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1. INTRODUCTION

The Burr distribution was first introduced in the literature by Burr (1942). Burr and
Cislak (1968) and Burr (1968) have shown that if one chooses the parameters
appropriately, the Burr distribution covers a large proportion of curve shape
characteristic of type I, IV and VI in the Pearson family of distributions. Thus the use
of Burr distribution as a failure model is appropriate and useful in applied statistics,
specially in survival analysis and actuarial studies. Burr distribution has been widely
studied by Tadikamalla (1980) among others. He has established its relationship with
some other distributions. The Burr distribution is very important in modeling of
finance and insurance data. Experience has shown that, there is sometimes a need to
find heavy tailed distributions which offer greater flexibility than the Pareto law. It may
be mentioned that the Burr distribution has been used extensively to model franchise
deductible premium, fixed amount deductible premium, proportional deductible
premium, limited proportional deductible premium and disappearing deductible
premium (see Burnecki et al. (2004)).

The probability density function (pdf) of Burr type XII distribution is given by (see
Figure 1)

—(/)1+1)

f(x)=mp9xp_l(l+9xp) , 0<x <o, >0, p>0, >0, (1.1)

and the cumulative distribution function (cdf) is given by

F(x)=1=(1+6x")", 0<x <o, m,p,8>0. (1.2



254 N. Pushkarna et al.

—— p=1, m=1
—— p=1, m=2
— p=1.m=3
—— p=2.m=1
251 —— p=3.m=1 4
p=0.5, m=2
2 |
.
% 1.5+ 7
o
1 \ |
0.5 < 7
/
| | | ‘ e — =
o 0.5 1 1.5 z b 3

Figure 1 - Burr type XII Distribution (Non-Truncated case).

Let the random variable X have a doubly truncated Burr type XII distribution with
probability density function (pdf)

B mpgxp_1 (1 +6x7 )_(MH)

P-0

/(%)

, QSx<P,m>0, p>0,8>0, (1.3)

and cumulative distribution function (cdf)

0 forx < 0,
1-0-(1+6x")"
F(x): P(—Q ) for O, <x<P, m p,0>0 (1.4)
1 forx > P

where O and (1—P), (Q <P) are the proportions of truncation on the left and the
right of the distribution, respectively, and

60! = [(1 -0)"" - 1], (1.5)
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oy =[(1-p)"" ~1]. (1.6)

It may be noted that by letting ©Q - 0 and P — 1 (or, equivalently, ¢, — Oand

P — ), the distribution in (1.3) reduces to the non-truncated Burr distribution given

in (1.1). The following figure (Figure 2) shows the graphs of doubly truncated Burr type
XII distribution with O =0.25 and P =0.75 for different values of p and .
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Figure 2 - Doubly Truncated Burr type XII Distribution with @0 =0.25 and P =0.75.

Let X,,X,,l,X, be arandom sample of size # from the doubly truncated Burr
distribution given in (1.3), and let X, <X, <...<X,  be the corresponding order

statistics, and X, <X <...<X . be the corresponding sub-sample order statistics
of size £< . Let us denote the single moments B(Xfﬂ) by 4 (1<r<n) and the

product moments of & order statistics, viz. E{ X" X2 ... X" | by
n< >y rgin

ne

(i) . o
M (1S <k, <...<r,<nmand i|,i,,...,7, =0,1,2,...).

T3Py 5ee sl i
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From (1.3) and (1.4) we observe that the characterizing differential equation for the
doubly truncated Burr distribution is

(1+6x") /() = mpbs? (P, +1-F (x)) (1.7)

or, equivalently,

(1 + pr)f(x) = mpBOx""" (Qz - F(x)), (1.8)

where 0, =(1-0Q)/(P-Q) and P, =(1-P)/(P~- Q).

We shall use equations (1.7) and (1.8) to establish several recurrence relations satisfied
by higher moments of order statistics from doubly truncated Burr distribution defined in
(1.3), thus generalizing the earlier work due to Khan and Khan (1987) and Pushkarna,
Saran and Tiwari (2012).

