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KRIGING WITH MIXED EFFECTS MODELS (*)

A. Pollice, M. Bilancia 

1.  INTRODUCTION 

From its origins Geostatistics was developed largely as an applied field, and 
somehow independently of general (spatial) statistic methodology. Spatial inter-
polation and prediction for continuos processes are rarely performed with explicit 
reference to distributive assumptions: as a consequence Geostatistical practice is 
seldom based on modern likelihood-based statistical methods. Standard second 
order assumptions, though regarded as essential for the applicability of the me-
thodologies, prove to be insufficient to guarantee their optimality. It is well know 
that least mean squared error predictors such as Kriging are not optimal in the 
absence of Gaussian assumptions (Ripley, 1981); indeed they are optimal under 
Gaussianity only if mean and variance/covariance parameters are known or consi-
dered so, the optimal predictor generally being nonlinear when parameters are 
unknown (Cressie, 1993). These considerations push towards the adoption of 
widely spread model-based statistical techniques in the Geostatistical context, 
explicit distributional assumptions and the use of likelihood-based inferential 
procedures being central to this purpose. Given that the methodological bulk of 
theoretical and applied Geostatistics is still to be found in variogram modelling 
and the use of minimum variance predictors, since the late 80’s (Vecchia, 1988) 
until recently (Stein, 1999) more and more contributions have been proposed, 
involving the explicit adoption of spatial stochastic models. 

A convenient representation of the spatial process is obtained by splitting the 
total variability in a systematic term or mean effect, a spatially correlated compo-
nent and a random noise, the latter being quite regardful in Geostatistical series 
due to measurement erraticity. Such a representation is easily obtainable by the 
use of linear mixed models (Christensen, 1991 p. 273), specifically developed for 
the analysis of correlated observations, typically in the context of repeated measu-

(*) Both authors were supported by the MURST grant “Metodi e Tecniche Statistiche per l'Ana-
lisi dei Dati a Struttura Spaziale e Spazio-Temporale” - COFIN 99. Address for correspondence: 
Alessio Pollice, Dipartimento di Scienze Statistiche - Università degli Studi di Bari, Via C. Rosalba 
n.53, 70124 Bari, Italia. Tel.: +39/0805049243 - Fax: +39/0805049147 - Email: apolli-
ce@dss.uniba.it 



A. Pollice, M. Bilancia406

rement data. These models have recently experienced meaningful advances in 
estimation and selection procedures (Searle et al., 1992; Davidian and Giltinan, 
1995; Pinheiro and Bates, 2000) and consequently a growing popularity among 
applied statisticians. A further advantage in the use of linear mixed models is 
associated to their hierarchical representation, that enables the formulation of the 
joint distribution of the spatial process as a combination of simpler conditional 
component models (Gelman et al., 1995). The construction of models in com-
plex settings is considerably simplified by the hierarchical approach, which ena-
bles to highlight the relationships among different causes of variability (Berliner, 
2000). 

The hierarchical representation of stochastic models is intrinsically connected 
to Bayesian inference, where probability statements on observable quantities are 
(hierarchically) specified conditionally on the values of random unknown parame-
ters, provided with their own prior distributions. Recent advances in computatio-
nal methods made hierarchical methods and the Bayesian approach widely used, 
causing an explosion in the number and the variety of applications (Gilks et al.,
1996). Approaching Geostatistics within the Bayesian framework enables to 
define spatial predictors explicitly accounting for uncertainty in the unknown 
spatial correlation structure. Moreover the use linear mixed models in this con-
text, allows obtaining classical Geostatistical results as special cases (Kitanidis, 
1986; Ribeiro and Diggle, 1999a) and the treatment of complex spatial situations 
including anisotropic (Ecker and Gelfand, 1997) and multivariate processes 
(Royle and Berliner, 2000). Finally it is to notice how the assumption of Gaussia-
nity of the spatial process can also be relaxed by the use of generalised linear 
mixed models (Gelfand et al. 2000; Diggle et al., 1998). 

In the following sections some results concerning the interaction between Geo-
statistics and the theory of linear mixed effects models are reviewed in a unified 
framework. An illustrative case study is also proposed concerning the soil structu-
re of an agricultural area in the Foggia district. 

2.  GAUSSIAN MIXED MODELS  

Consider a finite set of spatial locations ntt ,,1t , and only one measure-
ment of a one-dimensional spatially dependent random variable Y  at each 
location. Assume that the data vector yt nn yytytyy ,,,, 11  is 
a finite realization of a second order stationary single-valued spatial (stochastic) 

process DttY ;  where 2D .

The stochastic behavior of the random vector )(,),()( 1 ntYtYY t  is as-

sumed to depend on observed covariates and a latent spatial process tS , accord-
ing to a spatial Gaussian or linear mixed model

tttt SXY  (1) 
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This decomposition corresponding to classical Kriging with measurement error 
(Cressie, 1993 and many others) is essential to the definition of a common 
framework to embed maximum likelihood and Bayesian inference for continuos 
spatial processes. It also proves to be useful in the correct definition of spatial 
predictions in the presence of measurement error (§ 3.1 and 3.2). In the latter 
expression t  is a spatially independent Gaussian process with zero mean and 

variance 2  (nugget), modeling the measurement error. Random effects tS  are 
assumed to account for spatial variability being a spatially correlated stationary 
Gaussian process 

11
2

n ,N~ HS 0t  (2) 

where the scalar 2  is the variance (partial sill) and the correlation matrix 

11H  is built according to a valid correlation function ;h , where  is the 
distance between locations and  is a correlation parameter (range). The fixed 

effect part of the model tX  is given by the product of an pn  matrix of 
spatially referenced non random variables (coordinates and/or covariates) and a p-
dimensional parameter vector (spatial trend parameter). Independence of tS

and t  implies that elements of tY  are independent and normally distributed 

conditionally on tX  and tS  (model (1) is also referred to as conditional

independence model). Integrating random effects out of model (1) a marginal 
model is obtained in which regression parameters retain their meaning and ran-
dom effects contribute in a simple way to the variance-covariance structure. The 
marginal distribution of the spatial process tY  is 

11n ,N~ tt XY  (3) 

with nIH 2
11

2
11 .

