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1. INTRODUCTION 

As it is well known the relations between structural form (SF) and Reduced form (RF) 
parameters of simultaneous equation models are established in the so called identifying 
system of equations. These are nothing else but linear relations between variable affected 
by error once RF estimates are considered.  
It may be worth to remember that T. W. Anderson (1976) in a very well known paper 
explicitly recognized it saying: “It turns out, however, that a problem investigated in great 
detail by econometricians can be transformed so that it is mathematically identical to the 
problem of fitting a straight line when both variables are subjected to error. In estimating a 
coefficient of an (endogenous) variable in one equation in a system of simultaneous 
equations, the first stage is to find the sample regression coefficients of the dependent 
(endogenous) variables on the independent (exogenous) variables. The sample regression 
coefficients are mathematically equivalent to the observations in the model described 
above, and the population regression coefficient satisfy a linear relationship”. Along this 
line of thought Limited Information (LI) LODE has been produced  initially (Pieraccini 
1983, 1988) while more recently a first version of FI LODE was developed (Pieraccini and 
Naccarato, 2008).  
A new version of FI LODE is presented here based on a new structure of the variance-
covariance matrix that is employed in the estimation process. While in the previous 
version FI LODE was based on the variance-covariance matrix of error components 
related to the whole system of identifying equation, in the present one the variance-
covariance matrix only refers to the error component of the so called over identifying 
equations. 
Furthermore a new computational procedure is proposed using Singular Value 
Decomposition (SVD) instead of Spectral Decomposition (SD) used in the past. Even if 
results on SVD and SD for symmetric matrices are theoretically the same, the 
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computational algorithm based on SVD is numerically more robust with respect to the 
one based on SD; where robustness has to be understood as the greater probability to 
converge presented by the algorithm (Markovsky and Van Huffel 2007; Jennings 1980). In 
the light of these results a new computational procedure has been developed following the 
work of Gleser (1981) applying the Total Least Square procedure (Golub and Van Loan 
1980; Van Huffel 1988, 1989, 2002, 2007). 
The reason for the new version of FI LODE and for the use of a more robust estimation 
procedure has to be found in the results of a previous simulation experiment (Naccarato 
and Zurlo, 2008). The results showed that while FI LODE works usually better than other 
classic full information estimators in terms of bias, in terms of mean square error the 
estimates were affected by the presence of few very far outliers that weighted heavily on 
Mean Square Error (MSE).  
A new Monte Carlo experiment (with the same structure of the one presented in the 
previous contribution) was then produced to evaluate the performance of the method with 
respect both to other classic full information methods and to the preceding FI LODE 
version. 
In order to establish notation simultaneous equation models are briefly presented in 
paragraph 1 together with the original LI LODE, revisited in the light of SVD. In 
paragraph 2 the new version of FI LODE is shown and in paragraph 3 Total Least Square 
procedure is applied to. In paragraph 4 the complete design of the simulation experiment is 
presented. In paragraph 5 FILODE is compared with some usual methods of estimation 
like 3SLS (Theil and Zelner 1962) and FIML (Koopmans et al. 1950); the results are shown 
focusing on bias and MSE of estimators. In paragraph 6 few words of conclusion including 
a comparison between the previous version of FI LODE and the present one end the 
paper. 

 
 

2. SIMULTANEOUS EQUATIONS SYSTEM 

As it is well known the structural form (SF) of a simultaneous equation model can be 
defined as follows: 

Γ + Β + =
, , , , , ,

0
n m m m n k k m n m n m
Y X U  (1) 

where Y  is the mn ×  matrix of endogenous variables and Γ  is the corresponding 

mm ×  matrix of structural parameters, X  is the kn ×  matrix of exogenous variables 

and Β  is the mk ×  matrix of their structural parameters. Finally U  is the mn ×  ma-
trix of disturbances with 

=
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is the constant variance-covariance matrix of the disturbances. 