It is worth mentioning here that the recurrence relations for the single, double
(product) and higher moments of order statistics from various doubly truncated
distributions, viz. Lomax, Weibull, Weibull-gamma, Weibull-exponential, log logistic,
exponential, Rayleigh, generalized Rayleigh and generalized Pareto distributions can
easily be deduced from the results of this paper as special cases.

For similar type of work, one can also see Afify (2008), Saran and Pandey (2004,
2008) and Saran and Pushkarna (2000).

2. RECURRENCE RELATIONS

The joint density function of X, X, .,....X, (1=r <n <...<r, <n) is given
by

i, (Xl’ 5% =C s fw[F(Xl)]rl_l[F(Xz)_F(X1)]rrq_l
[F xp) = F (0 1)] o 1[1_F(X/e):|n_rk S (1) () () @
O <x,<..<x, <P,
where

- _ 7!
Pt (=) =n =)L (e m e =) ().

(cf. David and Nagaraja (2003), p.12), and f(x) and F/(x) are as given in equations

(1.3) and (1.4), respectively. Then by making use of the characterizing differential
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equations in (1.7) and (1.8), we establish recurrence relations for the product moments

of £ order statistics.

THEOREM2.1. For 1S <r, <...<r, Sn,n, =1, 1, =2 and i,,i, ,...,i, 20,

+
’1+]7’2 k) Pl Giiyeeis) (1 psia, - ’k)
His.o. ‘9{/112, St e,
”7]7
htiatpiiz.niy) _ itp 1213 7g) (22)
ﬂoQZ{/’[f% 2, rj—lﬂk—l Ql /’[1 1,. ,rk—l:n—l}

+IL[211+12+}713 Vig)

and, for 1<7n, <r,<...<r.<n,n,=1,1r,23 and i,,i, ,...,i, 20,

G+ Pt fse p (715025550 lk + (41 psia 1550 :k)
’L[l NI A iﬂpa ILll Ty Pysnensly gﬂlrz,rg, Iy
- (i1 Poinsizsiy) itp, fizis.. Zk) (23)
”QZ{ 1rz—1 =1, =ln=1 Q /'I n =l =1, 11
Z1+P’2»’3
+IL1§ STy Ty el

PROOF. Relations in (2.2) and (2.3) may be proved by following exactly the same
steps as those in proving Theorem 2.2, which is presented here.

THEOREM2.2. For 1< 1, <1, <. ..<ry S, 1,0y yeuryiy 20and r, =1, +1,

/j(;1+p,z'z,..,z'k) _1ig +P{ﬂ(j1,z'z,...,ik) +Hlu(i1+p,iz'..-,ik) }
7, F L 7ty 7,1 Ly,
1-71 3 k& 7:1 mpg 1>71 3 & 11 3 &

_ zl+zz+p beoin) it P i) 2.4)
ﬂoQZ{/’[i =1, =1ln=1 /'Ir =Ln,s=1..,n=1ln=1

1> ’ 1

+/j(i1 Fiyt pizeiy)

Ry,

and, for r, =1, 22,
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(4 FPoiy vensiy) 1 Z.1 +p (71525 e 1E Dol ensiy)
: = |1 £ )+
/'Ir1+1,rz,...,rk:n n |: Wpe /'Irl 5, H/’[q Py yeens Iyl
— (7 +P iy lk) — g atpiin i) @.5)
ﬂQZ r1 rn-1,. =Ln—1 /'[rl—l,rz—l,...,rk—l:ﬂ—l

+IL[(’1+]7 Vg ’k)

NsToseees Tt

PROOF. From equation (2.1), we have for 1<7, <r, <...<7, <z

B oxg
(1,0, - %) (’1+l”z lk) — 12
lLlr1 Ty yeensly glLlrl Ty yeensly Crl 75, _[ _[ _[ Xl
00 O

I:F(xl)]ﬂ_][F(xz)—F(xl)]rz_qﬂ...
...[1—F(xk):|”7rk |:1+9x1p:|f(xl)f(x2)...