3.  MAXIMUM LIKELIHOOD ESTIMATION 

Being able to specify the marginal distribution of the spatial process tY  in 
closed form is crucial in likelihood-based inference: such ability depends on the 
assumptions of Gaussianity and that of linear dependence of the response on fixed 
and random effects. Expression (3) implies that the marginal likelihood for the 

mean parameter and covariance structure parameters 22 ,,  is simply 
that of a general linear model with correlated errors, given by 

XXL n yyy 1
11

'2/1

11 2

1
exp2;,  (4) 
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where vector y  contains a finite realization of the spatial process and X  stands 

for tX  from now on. Assuming the covariance matrix 11 , or related parame-
ters  are known, the maximum likelihood estimator of the trend parameter 
vector (fixed effects) is given by the Aitken (GLS or WLS) estimator 

y1
11

'11
11

'ˆ XXX  (5) 

Conditionally on the value of 11  expression (5) is a Best Lineat Unbiased Esti-
mator (BLUE) with  

11
11

'ˆCov XX  (6) 

The main disadvantage due to considering 11  as fixed, neglecting the uncer-
tainty in the unknown covariance parameter vector , is to be found in the value 
of covariance (6) being underestimated.

Notice that also the joint maximization of (4) with respect to  and  pro-
duces the GLS estimator for the mean parameter , so maximum likelihood 

estimates of covariance parameters 22 ,,  are obtained by maximizing 
(4) conditionally on estimated values of . Derivatives of the likelihood function 
are often nonlinear with respect to ,  and  and lead to non-explicit solu-
tions to the estimation problem, obtainable by numeric iterative methods 
(Newton Raphson or EM). ML estimates of covariance parameters tend to be 
(negatively) biased as a consequence of considering  as fixed (see Davidian and 
Giltinan, 1995 and also Ripley, 1988 for a full discussion of ML covariance 
estimation in the spatial context). 

Rather than conditioning on , an unbiased alternative to ML estimation of 
spatial covariance parameters  is obtained by the maximization of a likelihood 

function based on residuals ˆXy . It can be shown (Diggle et al., 1994) that 
ˆXy and ˆ  are independent, so that the full likelihood (4) can be factorized as 

ˆ;,ˆ;;, LXLL yy

The so called REML likelihood can then be obtained as 

ˆˆ
2

1
expˆ;,

;,ˆ; 1
11

'2/11
11

2/1
11 XXXX

L

L
XL yy

y
y  (7) 

Fixed effects estimates (5) are substituted into REML likelihood (7) which is then 
maximized by suitable numerical methods. 

Estimates of  are then updated to reflect the current estimates of  and 
conversely, according to an iterative estimation process. Considering the REML
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likelihood is equivalent to correcting the likelihood function for the loss of degre-
es of freedom due to estimating , thus covariance parameter estimates obtained 
by the iterative estimation process result to be unbiased (Cressie, 1993). 

3.1.   Predictions 

Say t 0 is a vector of m  unsampled locations and 00 YY t  the corresponding 
m-dimensional vector of unobserved realizations of the spatial process with 

0000 SXY  (8) 

where 00
2

0 ,N~ HS m 0  with 10
2

0SS,Cov H . Covariance matrices 

00H  and 10H  are also built according to the correlation function ;h .

The random noise component mm I2
0 ,N~ 0  is assumed to be independent of 

S0 and , so that the covariance between observed and unobserved locations is 
not supposed to be influenced by the measurement error. The latter condition 
can only be expressed in terms of spatial linear mixed effects models (1) and (8); 
their adoption becomes crucial in the definition of spatial predictions in the 
presence of measurement error (Christensen et al., 1992; Cressie, 1993 pp. 127-
130). Observed and unobserved realizations can then be given the following joint 
distribution 

11
'
10

1011

00

,N~
X

X

Y

Y
mn  (9) 

where 0X  is an pm  matrix containing coordinates/covariates for unsampled 

locations t 0 and covariance matrices 00  and 10  are respectively given by 

10
2

10

2
00

2
00

H

IH m  (10) 

As is well known from Normal distribution theory, the minimum variance pre-
dictor of 0Y  conditional on values of  and , is given by 

)(|E 1
11

'
1000 XXYY yy  (11) 

When substituting a BLUE for , as the GLS estimator ˆ  in (5), one obtains a so 
called Best Linear Unbiased Predictor (BLUP, Robinson, 1991, Davidian and 
Giltinan, 1995) 

)ˆ(ˆŶ 1
11

'
1000 XX y  (12) 
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Expression (12) has (least) prediction MSE given by 

'1
11

'
100

11
11

'1
11

'
10010

1
11

'
10000

ˆMSE XXXXXXY  (13) 

Also the latter expression contains a negative bias due to considering  as 
known.