The reduced form (RF) of system (1), under non singularity condition for Γ , is 

= Π +
, , , ,n m n k k m n m
Y X V  (3) 

where 

−

−

Π = − Γ

= − Γ

1
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 (4) 

As it is well known the first of (4) gives the link between RF and SF parameters which 

post-multiplied by Γ  gives 

Π Γ = −
, , ,k m m m k m

B  (5) 

Introducing then exclusion conditions the following identification system for i-th equation 
is obtained: 

ε

ε
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where: 

π π
−

 
Π =  

 1 11

11 01 11
, 1,1

ˆ ˆ ˆi i ie

k mk

⋮  

refers to OLS estimates of reduced form parameters of endogenous and exogenous varia-
bles included in the i-th equation; 

π π
−

 
Π =  

 2 22

12 02 12
, 1,1

ˆ ˆ ˆi i ie

k mk

⋮  

refers to OLS estimates of reduced form parameters of endogenous included and exoge-

nous excluded ones; Γ1i  and 1iB  are the structural form endogenous and exogenous var-
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iables’ coefficients included in the i-th equation; finally ε1i  and ε2i  are the error compo-

nents of the system. 

In the original paper in which the limited information version of LODE was proposed 
(Pieraccini 1988), the estimation was based on the second subsystem of (6) and not on the 
whole system as it was in the more recent paper (Pieraccini and Naccarato 2008). We 
have decided to go back to the original version of LODE and to derive the full infor-
mation version starting from that point. As it will be seen in the conclusion (§ 6) the 
goodness of this choice has been somehow confirmed by the simulation experiment. 

To simplify the exposition of the new version of FI LODE and the computational 
procedure let us now introduced LI LODE (Pieraccini 1988) in the light of SVD.  
It can be shown (Pieraccini 1969) that in the second of (6) it is 

ε =2 2 1
T

i i i iR X U  (7) 

where 2 iR  comes from 

−    
     = =     
        

1 1 1 1 2

2 2 1 2 2

1 1 11 12
, , ,

, 2 21 22
, , ,

i i i i i

i i i i i

i ii ii
k k k k k kT

i i
k k i ii ii

k k k k k k

R R R

X X
R R R

 (8) 

so that it is ε =2E( ) 0i , ε ε σ= 2
2 2 22E( )T
i i i iiR . 

According to the Spectral Decomposition theorem LI LODE estimators of structural 

parameters Γi ’s are based on the eigenvector corresponding to the minimum eigenvalue 

of variance-covariance matrix −Π Π1
12 22 12

ˆ ˆi i T
iiR . 

Since = Λ22
T

iiR C C , with C  and Λ  the matrices of eigenvectors and eigenvalues of 

22iiR , it is possible to define 
−

= Λ
1

2
22

T
iQ C C . 

Premultiplying the elements of the second equation of (6) for 22iQ  it will become 

εΠ Γ =22 12 1 22 2
ˆ i

i i i iQ Q  (9) 

LI LODE method is based on the minimization , with respect to Γ1i , of the variance 

covariance matrix ε22 2i iQ . Using singular value decomposition (9) becomes 

Π = Λ22 12
ˆ i T

iQ S D  (10) 
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with  =  11 , ,
imS S S… , ( )λ λΛ =

11diag , ,
im…  and  =  11 , ,

imD D D…  

if λ ≠
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0.
im  

An approximation of Π22 12
ˆ i

iQ  denoted ( )Π
'

22 12
ˆ i

iQ  is needed together with a vector 

P  such that 

( )Π =
1

'

22 12
ˆ 0

i

i
i mQ P  (11) 

According to Eckart and Young (1936), the best rank −1 1im  approximation 

( )Π
'

22 12
ˆ i

iQ  of Π22 12
ˆ i

iQ , is given by ( )Π = Λ
'

22 12
ˆ i T

iQ S D where it is 

( )λ λ −Λ =
11 1' diag , , , 0
im�  and the minimal correction is  

( ) λ
= −
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1

2'

22 12 22 12
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ˆ ˆmin
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i i
i i m

rank L m F

Q Q . 

The solution of equation (11) is given by the 1im -th vector of the matrix D , called 
1imd , 

that belongs to ( )Π
'

22 12
ˆ i

iN Q  (the null space of the approximation matrix). 

The estimate of the parameters entering the i-th equation is the normalized right 

singular vector of Π22 12
ˆ i

iQ , namely the eigenvector of the matrix Π Π' '
12 22 22 12

ˆ ˆi i
i iQ Q , 

associated to the smallest eigenvalue of this latter matrix. 

The estimates of structural parameters Γ1i  for the i-th structural equation are defined 

as 
ν

Γ = −
11

0

1ˆ
ii m

i

d , where ν 0i  is the element of the characteristic vector associated with 

right hand side endogenous variable. 

