our test and tests of Ahmed (1994), Hendi *et al.* (2000) and Mahmoud and Abdul Alim (2002) are given. Test for this problem when right censored data is available is handled. Our study explained that our test performs higher AE with respect to Ahmed (1994) and Hendi *et al.* (2000) tests. It gives a very good powers for the most common alternatives.

Department of Mathematics Al-Azhar University, Egypt MOHAMED ABDUL WAHAB MAHMOUD NASSER ANWER ABDUL ALIM

APPENDIX

TABLE 3

	Critical value for $\hat{\delta}_{F_n}$									
N	.01	.05	.10	.90	.95	.98	.99			
5	.0907	.1328	.1643	.6425	.7830	.9742	1.1308			
6	.0991	.1435	.1741	.5989	.7119	.8619	.9560			
7	.1061	.1505	.1774	.5482	.6427	.7813	.8794			
8	.1091	.1482	.1764	.5356	.6252	.7266	.8288			
9	.1103	.1550	.1814	.5150	.5995	.7068	.8083			
10	.1149	.1593	.1827	.4990	.5765	.6772	.7521			
11	.1206	.1633	.1904	.4886	.5527	.6426	.7170			
12	.1217	.1641	.1890	.4682	.5251	.6150	.6856			
13	.1264	.1653	.1870	.4541	.5167	.5989	.6416			
14	.1341	.1698	.1922	.4472	.5080	.5736	.6378			
15	.1310	.1704	.1941	.4403	.4989	.5675	.6259			
16	.1393	.1730	.1953	.4363	.4847	.5520	.5948			
17	.1406	.1776	.1976	.4270	.4760	.5451	.5837			
18	.1390	.1736	.1963	.4223	.4625	.5230	.5776			
19	.1384	.1751	.1973	.4210	.4669	.5213	.5738			
20	.1438	.1785	.1997	.4062	.4510	.5024	.5482			
21	.1485	.1809	.2014	.4055	.4475	.4965	.5311			
22	.1482	.1825	.2029	.4013	.4357	.4855	.5254			
23	.1454	.1810	.2034	.4033	.4427	.4876	.5204			
24	.1531	.1868	.2060	.3959	.4365	.4796	.5200			
25	.1531	.1874	.2053	.3957	.4338	.4812	.5143			
26	.1583	.1872	.2065	.3873	.4304	.4767	.5100			
27	.1578	.1918	.2087	.3894	.4263	.4759	.5080			
28	.1570	.1905	.2078	.3816	.4174	.4600	.4872			
29	.1640	.1927	.2091	.3821	.4163	.4599	.4893			
30	.1596	.1916	.2107	.3823	.4160	.4560	.4854			
31	.1619	.1971	.2139	.3746	.4067	.4461	.4782			
32	.1670	.1928	.2097	.3729	.4078	.4447	.4711			
33	.1648	.1958	.2118	.3769	.4047	.4395	.4683			
34	.1670	.1965	.2133	.3760	.4071	.4450	.4672			
35	.1689	.1972	.2144	.3730	.4045	.4438	.4729			
36	.1669	.1963	.2140	.3702	.3991	.4351	.4632			
37	.1679	.1968	.2146	.3668	.3972	.4296	.4493			
38	.1728	.2004	.2164	.3664	.3955	.4319	.4583			
39	.1726	.2007	.2163	.3634	.3914	.4214	.4470			
40	.1727	.2008	.2172	.3670	.3949	.4288	.4573			
41	.1753	.2020	.2172	.3594	.3857	.4196	.4408			
42	.1741	.2020	.2170	.3625	.3909	.4251	.4485			
43	.1760	.2005	.2172	.3581	.3821	.4122	.4332			
44	.1763	.2039	.2199	.3573	.3831	.4138	.4346			
45	.1774	.2024	.2191	.3605	.3855	.4242	.4462			
46	.1781	.2040	.2201	.3555	.3816	.4125	.4317			
47	.1790	.2046	.2188	.3539	.3761	.4080	.4276			
48	.1750	.2040	.2206	.3534	.3769	.4000	.4330			
49	.1808	.2001	.2200	.3518	.3746	.4053	.4228			
50	.1830	.2055	.22207	.3510	.3736	.4016	.4213			
50	.10,00	.2007	.4444	.5710	.57 50	.1010	.1213			

Critical value for $\hat{\delta}$.