Expressions (11) and (12) are referred to as simple Kriging and universal Kriging

predictor in Geostatistical terms, when the covariance matrix 10  becomes 11

for 0tt  (which is not our case), leading to the so-called exactness of such pre-
dictors, i.e. to the feature of predicting observed points by the points themselves. 
This is only reasonable when no random noise is assumed for the spatial process 
and predictions must coincide with observed measurements at sampled locations, 
but can lead to overfitting of the predicted surface in the presence of measure-
ment error or small scale variability (Cressie, 1993 p. 129), producing seriously 
dangerous extrapolations and confusing interpolations. In these cases the use of 
the mixed effect spatial model (9) with covariance structure (10) is suggested, 

where the error variance 2  is not contained in the expression of the predictor 
but for observed locations. Notice that one can easily obtain an exact predictor in 
the mixed effect context, by modeling 10  as in Ecker (1999). Robinson (1991) 
and Christensen (1991) first recognized the Kriging predictor as a BLUP in the 
context of linear mixed models. The latter author advocates the introduction of a 
measurement error term as in model (1) when there's evidence of erraticity in the 
data, to avoid the aforementioned exactness of the predictor. 

3.2.  Measurement error and residuals 

In classical Geostatistics, when no measurement error is considered for the data 
at hand and the spatial covariance structure does not include any nugget effect, 
the kriging predictor is said to be exact in that it exactly reproduces observed 
values when calculated at sampled locations. In order to preserve this exactness 
when a nugget effect is included in the covariance structure, the predictor has to 
be discontinuous at 0 . In other words in this case the predicted surface is 
indeed smooth with useless spikes corresponding to observed values at sampled 
locations. As a matter of fact one could be interested in noiseless predictions of 
the spatial process at data points, obtainable by a spatial covariance function 

;2h  more plausibly continuous at 0 , relegating the nugget effect 2

to the additive random noise term  (Christensen et al., 1992). As (10) shows, 
spatial linear mixed effects models enable to specify the covariance 10  between 

observations Y  and unobserved realizations of the process 0Y  as totally due to 
spatially correlated random effects and not to the random noise term . These 
considerations lead to the definition of the following noiseless predictor for sampled 
locations
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ˆˆˆ 1

11
22

11
2 XHIHXY n y  (14) 

which can also be written in the form of a James-Stein (shrinkage) estimator 

ˆˆ 1
1111

2 XHIY n yy  (15) 

with the appealing feature that the more 2H11  approaches 11 , i.e. the smaller 

the nugget effect 2 , the more predictions Ŷ  are shrunken towards observations 
y .

Conversely, when the nugget effect is remarkable, more weight is attributed to 

the average mean profile ˆX . Notice that the mean squared error of predictor Ŷ
in (14) can be obtained by suitably adapting expression (13). 

Expression (14) enables to define residuals as the difference between observed 
and fitted (predicted) values 

yye AŶ  (16) 

with CIBIA nn , 1
1111

2HB  and 1
11

'11
11

' XXXXC . Unbia-

sedness of Ŷ  implies that if the model is correct, then 

'
11,~| AANn 0e  (17) 

4.  BAYESIAN INFERENCE 

As the main disadvantage with the former approach to prediction is still to be 
found in the bias induced by considering estimated values of covariance parame-
ters as if they were known, this point is going to be explicitly discussed in this 
section. The Bayesian approach to Geostatistics has a long history: seminal theo-
retical papers include those of Kitanidis (1986), Omre (1987) and Le and Zidek 
(1992) who first proposed the use of hierarchical prior models. Handcock and 
Stein (1993) compare the results of a Bayesian analysis with those obtained by 
kriging and perform some sensitivity analysis with respect to the choice of the 
priors. De Oliveira et al. (1997) extend the work of the latter authors to non-
Gaussian random fields by a family of Box-Cox transformations. More recent 
contributions (Diggle et al., 1998; Gaudard et al., 1999) are more and more 
suitable to extensive applications making use of powerful MCMC estimation 
techniques. 

Both the response variable Y  and parameters ,  are considered as random 
quantities within the Bayesian approach. External information on model parame-
ters (i.e. expert beliefs, physical constraints, etc.) is specified in terms of the joint 

prior distribution ,, 22 , possibly depending on some 



A. Pollice, M. Bilancia412

hyperparameters. The random variable Y  has marginal probability distribution 
(likelihood) given by (3) or equivalently 

dSSpSppp ,|,,|,,,|,| 2222 yyy  (18) 

where the conditional dependence on covariance parameters is made explicit. 
External information regarding parameters  and  is updated after data collec-
tion by combining the prior distribution with the likelihood function in the 
posterior distribution obtainable by Bayes' theorem 

yy |,,,|, 22

ddddSdSpSp

dSSpSp

222222

2222

,,|,,|

,,|,,|

y

y
 (19) 

Bayesian inference on mean and covariance parameters  and  is based on 
numerical summaries of (19), whereas predictions of the spatial process at un-
sampled locations involve the consideration of the predictive distribution given by 
the following posterior expectation 

ddddpp yyyyy 00 |,,,||

dd
ddp

p

,,|

,,|,

y

yy 0  (20) 

where the joint density ,|, yy 0p  is given by (9). Whether maximum likeli-
hood and traditional geostatistical prediction methods consider the expected value 
of the conditional distribution ,,| yy 0p  for estimated values of mean and 
covariance parameters, the Bayesian predictive approach is essentially based on 
averaging such a distribution over the whole parameter space using the posterior 

y|,  as a weighting function. In other words the Bayesian predictive 
distribution, rather than focusing on the maximum likelihood estimates of the 
mean and covariance parameters, takes into account the whole likelihood surface. 