It has to be noticed that ( )Π =
1

'

22 12
ˆ 0

i

i
i mQ d  and ( )Π

'

22 12
ˆ i

iQ  represents the 

( )−1 1im  dimensional subspace spanned by the first ( )−1 1im  principal axis that 

minimize the sum of squares orthogonal distance between the observed points and the 
subspace itself. 

 
 

3. THE NEW VERSION OF FI LODE  

The second equation of system (6) for the whole system of equation can be written as 

Π Γ = Ξ12 1
,, ,

ˆ
r mr z z m

 (12) 

where 



 
 

 
 
 
  
 
 

206  A. Naccarato et al.  
 

  

ε

ε

 
 
 Ξ =
 
 
 

21

,

2

0 0

0 0 0

0 0

r m

m

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

and, once the dependent endogenous variable is chosen in each equation, the Γ1  matrix 

can be written as 
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with 
=

=∑ 1

1

m

i

i

z m  where m  is the number of structural form’s equations. The identity 

matrix − mI  contains the m  coefficients of the dependent endogenous variables and 

−
Γ
1

1
1,1i

e
i

m

 is the matrix of the coefficients of the endogenous explanatory variables of i-th 

equation after the normalization rule. 
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 (13) 

In equation (13) while the block diagonal elements are defined in (8), the extra-
diagonal elements are given by 
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iX  and jX  being the matrix of exogenous variables ordered according to exogenous 

included and excluded variables in i-th and j-th structural equation. 
It has to be stressed the difference between (13) and the variance-covariance matrix 

considered in the previous version of LI LODE (Pieraccini and Naccarato 2008). 
 
 

4. TOTAL LEAST SQUARE PROCEDURE 

Total Least Square procedure has been applied to equation (12) to estimate endogenous 
variables’ coefficients. Let it be 
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where 

−= Λ
1
2

2
TQ V V  (15) 

and V  and Λ  are – respectively – the matrix of eigenvectors (the first) and the diagonal 
matrix of eigenvalues of (14) (the second). 

The endogenous variables parameters estimates are given by the matrix 2
,z m

D  of the last 

m  singular right vectors that correspond to the m  smallest singular values of Π2 12
ˆQ . 

According to Eckart and Young (1936) the best rank −z m  matrix approximation of 

Π2 12
ˆQ  is defined as ( )Π = Λ

'
'
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Q S D  where ( )λ λ −Λ ='
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and D  are the left and right matrices of Π2 12
ˆQ , namely the respective eigenvectors of 
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( ) ( ) λ
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Given the matrix D2 of the last m  right singular vectors 
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, the equation 
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Q D  is true. 

Total Least Square procedure (Golub and Van Loan 1980; Van Huffel 2002) is then 
applied  
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 Γ 
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and the estimates of endogenous parameters for i-th equation are the sub-vector Γ1
ˆ e

i  of 

( )−− 1

2 12D D . 

The vector of the estimates of endogenous variables’ parameters Γ1
ˆ  is 
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 (16) 

The exogenous coefficients matrix is then obtained as 

( ) ( )−
Β = − Γ

1

1 1 1 1 0 1 1
ˆ ˆT T

X X X Y Y  (17) 

where 1X  is the block diagonal matrix of exogenous variables included in each equation, 

0Y  is the left side endogenous variables vector’ for the m equations and 1Y  is the right 

side endogenous variables block diagonal matrix. 

Equation (14) defines the matrix 2Q  as a function of the elements σ 2
ii  and σ ij  i.e. the 

variance of i-th equation’s error component and the covariance between i-th and j-th 
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equations’ ones, which are both of them unknown. It is then necessary to estimate them. 

The disturbances variance-covariance matrix Ω̂  is obtained as in the previous version 
of FI LODE (Pieraccini and Naccarato 2008) through a two stage procedure. 

Let Γ1
ˆ

i  be the first stage LI LODE estimates of the SF parameters and V̂  the matrix 

of RF equations’ residuals. Then the matrix of SF disturbances = − Γ̂ˆ ˆU V  is obtained in 
order to get 

σ σ σ

σ σ σ

σ σ σ

− −
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with = − −1 1i i ig n m k . The second stage structural parameters estimates are then ob-

tained introducing σ̂  in equation (15). 
 