...f(x,é)dx dxy...dx,

b 2.6)
| ot
20 9

I:F(x3)—F(x2)]rrr2_1...
1= F ()] T () f(30)

e f (30 ) ey e,

where

le [F X ]rl [F Xz Xl ]rz*ﬁ_l[l"'gxf]f(ﬁ)dxl- 2.7)

Making use of characterizing differential equation (1.8), we have
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1) =] 0 [t [F()] [P () - ()]

2

T iepm g B=r- 2:8)
—J.x{l ? 1I:F(><1):| [F(xz)—F(x1)] ldxl
(2
= mpl| O, E(x,,1) = E(x,,0) ],
where
E(x,,£) = J}Xlilw_l[F(Xl):lﬁ_k[lj(xz)_F(Dﬁ):lrz_q_l dxy 3&=0,1. 2.9)
0

=1

. . i+ p—1 . . .
Integrating by parts, treating x|’ 7 for integration and rest of the integrand for

differentiation, we get for , =1, 22,

X2 atp

By #) == [ (=R ()] [ () = F ()] ()

ohtp

(= =) F )] TR () = F ()] ()

and, for r, =7, +1,

9

E(XZ,/%) = i ip|:xg+ﬁ |:F(><2):|’1_/g _(,f1 —,é)]‘zxi" [F(x]):lﬁ—kﬂ f(Xl)Xm].

Upon substituting for E(x,,0) and E(x,,1) in (2.8) and then substituting the

resulting expression for I(x,) in equation (2.6) and simplifying, we derive the relations in
(2.4) and (2.5).

Proceeding on similar lines, one can derive the following recurrence relation.

THEOREM2.3. For 11 <r, <...<r,Sn, r,2r_, +2,
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ﬂ(il’iz,""ik—l gt p) - 1 2 + p‘rlu(l'ul'z)---)"/e ) + H,U Iy el ’k"’]’)}
Tsloseens Tt 5T 1 (” -7 + 1) 777])9 1 Mo losee sl 5T 1 AT ees =1 e 1

_ ipsigennsipesin D) (st lpmt5lg D) (210)
np, {/'Ir1 Ty yenns ey 51 =1 /'Irl,rz,..

Ty 1 —Lim=1
+/,[(11 syl sip ¥ )
TR Iy, S VA

PROOF. From equation (2.1), we have

h B B
(71503 stz iy - ’/c+l7 i ( ) n -l
’uﬁ’z ’k”+6’uﬁ’z ”1’”2 X1X2' Xk FX1
Qw\l X1

[F(XZ)—F(xl)]”’”l...[1—1?(;«&)]”’“
[1+5xg]f(x1)f(x2)...f(x/€)
Ay dx gy o dxydxy (2.11)

11 11 1

B

O x Xg-2

[F(xl):lq -1 --'I:F(X/e—1) _ F(X/e_z):lrk,l—rk_z -1
I(Xe—l)f(X1)f(X2)-..f(x/g_l)tix/g_l...dxl,

where

I(xkﬂ) = Ijl xZ" [F(Xé) —F(x/g_l):lrk_%1 - [1 —F(xk )]ﬂ_rk

o 2.12)
[1 + Hx,f]f(xk)dxk.

Using the characterizing differential equation (1.7) in (2.12), we get
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()= mpb)| P J.x"’ ? 1[F(x/€) —F(xé_l)]% s _1[1 —F(xk)]ﬂ_a dx,

Xg-1

5 i+ p-1 1 =1 —1 n=r, +1 (213)
+ ,[X/: [F(X/e)_F(X/e—l)] |:1—F(x/€):| dx,
= mpB| PyE(x4-y,0) + E(x5-1,1) ],
where
Pl ; e =T~ n=rn +
E(x,ﬁ,f): JxZer_l[F(xé)—F(xé_l)] 1[1—F(xé)] tdxé ;£ =0,1.
Integrating by parts, treating XZ 77! for integration and rest of the integrand for
differentiation, we have
_(ﬂ_rk +f) f ivtp Te T 1 n=r -1
E(xk—l’f)_ﬁ jx/j [F(xk)—F(xk_l)] [1—F(x/€):|
& Xe-t

(=1 =1)

f(x,é)dx/e r/e =i IX Lt I:F X/€ 1:(34/6_1):|%7%1 .