Calculation of integrals in (19) and (20) can be extremely difficult to carry out 
either analytically and numerically, the choice of prior distributions being o-
bviously crucial. The use of conjugate priors, defined as those inducing posterior 
densities that belong to the same functional class of the prior, is often motivated 
by computational convenience and easy interpretability. In practice, for complica-
ted likelihood models, conjugate prior distributions may not even be found. The 
lack of prior information is sometimes represented by distributions guaranteed to 
play a minimal role in the posterior, referred to as noninformative or flat priors 
(Gelman et al., 1995). 
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4.1.  A simplified model 

Following Searle et al. (1992) we begin by considering the simplest Bayesian 
hierarchical form of the normal linear mixed effects spatial model, avoiding prior 
specification for covariance parameters  (i.e. assuming their values are known 
with probability one, as it is often done in standard geostatistical practice) 

nISXSY 2
n ,N~,| t

11
2

00 ,N~,N~ HSB np 0  (21) 

, S independent 

Notice that the same model can equivalently be set by replacing the first condi-

tion in (21) by nn I2,N~ 0  independently of  and S , where  is the ran-
dom term in (1). It is easily shown that the joint distribution of the random 

vector ',, SY  is given by 

11
2

11
2

0
'

0

11
2

0110

0

0

2

'

,N~

HH

BXB

HXBXXBX

S

Y

pn

O

O

0

 (22) 

This oversimplified model has little to do with a full Bayesian treatment of the 
Geostatistical estimation problem, where priors for should be specified invol-
ving a third level of the hierarchy. Nevertheless it proves to be useful in elucida-
ting connections between ML and REML estimation techniques and the Bayesian 
estimation framework. 

The mean parameter and the spatial signal S  are treated similarly in model 
(21), in that they both have their prior distributions and no distinction is made 
between fixed and random effects. The posterior distribution (19) reduces to 

dSdSpSp

dSSpSp
p

,|

,|
|

y

y
y

Standard normal theory arguments lead to the conclusion that y|p  is Nor-
mal, with the following expressions for the posterior expectation (the Bayesian 
estimator of the trend parameter )

0
1

0
1

11
'11

0
1

11
'|E BXBXX yy  (23) 

and the posterior variance 
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11
0

1
11

'|Cov BXXy  (24) 

Estimates based on the posterior distribution require specification of 0  and B0 .
If one assumes that no prior information is available on  and chooses a non-

informative flat prior of the form O1
0B  (i.e. null precision for prior ) it 

is easy to notice that expressions (23) and (24) coincide with those of the BLUE
(5) and its covariance (6). 

Until now we have been considering covariance parameters as known, or equi-
valently assuming a degenerate prior giving probability one to a single value of .
If attention is restricted to model (21), assuming 0  is fixed, then obviously 
the posterior distribution for  is proportional to the likelihood function (3.1) 
calculated at 0 . Therefore ML estimation of covariance parameters can be 
derived within model (21) as a Bayesian estimator with the value of  taken as a 
fixed unknown constant 0 .

Suppose instead that the locally uniform prior 1  is specified, then after 
some algebra (Davidian and Giltinan, 1995) 

ˆ;
2

1
exp2

|,|;|

1
11

'2/1

11 XLdXX

dpdSdSpSpL

n yyy

yyyy

Thus REML estimation of variance components corresponds to a Bayesian estima-
tion procedure where both spatial random effects S  and the trend parameter 
are averaged out, the latter using a flat weighting function. 

In line with what was done in section 3.2 we consider an extension of model 
(22) as in (9), to include unobserved spatial locations: as a consequence the 

random vector '
00 ,,,, SSYY  results to be jointly distributed according to a 

pmn 22 -variate normal with mean vector '
0000 ,,,, 00XX  and cova-

riance matrix 

00
2'

1000
2'

10

1011
2

1011
2

0
'
00

'
0

00
2'

100000
'
000

'

10
'
00

1011
2

010
'
0011

'
0

HH

HH

BXBXB

HBXXBXXXB

HXBXXBXXB

O

O

OO  (25) 

Again it is easily shown that this setting leads to a Gaussian predictive distribu-
tion with mean and covariance parameters respectively given by following expres-
sions

0

1

11
'

0

'

10
'
00000|E XXXBXXBXY yy  (26) 
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10
'
00

1

11
'

0

'

10
'
0000

'
0000|Cov XXBXXBXXBXBXY y  (27) 

Notice that the Bayesian predictor (26) reduces to the least MSE predictor (11) 
when O0B , i.e. when a degenerate prior for  is assumed, assigning probabi-

lity one to a specific value 0 . If a non informative flat prior ( O1
0B ) is used, 

then it can be shown (Davidian and Giltinan, 1995) that parameters of the 
predictive distribution coincide with (12) and (13), so the Bayesian predictor is 
equivalent to the BLUP.

Neglecting to predict the measurement error part of model (1) one can also 
obtain a so called noiseless predictive distribution (Ecker and Gelfand, 1997) given 
by y|00 SXp  which is also Gaussian under model (25). This approach 
enables to predict the mean of the response at unsampled spatial locations, rather 
than the response itself, and leads to the same Bayesian predictor 

yy |E|E 000 YSX  but to a smaller posterior predictive variance 

y|Cov 00 SX

10
'
00

1

11
'

0

'

10
'
0000

2'
000 XXBXXBXXBHXBX  (28) 

The difference between (27) and (28) is that the latter expression does not take 
the measurement error into account when measuring the variance of unobserved 
locations. Notice that expressions (27) and (28) are estimates of the dispersion of 
the predictive distributions and do not correspond to frequentist variances of the 
two predictors, the latter being only conceivable under repeated sampling assum-
ptions. Decision theory considerations, and the specification of a loss function, 
enable the evaluation of the quality of estimators in the Bayesian framework. 