 

5. THE DESIGN OF THE EXPERIMENT 

As in the previous simulation experiment (Naccarato and Zurlo, 2008), the new one has 
been performed using the three equation model proposed by Cragg in 1967:  

= − − + + +
 = − + + + +
 = − + + + +

1 2 3 2 5

2 1 3 5 7

3 2 3 4 6

0.89 0.16 44 0.74 0.13

0.74 62 0.70 0.96 0.06

0.29 40 0.53 0.11 0.56

y y y x x

y y x x x

y y x x x

 

Following the same scheme three sample sizes = 20, 30, 100n have been considered. 

As in the previous experiment we have not taken into consideration very large samples’ 
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sizes (let’s say with = 1000n  or even = 10000n ) on the ground that in the econometric 
practice the number of observations is generally not bigger than 30. Hence the following 
steps have been performed: 

1. Exogenous variables generation. For each sample size exogenous variables have 
been generated from uniform distribution in the following intervals: 

 

[ ]= −2 10 20X , [ ]= −3 15 27X , [ ]= −4 3 12X , [ ]= −5 3 7X , 

[ ]= −6 20 50X , [ ]= −7 7 13X . 

Exogenous variables have been kept constant for each sample size. 

2. Error component variance covariance matrix generation. The matrix Ω  has been 
chosen in the following way:  

a) diagonal elements have been obtained as a proportion of the variance of 

Γ =Y Z  i.e. ω σ= 2
ii Z iS  

     where iS  are proportionality coefficients randomly chosen from a uniform 

distribution in three intervals: [ ]−0.2 0.25 , [ ]−0.4 0.5 , [ ]−0.75 0.8 . 

b) extra diagonal elements have been obtained at first generating randomly 

( )−1 2m m  correlation coefficients ρij  in [ ]−0.1 0.2 , [ ]−0.4 0.5 , 

[ ]−0.8 0.9  assigning them a random sign. Then covariance between error 

components in equation i  and in equation j  has been computed as 

( )ω ρ ω ω=
1

2
ij ij ii jj .

 

3. Normal and Uniform error distribution. For each sample of n  observations, m  
series of random numbers have been generated independently from a standard-
ized Normal distribution and from a Uniform distribution in the interval 

( )− 3, 3  to have zero mean and variance one. To evaluate the performance 

of the estimation methods considered in non standard situation, the experiment 
has been extended to the case in which the error component is Uniformly dis-

tributed in ( )−10, 10 . 

Table 1 shows the structure of the experiment as it was in Naccarato and Zurlo (2008). 
For each scenario 500 samples have been performed both for Normal and Uniform error 
components’ distribution. 

To synthesize results of the simulation experiment two indicators have been 
considered: as it was in Naccarato and Zurlo (2008), 

( )ϕ θ θ θ= −ˆ  (20) 

where θ̂  is the average over the 500 samples of parameters estimates and θ  is the origi-
nal parameter; 
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ψ θ=RMSE  (21) 

where RMSE is the Root Mean Square Error of θ̂ . 
For both of them ratios between values presented by 3SLS and FIML with respect to 
FILODE are also computed. 

TABLE 1 
Simulation Scenarios 

ρij  iS  

0.20-0.25 0.4-0.5 0.75-0.80 

0.1-0.2 

N=20 N=20 N=20 

N=30 N=30 N=30 

N=100 N=100 N=100 

0.4-0.5 

N=20 N=20 N=20 

N=30 N=30 N=30 

N=100 N=100 N=100 

0.8-0.9 

N=20 N=20 N=20 

N=30 N=30 N=30 

N=100 N=100 N=100 

 
 
 

6. RESULTS OF SIMULATION EXPERIMENT 

Leaving to the next paragraph the comparison between the two versions of FI LODE we 
present here the results of the experiment with regard to the performance of FI LODE in 
the new version (using SVD) in comparison with that of two classical estimators like 
3SLS and FIML.  

We consider the results of the three methods first with regard to bias and then with 
regard to mean square error. 

6.1. Bias 

As just pointed out, to evaluate the bias of the three methods under comparison we will 
make use of the indicator ϕ  defined in (20). The analysis for the three situations foreseen 

with regard to error components, is separately presented. 

Normal error component 

For Normal error component FI LODE performs better in terms of bias (ϕ ) almost 

everywhere: in 20 cases out of 27 FI LODE presents the higher percentage of lowest bias. 
For small samples, = 20n , this good performances becomes more evident since 8 times 
out of 9 FI LODE has the higher percentage of lower bias. 
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With regard to average bias 16 times out of 27 FI LODE is performing better then 
FIML and 3SLS. Here too the situation improves for small samples (8 out of 9 cases) and 
increasing correlation. 