Xg-1

[PF(m)]””“’f(xé)m

Upon substituting for E(x/e_l,()) and E(x/e_i,l) in (2.13) and then substituting the

resulting expression of [ (xé_1) in (2.11) and simplifying, we derive the relation in

(2.10).

Likewise, one can easily derive the recurrence relations given in the following theorem.

THEOREM 2.4. For 11 <r, <...<r,<n, r,=r_, +1,
(150 st ¥ P) 1 + p.r (715020 eslpmt 511 + 6, (71510, sl sl P)
’uﬁ,rz,---,%ﬂ,’/@ﬂﬂiﬂ _( l’u’”l T 5eesTmt ol ¥l ’['171,"2,---,’/@—1,’7@—1*'15”
n—r, +1) mpé’
_ iy sdy iy sig T 1) — s i T F D) (214)
nP, {/'Ir1 Py eens Ty 1y Flin=1 /’lq Py yenny oy i1

+ﬂ(f1 gl Tt p)
N5l seens il

and, for r, =n,



262 N. Pushkarna et al.

Groig eviristp) — L ¥ P { L) 4 g <f'1)f'z,---)fk—1»%+ﬁ>}

#r T yenayy nn N 31D yennyty uNg N1 yeennly nn
15725+ k=1 157255 =1 > 15725007k~
mp@

_ﬂPZ{Ijlik+p#£1il ,Zl'z--.,i,c,l) it ) } 2.15)

7y yenes o =1 Asty ey Tpmg 1= Lin=1

+ﬂ<i1’i2""ik—l’ik +p)

IR RN el C A

REMARK 1. By using recurrence relations established in Section 2 one can easily compute
all the single, double (product) and higher moments of order statistics from doubly truncated
Burr distribution for all sample sizes in a simple recursive way as demonstrated in Section 3.

REMARK 2. By letting both the proportions of truncation (Q  and
1-P > O(:> 0, - LP -~ 0) in Theorems 2.1—2.4, we deduce the corresponding

relations for the non-truncated Burr distribution (1.1).

REMARK 3. Let us consider several other distributions:
Lomax distribution:

F(x):1—{l+ﬁ} (2.16)
a
Weibull distribution:

F(x)=1-¢* 2.17)

Compound Weibull or Weibull-gamma distribution.:

F(x)zl{ﬁx—} (2.18)

(2.19)

Log logistic distribution:
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(x/a)f

F(x)= (2.20)
( ) 1+ (x / a)p
Exponential distribution:
F(x)=1-¢~ (2.21)
Rayleigh distribution:
Fx)=1-¢7" (2.22)
Generalized Rayleigh distribution:
5 —(1/a)
F(x)=1-[1+ax” /2] (2.23)
Generalized Pareto distribution:
F(x)=1-[1+ 8] " (2.24)

It can be readily seen that (2.16) to (2.24) are special cases of (1.2). Thus, the recurrence
relations obtained in Section 2 for higher order moments of order statistics from doubly
truncated Burr distribution are also true for the following doubly truncated distributions such

as Lomax (p=1,8=1/a), Weibull (m=1/86, 8 - 0), Weibull-gamma (8 =1/ 0),
Weibull-exponential (m=1/8=1/0), Log logistic (m=1,8=a""), exponential
(m=1/6, p=1,6 = 0), Rayleigh (p=2, m=1/(26), 6 -0), Generalized
Rayleigh ( p=2, m=1/a,8=a/ 2) and Generalized Pareto

( =1, m=1/0,0= ,3) distributions. Hence, the results obtained in Section 2 unify all

the results derived by different authors for the single and product moments of order statistics
from the above mentioned specific distributions [cf. Balakrishnan, Malik and Abmed (1988))].