Expressions for the spatial trend parameter estimator (23) and the predictor 
(26) involve unknown covariance parameters . Taking into account uncertainty 
on covariance parameters is essential for a full Bayesian treatment of Geostatistical 
data. Formal Bayesian estimation of the spatial correlation would imply extending 
model (21) to include prior specification for , deriving new expressions for the 
fixed effects estimator and the predictor, by averaging out these parameters accor-
ding to their priors. As this can be quite cumbersome to carry out in practice, an 
intuitively appealing alternative would be to derive a point estimate of from a 
marginal distribution and substitute it into expressions (23) and (26). The general 
strategy of substituting point estimates of parameters into posterior distribution 
descriptors is known as empirical Bayes estimation. For the problem at hand it can 
be easily shown (Searle et al., 1992) that the marginal likelihood for  is Gaus-
sian with parameters 

0
1

0
1

11

11
11

'1
11

1
11

|E

|Cov

XCBA

XCXA

y

y
 (29) 
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with
11

11
'1

0 XXBC . Notice that when hyperparameters 0  and B0  are 
considered as specified values, marginal maximum likelihood estimates of ele-
ments of  can be calculated and substituted into (23) and (26) to obtain the 
empirical Bayes estimate of the mean parameter  and the empirical Bayes 
predictor. Variances of such estimators are not easily obtainable, substitution of 
estimates of  into (24), (27) and (28) rather leading to possibly negatively 
biased estimated variances. 

4.2. Priors on covariance structure parameters 

As Geostatistics is concerned with the estimation of the spatial variability and 
correlation structure, full Bayesian Geostatistical modeling involves prior specifi-
cation for covariance parameters . In this section we review some recent at-
tempts to extend model (21) by adding a third level to the hierarchy, assuming 
is a priori distributed as p . Formal Bayesian estimation of and consists 
in obtaining summaries of the location of the posterior distribution 

ddp

p

,,|

,,|
|,

y

y
y  (30) 

If this strategy is adopted considering the posterior mode with a conjugate Gaus-
sian prior for and a non-informative (flat) prior for , one obviously obtains 
the same results as in section 4.1. 

Now let's first assume that the range or any correlation structure parameter 

and the relative nugget 222
R  are known or fixed, so that the spatial cova-

riance matrix 11  is known up to the scale factor 2  (say 11
2

11 D , where 

D11  is known). Uncertainty on the trend parameter  and the partial sill 2  can 
be taken into account by considering the jointly conjugate prior (Kitanidis, 1986; 

Ribeiro and Diggle, 1999a) for 2, , i.e. the Normal-Inverse Gamma distribu-
tion given by 

baBp ,IG,N~, 2
0

2  (31) 

where B0  was reparametrized as 2B , leading to a joint posterior distribution of 

the same form for 2,

yyyy
yyy ||,|

2
,|

222 ,IG,N|,|~|, 22 baBp  (32) 

with updated parameters 
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FBXDXB

FEBDXBXDX
111

11
'

,|

0
11

11
'111

11
'

,|

2

2

y

y
y

 (33) 

where the latter expressions are equivalent to setting BB 2
0  in (23) and (24), 

and

FEEBDbb

n
aa

'
0

1'
0

1
11

'
|

|

2

1
2

yyy

y
 (34) 

With respect to the simplified model of section 5.1, the introduction of the 
jointly conjugate prior (31) allows the simultaneous estimation of fixed effects 

and the scale parameter 2 . The Bayesian estimator of the partial sill 2  is given 

by the mode of the posterior y|2 , i.e. by 1|| yy ab . Integration of the 

joint posterior (32) with respect to 2  leads to the conclusion that the marginal 
posterior for  is multivariate Student-t with y|2a  degrees of freedom, mean 

y,| 2  and scale parameter yyy |,|| 2 aBb

y
y

y

yy
y

,|
|

|

,|2a 22
|

,t~| B
a

b
 (35) 

Within the same setting, the analytic computation of the predictive distribu-
tion yy |0p  requires obtaining the following conditional predictive distribution 
first

yy
yy

,|0
2

,|0m
2

0 22 ,N~,| H  (36) 

with parameters given by 

'
10

1
11

'
1000,|0

1
11

'
10

1
11

'
0

1
,|0

2

2

GFGHDHDH

DHDGFXGFB

y

y
y

  (37) 

where F  was introduced in (33), XDHXG 1
11

'
100  and 0000 HID mR .

Then the predictive distribution is given by 

y
y

y

yy
yyyyy

,|0
|

|

,|02a
22

00 22
|

,t|,|| H
a

b
pp  (38) 
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The non informative improper prior for the same situation is given by 

2
2 1

,  (39) 

and corresponds to assuming a 0 and B 1 O  in (31). Substitution of these 
values into (34), (35) and (38) leads to expressions of posterior and predictive 
distributions for this special case. The Bayesian estimator of the spatial trend 
parameter and the predictor turn out to be respectively equivalent to the BLUE 
(5) and the BLUP (12). 

No general methods are available for the analytical derivation of the posterior 
distribution y|,  when the spatial correlation structure is unknown in all 

its parameters 22 ,, . As a matter of fact the posterior y|  is not 
obtainable in closed form for most currently used covariance functions and 
numerical simulation-based integration methods must be used instead. 