To better compare the results, let’s consider Table 2 in which the ratios between 
average bias both of 3SLS and FIML with respect to FI LODE are presented. 

FI LODE’s bias is very frequently smaller (values of the ratio greater than 1.05) or at 
most equal (values of the ratio between 0.95 and 1.05) to the one presented by FIML. It 
has to be stressed that this situation improves for small samples and increasing values of 
ρ . 3SLS always presents very high values of the ratio showing a very bad performance 

of the method with respect to average bias.  

TABLE 2 

Average bias ratio by iS , ρi  and sample size - Normal error component 

  ρi  

  0.1-0.2 0.4-0.5 0.8-0.9 

  FIML/ 3SLS/ FIML/ 3SLS/ FIML/ 3SLS/ 

iS  Sample size FILODE FILODE FILODE FILODE FILODE FILODE 

0.2-0.25 

20 

1.42 5.97 2.16 3.19 1.92 5.74 

0.4-0.5 3.88 2.21 2.66 7.00 1.72 0.71 

0.75-0.8 0.76 1.42 1.68 2.19 4.82 1.91 

0.2-0.25 

30 

1.18 6.64 0.97 8.72 1.03 12.55 

0.4-0.5 1.08 5.48 0.42 4.00 14.16 7.00 

0.75-0.8 0.85 5.98 6.21 10.86 23.71 13.62 

0.2-0.25 

100 

0.68 25.46 0.57 21.85 0.95 30.21 

0.4-0.5 0.96 14.18 0.50 11.19 0.40 9.40 

0.75-0.8 0.57 21.85 1.14 23.49 1.21 24.11 

 

Uniform error component ( )− 3, 3  

When Uniform ( )− 3, 3  
distribution of error component is considered results do not 

change substantially, even if its percentage of lowest bias reduces to 13 times out of 27. 
Again FI LODE is almost always performing better then FIML for high values of ρ  (in 

the interval −0.8 0.9 ) and for small samples ( = 20, 30n ). As before FILODE performs 

very much better then 3SLS whose bias is very high. 

Uniform error component (-10, 10) 

As we have already said, in order to evaluate the effect of non standard situation 
characterized by more scattered error components, a second Uniform distribution in the 

interval ( )−10, 10  has been considered.  

In this situation, FI LODE performs almost everywhere better than FIML: the 
percentage of times a lower bias is presented is largely in favor of FI LODE; its average 
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bias is largely lower than FIML’s one in most of the scenarios (Table 4). Moreover, it has 
to be noticed that FIML average bias is substantially bigger than the FILODE one even 
when = 100n .  

TABLE 3 

Average bias ratio by iS , ρi  and sample size - Uniform error component in ( )− 3, 3  

  ρi  

  0.1-0.2 0.4-0.5 0.8-0.9 

  FIML/ 3SLS/ FIML/ 3SLS/ FIML/ 3SLS/ 

iS  Sample size FILODE FILODE FILODE FILODE FILODE FILODE 

0.2-0.25 

20 

0.31 1.50 0.57 3.29 1.57 5.86 

0.4-0.5 0.55 3.55 0.60 2.47 1.40 4.60 

0.75-0.8 0.45 1.79 0.43 3.54 1.44 6.19 

0.2-0.25 

30 

1.29 10.12 0.72 5.50 1.14 8.07 

0.4-0.5 1.81 11.42 1.44 10.80 1.11 7.56 

0.75-0.8 0.62 3.15 0.61 5.11 0.59 4.75 

0.2-0.25 

100 

0.83 31.17 0.67 7.17 0.50 15.43 

0.4-0.5 0.96 17.91 1.42 28.00 0.71 23.82 

0.75-0.8 1.03 14.18 0.65 16.52 0.15 2.16 

 
The average bias presented by 3SLS is almost everywhere bigger than the one 

presented by FI LODE with differences reaching 100%. 