62	g
02	/

Critical values of $\hat{\delta}_{F_n}^c$ -(60,70,80,81) 10^{-10}									
n	.01	.05	.10	.90	.95	.98	.99		
7	033224850	006854016	000363972	.034631130	.047285330	.066254680	.083703170		
8	026360480	006859757	001182442	.026659040	.037861920	.059381370	.072423510		
9	017087790	003589807	000429099	.018481340	.026649020	.038333800	.048232600		
10	012231820	003243839	000839866	.013385580	.019586600	.031247070	.039666950		
11	008208380	001749931	000258584	.009754967	.014587610	.023781910	.035158330		
12	007353045	001528120	000294497	.007214207	.011197040	.017245920	.023316420		
13	004310631	001016936	000196094	.004395628	.007264028	.012585690	.017582220		
14	003235959	000694326	000133666	.003257281	.005511061	.009911915	.014207200		
15	002310727	000445835	000096936	.002178582	.003670595	.006414143	.009494149		
16	001696247	000330039	000055226	.001394978	.002454675	.004789334	.006922268		
17	001159436	000180608	000040388	.000966653	.001679410	.003153126	.004936925		
18	000777893	000162165	000031014	.000637148	.001165656	.002320627	.003420803		
19	000564952	000081704	000015544	.000418034	.000795973	.001579985	.002696489		
20	000541604	000065617	000013085	.000302319	.000575975	.001184818	.001829348		
21	000327746	000039479	000006069	.000177988	.000318361	.000700496	.001164032		
22	000173208	000029070	000006219	.000116634	.000242577	.000554178	.000886036		
23	000147275	000017554	000002872	.000068272	.000146279	.000307182	.000480807		
24	000092759	000010057	000002058	.000050388	.000107198	.000249742	.000414588		
25	000078820	000008991	000001246	.000030834	.000073689	.000165397	.000280827		
26	000041054	000005265	000000812	.000021187	.000046338	.000098940	.000166527		
27	000035200	000003089	000000481	.000013199	.000028078	.000078044	.000147713		
28	000018615	000002011	000000318	.000008496	.000020342	.000049468	.000095454		
29	000012805	000001230	000000138	.000006097	.000013966	.000037505	.000069044		
30	000012505	000000776	000000094	.000003919	.000009696	.000028402	.000049956		
31	000010275	000000558	000000093	.000002273	.000006249	.000015806	.000033306		
32	000005310	000000418	000000063	.000001575	.000003610	.000010167	.000018587		
33	000004034	000000239	000000021	.000000989	.000002422	.000006158	.000013730		
34	000002273	000000155	000000021	.000000577	.000001706	.000004898	.000008196		
35	000001546	000000115	000000012	.000000393	.000000956	.000002644	.000004637		
36	000001059	000000070	000000009	.000000274	.000000818	.000002256	.000004447		
37	000001082	000000035	000000004	.000000178	.000000490	.000001478	.000003279		
38	000000400	000000022	000000002	.000000121	.000000313	.000000962	.000001705		
39	000000344	000000016	000000001	.000000079	.000000226	.000000732	.000001326		
40	000000173	000000010	000000001	.000000045	.000000126	.000000401	.000000818		
41	000000102	000000007	000000001	.000000032	.000000092	.000000314	.000000644		
42	000000092	0000000004	000000001	.000000017	.000000055	.000000173	.000000358		
43	000000049	000000002	000000000	.000000012	.000000039	.000000118	.000000271		
44	000000040	000000001	000000000	.000000007	.000000022	.000000069	.000000137		
45	000000028	000000001	000000000	.000000005	.000000016	.000000049	.000000114		
46	000000012	000000001	000000000	.000000003	.000000009	.000000032	.000000079		
47	000000010	000000000	.000000000	.0000000002	.000000006	.000000019	.0000000041		
48	0000000009	0000000000	.000000000	.000000001	.0000000004	.000000015	.000000041		
49	0000000005	0000000000	.0000000000	.000000001	.000000003	.000000019	.000000023		
50	0000000004	0000000000	.000000000	.000000001	.000000000	.0000000006	.000000023		
60	222418800	006300647	000299028	.048864510	.214923300	.827251800	1.81293300		
70	006451606	000125200	000004093	.000526405	.001927479	.007590745	.022914550		
80	000017509	000000325	000000014	.000003376	.000014502	.000102074	.000237834		
81	000012132	0000000323	000000011	.000001666	.0000014902	.000076221	.000318292		
51	.000012132	.00000175	.00000011	.00001000	.0000070/9	.0000/0221	.000510272		

Critical values of $\hat{\delta}_{F}^{c}$ -(60,70,80,81) 10^{-10}

TABLE 4

ACKNOWLEDGMENTS

The authors would like to thank the editor and the referee for useful remarks and comments.