Ecker and Gelfand (1997, 1999) choose to simulate the joint posterior 
y|,  by importance sampling (Geweke, 1989), assuming non-informative 

prior distributions and obtaining the importance sampling density by West's 
adaptive mixture method (West, 1993). Posterior parameter estimation is per-
formed by summarizing sampled values, which are also attached to ,,|0 yyp

in order to obtain random draws of yy |0 , i.e. simulations of the predictive 
distribution. 

Ribeiro and Diggle (1999b) take full advantage of the former analytic results 
by turning to posterior simulation only for parameters  and R

2 . They notice 

that yyy |,,,|,|, 22
RR  implies 

2
22

22
2 ,

,,|,

,|,,|
|, R

R

R
R

p

y

y
y  (40) 

where the numerator is the product of the likelihood (4) and prior (31) and the 
denominator is given by (32). A discrete prior for  and R

2  on a pre-specified 
reference grid of values is assumed and random draws from (40) are obtained and 
attached to (32) and (38) which are sampled again to give draws from the poste-
rior and the predictive distribution respectively. 

5.  CASE STUDY: SPATIAL PREDICTIONS OF TAXONOMICAL SOIL PROPERTIES 

In this section simple geostatistical predictions are going to be obtained within 
the mixed models framework. Data concerning the soil structure of an agricultu-
ral area in the Foggia district were supplied by “Istituto Sperimentale Agronomico 
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– Bari” and originally collected by the “Consorzio di bonifica della Capitanata”, 
in order to inform the water supply management about water needs in this area, 
traditionally cropped with durum wheat. 

The composition of the soil texture in sand, silt and clay was measured at  
175 sample locations on an area of about 75000ha, as part of the complete cha-
racterization of the soil properties of the area. The area under investigation is 
known to be quite rich in silt and clay, exploratory data analysis suggesting the 
presence of a drift towards northwest of observed sand measurements and an 
isotropic process underlying their spatial distribution. Assumptions underlying 
the correct use of linear mixed effects models are exactly the same as those neces-
sary to rely on the optimality of the classical linear (kriging) predictor, i.e. Gaus-
sianity, stationarity and isotropy of the data-generating process. Compositional 
data, as those considered in this case study, are clearly non-Gaussian by defini-
tion, nevertheless the marginal distribution of sand rates in figure 1 looks symme-
tric and bell shaped (still Gaussianity of the marginal distribution isn't but a 
necessary condition for the joint normality of the process). The common behavior 
of the four directional variograms, covering the whole range of directions with a 
tolerance of 22.5 degrees, shows the reasonableness of the isotropy assumption. 
Finally the contourplot of the spatial distribution of sand rates, obtained by 
smoothing the original noisy surface by triangulation of data points and linear 
interpolation on an even 40 40 grid (as the ones in the following figures 5.2-
5.6), pushes towards the consideration of a trend within the spatial model. Evi-
dence for the presence of spatial outliers was also excluded on the basis of explora-
tory tools such as variogram clouds and graphs described in Haining (1990, p. 
214). 

Though only approximately providing a probabilistic description of the data 
generating process in this illustrative example, linear mixed effects models were 
used in the light of the result by Verbeke and Lesaffre (1997) showing that MLEs
consistency and asymptotic normality still apply when the random effects distri-
bution is not normal. The composition in sand of the soil samples was then 
considered as the response variable in a model including a spatial trend or fixed 
effects term. Simultaneous estimates of fixed effects and correlation structure 
parameters together with some overall fit likelihood-based statistics were obtained 
by the proposed parametric modelling approach. After rescaling the spatial coor-
dinates nine different models for three possible trend surfaces including one or 
both spatial coordinates and three standard covariance functions (exponential, 
spherical and Gaussian) were estimated by minimizing the REML likelihood using 
the ridge-stabilized Newton-Raphson algorithm implemented in the SAS-MIXED
procedure (Littel et al., 1996). Incidentally notice that values of the estimates 
comparable to those shown in table 1 were obtained using Splus-lme and Splus-
gls, the latter including a nugget effect within the covariance structure. The three 
models with trend in both spatial coordinates (I, IV and VII) had fixed effects 
estimates close to zero and associated to high standard errors. On the other hand 
the remaining six models had significant fixed effects and, having the same num-
ber of parameters, could be compared in terms of attained residual likelihood. 



A. Pollice, M. Bilancia420

The selected model VI corresponds to the lowest value of overall fit statistics and 

shows a trend in the south-north direction ( 4.0ˆ
lat ) and a spherical correlation 

structure. Notice that the estimated value of the range parameter ( 42.11ˆ  km) 
corresponds to a long-range spatial correlation structure typically associated to 
taxonomical features of soils as the composition in sand (Castrignanò et al.,
1999). 

When compared to the empirical one the spherical variogram estimated by 
model VI shows a reasonable fit to observed data (figure 2); a further check of the 
model fit was done considering the residuals from the fitted mixed effect model 
defined in §3.2, as they ought to be randomly distributed over the area under 
investigation: the contourplot in figure 2 shows no drift in any direction and 
some residual spatial pattern neglected by the fitted model. 

Still the empirical variogram of residuals looks almost constant around the va-
lue 15 : the covariance between residuals at pairs of spatial locations doesn't seem 
to depend on the distance, i.e. all the relevant spatial correlation in the data is 
reproduced by model VI. 

Figure 1 – Scatterplot of the 175 sampled locations, contourplot (based on a linear interpolation), 
histogram and directional variograms of the rates of composition in sand of the soil samples. 
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Figure 2 – Empirical and estimated spherical variogram for model VI, empirical variogram of 
residuals, contourplot (based on a linear interpolation) of residuals and their mse’s. 