REMARK 4. It may be mentioned that the results obtained by Pushkarna, Saran and
Tiwari (2012) for higher moments of order statistics from doubly truncated exponential
distribution follow as special cases of the results of Section 2 by taking therein
(m=1/6, p=1,8 - 0).
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3. RECURSIVE ALGORITHM

It may be noted that the single and the product moments of order statistics from doubly
truncated Burr type XII distribution have already been calculated by Khan and Khan
(1987). Utilizing this prior knowledge of single and product moments and the recurrence
relations derived in Section 2, one can easily calculate the higher order moments of order
statistics from the doubly truncated Burr distribution. As an illustration, the procedure
for calculating the higher order moments of order 3 (ie., for £=3) for the doubly
truncated Burr distribution (with p =1) will be as follows:

. CR (1,7, ,i (2,iy,7 (3,7, i
Setting 7, =0,1,2,... in (2.2), we get /u1 22r3:1 > /u1 2 2r3; > lul 2 33; and so on.
Similarly,  settin 7,=0,1,2,... in (@4 with =2, we wil et
y 8 > 1 &
a 2 3 -
Dols) L 25) o (5205) C Rurther, utilizing the above product moments alon
2373;1’ 2,3,r3:m > F°2.3 r5m 0" " g P g

with Eq. (2.5) with =1, =3 and 7 =0,1,2,... will give the values of

(1,45,73) (2,5 ,i3) (3,75,73) . . qe . .
M3y s M3 s M5y, s - Likewise, utilizing the above obtained moments along

with Eq. (23) with =4 and 7 =0,1,2,... will give the values

(1,7, ,23) (2,75,73) (3,75,73) . . . . .
o s M3 Mg, s . Proceeding in a similar manner, one can obtain all other

triple moments for all sample sizes in a simple recursive manner.

Utilizing the above obtained triple moments, one can obtain quadruple moments for
all sample sizes. In the similar manner higher order moments can be obtained for doubly
truncated Burr type XII distribution.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous referee for giving valuable comments which
led to an improvement in the presentation of this paper.

REFERENCES

E. AFIFY (2008). Recurrence relations for inverse and ratio moments of generalized order
statistics from doubly truncated generalized exponential distribution. Statistica, 68, no. 3,
365-374.

N. BALAKRISHNAN, H.]J. MALIK, S.E. AHMED (1988). Recurrence relations and identities

for moments of order statistics, II: Specific continuous distributions. Communications in
Statistics - Theory and Methods, 17, no. 8, 2657-2694.

K. BURNECKI, J. NOWACKA-ZAGRAGEK, A. WYLOMANOKA (2004). Pure risk preminms
under deductibles, Hejnice Seminar paper, Hugo Steinhans Centre, Wroclaw University

of Technology, Poland.



Recurrence relations for higher moments statistics... 265

L.W. BURR (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13,
215-232.

LW. BURR (1968). On a General System of distributions III, The Sample Range. Journal of
American Statistical Association, 63, 636-643.

LW. BURR, P.J. CISLAK(1968). On a General System on distributions, I, Its Curve-Shape
Characteristic, II, The Sample Median. Journal of American Statistical Association, 63,
627-635.

H. A.DAVID, H. N. NAGARAJA (2003). Order Statistics, Third Edition. JohnWiley.

A H. KHAN, LA. KHAN (1987). Moments of order statistics from Burr distribution and its
characterizations. Metron, 6, 21-29.

N. PUSHKARNA, J. SARAN, R. TIWARI (2012). Recurrence relations for higher moments of
order statistics from doubly truncated exponential distribution. International Mathematical
Forum, 7, 193-201.

J.SARAN, A. PANDEY (2004). Estimation of parameters of a power function distribution
and its characterization by k* record values. Statistica, 64, no. 3, 523-536.

J.SARAN, A. PANDEY (2008). Estimation of parameters of a two-parameter rectangular
distribution and its characterization by k” record values. Statistica, 68, no. 2, 167-178.

J.SARAN, N. PUSHKARNA (2000). Relationships for moments of order statistics from a
generalized exponential distribution. Statistica, 60, no. 2, 585-595.

P.R. TADIKAMALLA (1980).A look at the Burr and related distributions. International
Statistical Review, 48, 337-344.

SUMMARY

Recurrence relations for higher moments of order statistics from doubly truncated Burr
distribution

In this paper, we have obtained recurrence relations for higher moments of order
statistics from doubly truncated Burr distribution, which enable one to obtain all the
single, double (product) and higher moments of any order of all order statistics for any
sample size from doubly truncated Burr distribution in a simple recursive manner, thus
generalizing the earlier work done by Khan and Khan (1987) and also by Pushkarna,
Saran and Tiwari (2012).