REFERENCES

- A. M. ABOUAMMOH, A. N. AHMED (1992), On renewal failure rate classes of life distributions. "Statistcs & Probability Letter" 14, pp. 211-217.
- A. M. ABOUAMMOH, A. N. AHMED (1988), *The new better than used failure rate class of life distribution*. "Adv. Prob.", 20, pp. 237-240.
- A. M. ABOUAMMOH, S. A. ABDULGHAN, I. S. QAMBER (1994), On partial orderings and testing of new better than renewal used classes. "Reliability Eng. Syst. Safety", 43, pp. 37-41.
- I. A. AHMED (1975), A nonparametric test for the monotincity of a failure rate function, "Communication in Statistics", 4, pp. 967-974.
- I. A. AHMED (1994), A class of statistics useful in testing increasing failure rate average and new beter than used life distribution, "J. Statist.. Plant. Inf.", 41, pp. 141-149.
- I. A. AHMED (1995), Nonparametric testing of class of life distributions derived from a variability ordering, Paisankhyan Samikkha, 2, pp. 13-18.
- E.E. ALY (1989), On testing exponentiality against IFRA alternative, "Metrika", 36, pp. 255-267.
- R. E. BARLOW (1968), *Likelihood ratio tests for restricted families of probability distributions*, "Annals of Mathematical Statistics" 39, pp. 547-560.
- J. V. DESHPANDE (1983), A class of tests for exponentiality against failure rate average. Biometrika, 70, pp. 514-518.
- J. V. DESHPANDE, S. C KOCHAR, H. SINGH (1986), *Aspects of positive aging*, "Journal of Applied Probability", 28, pp. 773-779.
- N. EBRAHIMI, M. HABIBULLAH, E. SOFI (1992), *Testing exponentiality based on Kullback-Leibler information*, "Journal of the Royal Statistical Society", 54 B, pp. 739-748.
- W. HARDLE (1991), Smothing Techniques With Implementation In S, Spring-Verlag, New York.
- M. I. HENDI (1999), Testing general harmonic new better than used in expectation using kernal method, "Egypt . computer. Sc. J.", 21, pp. 1-16.
- M. I. HENDI, H. ALNACHAWATI, M. N. AL-GRAIAN (2000), *Testing NBUFR and NBAFR classes of life distributions using kernal methods*, "Arab J. Math. Sc.", 6, pp. 37-57.
- M. HOLLANDER, F. PROSCHANE (1972), *Testing whether new better than used*, "Annals of Mathematical Statistics", 43, pp. 1136-1146.
- E. L. KAPLAN, P. MEIER (1958), Nonparametric estimation from incomplete observations, "J. Amer. Assoc", 53, pp. 457-481.
- B. KLEFSJO (1981), *HNBUE survival under some shoch models*, "Scandinavian Journal of Statistics", 8, pp. 34-47.
- B. KLEFSJO (1982), *The HNBUE and HNWUE classes of life distributions*, Naval. Res. Logistics Quartely. 24, pp. 331-344.
- H. L. KOUL (1977), A new test for new better than used, "Comm. Statist. Theor. Math", 6, pp. 563-573.
- Y. KUMAZAWA (1983), *Testing for new is betterthan used*, "Comm. Statist. Theor. Math.", 12, pp. 311-321.

A. J. LEE (1989), U-Statistics, Marcel Dekker, New York, NY.

- W. A.LINMK (1989), *Testing for exponentiality against monoton failure rateaverage alternative*, "Comm. Statist. Theor. Math.", 18, pp. 3009-3017.
- W. Y. LOH (1984), A new generalization of the class of NBU distribution, "IEEE Trans. Reli.", R3, pp. 419-422.
- M. A. W. MAHMOUD AND N. A. ABDUL ALIM, On testing exponentiality against NBURFR class of *life distributions*, Submitted for publication.
- F. PROSCHAN and R. PYKE (1967), *Tests for monoton failure rate*, Proc. 5th BereklySymp., pp. 3293-3312.
- v. susarla, J. vanryzin (1978), *Empirical bayes estimation of survival function right censored oservations*, "Annals of Statistics", 6, pp. 710-755.
- M. A. TANNER (1983), A note on the variable kernel estimator of the hazard function from randomly censored data, "Annals of Statistics", 11, pp. 994-998.

SUMMARY

On testing exponentiality against NBARFR life distributions

This paper considers testing exponentiality against new better than average renewal failure rate (NBARFR) alternatives. The percentiles of this test statistic are tabulated for sample sizes 5(1)50. Pitman's asymptotic efficiencies relative to the tests of the new better than used (NBU), new better than used failure rate (NBUFR) and new better than used renewal failure failure rate (NBURFR) (Ahmed, 1994; Hendi *et al.*, 2000 and Mahmoud and Abdul Alim, 2002). The powers of this test are also calculated for some used life distributions. The problem when right-censored data is available is handled. Practical applications of our tests in the medical sciences are present.