Figure 3 – Contourplots (based on a linear interpolation) of fitted values and predictions on a 
square grid for model VI and their mse’s. 
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Figure 4 – Empirical and estimated spherical variogram for model II, empirical variogram of 
residuals, contourplot (based on a linear interpolation) of residuals and their mse’s. 

Figure 5 – Contourplots (based on a linear interpolation) of fitted values and predictions on a 
square grid for model II and their mse’s. 
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Figure 6 – Marginal density plots (based on a kernel smoothing) of residuals, fitted values mse’s, 
predictions and predictions mse’s for models VI and II. 

Prediction locations were then identified as 409 points obtained by cutting a 
square 30 30 grid along the edges of the sampled area. Fitted values for model 
VI, together with spatial predictions obtained by computing BLUP's as in (12) and 
shown in figure 3, reproduce the observable relevant spatial pattern quite well. 
Estimated fitted values and prediction mean squared errors (13) look almost 
constant and slightly higher where sampled locations are more sparsely distribu-
ted.

TABLE 1 

Nine different spatial models: covariance structure (COV), REML estimates (EST) of fixed effects (EFF)  
and their standard errors (SE) and estimated values of parameters (NUG, SIL, RAN),  

overall fit statistics (-2RLL, AIC, BIC). 

 COV EFF EST SE NUG SIL RAN -2RLL AIC BIC 

I exp long 
lat

-0.17 
0.23 

0.135 
0.172 

17.60 28.16 4.35 1112.9 1118.9 1128.4 

II exp long -0.28 0.094 16.81 26.58 3.54 1112.9 1118,9 1128.4 

III exp lat 0.37 0.149 17.99 30.42 5.08 1112.2 1118.2 1127.6 

IV sph Long 
lat

-0.18 
0.20 

0.115 
0.149 

20.46 22.81 9.25 1111.9 1117.9 1127.3 

V sph long -0.28 0.082 22.05 20.58 8.84 1111.7 1117.7 1127.2 

VI sph lat 0.40 0.134 20.36 28.07 11.42 1111.3 1117.3 1126.8 

VII gau Long 
lat

-0.18 
0.21 

0.120 
0.154 

16.81 26.58 3.54 1112.9 1118.9 1128.4 

VIII gau long -0.28 0.080 24.34 17.56 4.24 1112.2 1118.2 1127.7 

IX gau lat 0.38 0.127 24.96 21.62 5.38 1112.0 1118.0 1127.4 
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If we alternatively select the ''short range'' model II ( 54.3ˆ km) we get a 
weaker fit of the empirical to the estimated exponential variogram (figure 4) with 
some evidence for the underestimation of the sill and nugget parameters: as a 
consequence resulting residuals look less spatially structured (narrower contours), 
their empirical variogram being constant around the value 10. Fitted values and 
spatial predictions do not differ that much from the previous ones but rather their 
precisions do: in figures 5 and 6 fitted values mse's show a weaker spatial correla-
tion than those for model VI, due to the mentioned underestimation of both the 
nugget and the sill. On the other hand predictions from model II result to be less 
stable in that their mse's are more variable over the sampled area (figure 5). 
Finally figure 6 highlights the compromise between residuals and predictions 
precision obtained by REML estimation: the more peaked marginal distribution 
of residuals from model II corresponds to sharper but more unstable predictions: 
their contours look narrower and the empirical variogram is again almost constant 
around the value 10. 

We now turn to the analysis of the same data-set with the same mixed effects 
spatial model (though only the exponential and spherical correlation structures 
were considered for illustrative purposes) within the Bayesian framework, by the 
freely available R package geoR (Ribeiro and Diggle, 1999b). Trying to restrict 
the role of prior information as much as possible, the non informative prior (39) 
was chosen for the trend parameter  and the partial sill 2 . A 201 31  regular 

grid of values was defined for  and R
2  in the range 2 to 13 and 0 to 1 respecti-

vely. Notice how this specification adds little information to the whole setting, 
the range chosen for both parameters being as wide as to include all plausible 
values of  and R

2 . While values of R
2  were assigned uniform probabilities of 

being selected, four different prior choices were considered for the range parame-
ter . The uniform, reciprocal, squared reciprocal and exponential prior put more 
and more weight on smaller values of the range parameter . Results of 10000 
random draws from posterior distributions (32) and (40) are summarized in table 
2 where the modes of the samples are given. 

At first we notice that the uniform prior on  gives results quite close to those 
obtained by REML, due to the very weak prior information added to the data. 
When additional prior information concerning smaller values of the range is 
added, all the estimates change accordingly. Posterior predictions obtained by 
sampling the predictive distribution (38) were not reported as they tend to be 
similar to those obtained previously. It is to notice that predictions show more 
variability due to properly considering covariance parameters as estimated rather 
than known. This feature makes the Bayesian approach the formally correct 
solution to prediction in that it does not imply conditioning on estimated values 
of parameters. Moreover, though in the previous example the level of prior in-
formation was kept to a minimum in order to compare results to those formerly 
obtained, this is not always the case: the possibility of properly introducing exter-
nal information (historical data, physical knowledge of the phenomenon) in the  
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TABLE 2 

Six different spatial models: Bayesian posterior estimates of fixed effects (LON and LAT) and 
 covariance parameters (NUG, SIL, RAN) for four different choices of the prior distribution of the 

 range parameter (PRI) and two alternative specifications of the covariance structure (COV). 

 COV PRI LON LAT NUG SIL RAN 

I exp uni 
rec
squ
exp 

-0.17 
-0.18 
-0.19 
-0.19 

0.23 
0.20 
0.17 
0.17 

14.91 
14.23 
15.24 
15.38 

27.96 
26.69 
26.90 
27.14 

4.26 
3.16 
2.61 
2.44 

II exp uni
rec
squ
exp 

-0.28 
-0.28 
-0.27 
-0.27 

 14.17 
15.00 
15.25 
15.54 

26.57 
26.47 
26.92 
27.42 

3.43 
2.72 
2.28 
2.22 

III exp uni 
rec
squ
exp 

 0.37 
0.36 
0.35 
0.34 

15.08 
15.50 
15.24 
15.24 

30.16 
29.05 
28.57 
28.57 

5.03 
3.87 
3.27 
2.88 

IV sph uni 
rec
exp 
squ

-0.18 
-0.18 
-0.18 
-0.22 

0.20 
0.20 
0.19 
0.10 

19.72 
19.58 
19.40 
19.58 

22.76 
22.59 
22.39 
23.49 

11.46 
9.10 
8.82 
4.59 

V sph uni 
rec
exp 
squ

-0.28 
-0.28 
-0.28 
-0.27 

 19.83 
19.65 
18.96 
19.51 

22.03 
21.84 
21.07 
23.41 

8.93 
8.60 
8.22 
4.53 

VI sph uni 
rec
squ
exp 

 0.40 
0.40 
0.36 
0.20 

21.35 
21.29 
19.00 
18.20 

27.84 
27.77 
24.79 
23.74 

11.52 
11.40 
9.21 
7.45 

estimation process increases the flexibility of mixed effects models and can be a 
key issue for applied scientists. On the other hand, general principles that may be 
helpful in the elicitation of the prior distribution are rarely available. Responsible 
data analysis is thus strongly suggested to rely upon suitable Bayesian model 
choice criteria for comparing competing prior choices. A popular approach due to 
Gelfand and Ghosh (1998) consists in considering a vector y rep , randomly gene-

rated by likelihood (4), and an appropriate distance measure yy ,repL  as the 

Euclidean distance 
2

,,
i irepirep yyL yy in the case of Gaussian data. Model 

choice can be based on minimizing the posterior expected loss obtained by avera-
ging L  with respect to the posterior predictive distribution (20) 

yyy |,E repLmG  (41) 

Unfortunately no general software that can monitor and summarize (41) by 
means of the MCMC output is currently available, a suitable modification of the 
geoR package being easily implementable and warmly desirable. 
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6.  DISCUSSION 

Likelihood and Bayesian inferences were implemented assuming a stationary 
Gaussian process with mean and covariance function of known shape; neverthe-
less the last few years were marked by a growth of theoretical and applied studies 
aimed to increase the flexibility of linear models with respect to initial distribu-
tional assumptions. For the case of measurements which are not comfortably 
approximated as Gaussian, Generalized linear mixed effects models are considered 
introducing latent spatial random effects suitably transformed by a link function 
to explain the mean of the spatial process. A Gaussian process model for spatial 
random effects is generally assumed to be sensible (Diggle et al.,1998; Gelfand et 
al., 2000; Christensen et al., 2000). Some important developments of generalized 
linear mixed models have to do with their extension to bidimensional responses 
(Banerjee et al., 2000) and the definition of spatially correlated Gaussian random 
effects obtained through the convolution of a white noise process and a smoo-
thing kernel function. In the latter case (Higdon, 2001) the covariance structure 
of the model is implicitly determined by (the latent process and) the smoothing 
kernel instead of being parametrically a priori specified. 

In a more general perspective mixed models have recently been the subject of 
many investigations aimed at diminishing the parametric assumptions in view of 
their possible extensions to the semiparametric framework (Mallick et al., 2000). 
The typical exponential family distributional assumption implies the unimodality 
and an implicit relation between the first two moments of the assumed stochastic 
process (though on a transformed scale). In the case of continuous data, as those 
deriving from georeferenced environmental measurements, the possibility of 
avoiding the assumption of Gaussianity of random effects becomes crucial. This 
assumption, while convenient from a mathematical point of view turns out to be 
scarcely realistic in many applied fields. Erroneous probabilistic assumptions may 
reduce the efficiency of fixed effects and covariance structure parameter estimates 
and invalidate the random effects predictions, which are highly relevant in the 
geostatistical context. Finite mixture distribution models (Magder and Zeger, 
1996) are today a more flexible and easily applicable alternative thanks to the 
great developments in simulation-based inferential techniques (Richardson and 
Green, 1997). The nonparametric alternative consists in the lack of any specific 
distributional assumption for random effects that can be accomplished by the use 
nonparametric density estimation (e.g. the predictive recursion algorithm, Fol-
lman and Lambert, 1989; Tao et al., 1999). In the Bayesian framework the 
nonparametric extension of mixed effects models consists in assuming a Dirichlet 
process prior on random effects, such prior is nothing but a probability distribu-
tion on the space of probability distributions (Gelfand and Kottas, 1999; Klein-
man and Ibrahim, 1998; Gelfand and Mukhopadhyay, 1995). 
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RIASSUNTO 

Kriging e modelli a effetti misti 

In questo lavoro viene illustrata l'efficacia dell'uso dei modelli a effetti misti per la 
stima e la previsione riferite a fenomeni spaziali continui negli ambiti classico e bayesiano. 
Le metodologie esposte vengono successivamente applicate ad un caso di studio riferito a 
dati agricoli. 

SUMMARY

Kriging with mixed effects models 

In this paper the effectiveness of the use of mixed effects models for estimation and 
prediction purposes in spatial statistics for continuous data is reviewed in the classical and 
Bayesian frameworks. A case study on agricultural data is also provided. 