TABLE 4 

Average bias ratio by iS , ρi  and sample size - Uniform error component in ( )−10,10  

  ρi  

  0.1-0.2 0.4-0.5 0.8-0.9 

  FIML/ 3SLS/ FIML/ 3SLS/ FIML/ 3SLS/ 

iS  Sample size FILODE FILODE FILODE FILODE FILODE FILODE 

0.2-0.25 

20 

2.74 2.00 1.53 1.13 0.69 1.09 

0.4-0.5 1.66 1.06 1.14 1.52 1.01 1.08 

0.75-0.8 5.32 0.85 2.71 1.29 1.02 0.98 

0.2-0.25 

30 

14.36 1.81 1.44 1.98 1.71 1.21 

0.4-0.5 8.29 0.82 2.90 1.20 6.60 1.00 

0.75-0.8 9.25 1.24 2.73 1.16 2.47 0.97 

0.2-0.25 

100 

200.32 1.38 221.66 1.00 88.75 1.79 

0.4-0.5 288.59 1.11 421.31 1.13 316.46 1.30 

0.75-0.8 2019.69 1.48 243.43 1.55 431.06 1.26 
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6.2. Mean Square Error 

To evaluate the performance of the three methods with respect to RMSE we will make 
use of ψ  defined in (21): relative frequency distribution of lowest values will be 

considered and the actual values presented. Here too, the ratio between RMSE both of 
3SLS and FIML with respect to FILODE is given.  

Normal error component 
 

Looking at RMSE the situation is somehow different from the one seen for bias: The 
estimator that shows more frequently the lowest RMSE is FIML with 21 cases out of 27.  

It has nevertheless to be noticed (Table 5) that when the differences between FIML 
and FI LODE are in favor of the first one they are almost always small and frequently 
less than or equal to 5%. As ever, FI LODE seems to work better for small samples and 
high correlation. Almost the same happens with regard to 3SLS that only sometimes 
performs better than FILODE. 

TABLE 5 

Average RMSE ratio by iS , ρi  and sample size - Normal error component  

  ρi  

  0.1-0.2 0.4-0.5 0.8-0.9 

  FIML/ 3SLS/ FIML/ 3SLS/ FIML/ 3SLS/ 

iS  Sample size FILODE FILODE FILODE FILODE FILODE FILODE 

0.2-0.25 

20 

1.28 1.24 0.92 1.10 1.19 1.22 

0.4-0.5 1.03 0.36 1.95 1.08 3.87 0.90 

0.75-0.8 0.69 0.54 0.33 0.39 0.98 0.28 

0.2-0.25 

30 

1.00 1.11 0.79 1.02 0.75 1.06 

0.4-0.5 1.46 0.92 0.57 0.63 7.64 1.03 

0.75-0.8 1.02 0.97 1.91 0.55 1.86 0.51 

0.2-0.25 

100 

0.95 1.21 0.84 1.11 0.75 1.43 

0.4-0.5 0.97 1.21 0.95 1.22 0.70 1.16 

0.75-0.8 0.98 1.14 0.83 1.19 0.71 1.30 

 

Uniform error component ( )− 3, 3
 

The results are very similar to those seen for Normal distribution. 
While the number of times in which FIML shows a lowest value of RMSE is almost as 

before, the differences with FI LODE are generally higher than the ones seen in the 
preceding case. Furthermore it has to be stressed that the RMSE shown by 3SLS 
estimator is frequently the second best particularly for high values of the correlation 
coefficient.  
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Uniform error component ( )−10, 10
 

As far as estimators’ RMSE is concerned the comparison has to be made only between 

TABLE 6 

Average RMSE ratio by iS , ρi  and sample size - Uniform error component in ( )− 3, 3  

  ρi  

  0.1-0.2 0.4-0.5 0.8-0.9 

  FIML/ 3SLS/ FIML/ 3SLS/ FIML/ 3SLS/ 

iS  Sample size FILODE FILODE FILODE FILODE FILODE FILODE 

0.2-0.25 

20 

0,81 0.90 0.79 1.07 0.64 0.59 

0.4-0.5 0.78 0.75 0.61 0.85 0.70 0.57 

0.75-0.8 0.63 0.66 0.53 0.65 0.62 0.84 

0.2-0.25 

30 

0.95 1.11 0.77 1.02 0.74 0.68 

0.4-0.5 0.99 1.04 0.97 1.03 0.74 0.65 

0.75-0.8 0.69 0.61 0.44 0.65 0.53 0.82 

0.2-0.25 

100 

0.97 1.08 0.90 1.02 0.79 0.65 

0.4-0.5 0.96 1.15 0.77 1.19 0.69 0.59 

0.75-0.8 0.93 1.11 1.04 1.24 0.53 0.62 

 
LODE and 3SLS, since FIML estimators always produce higher RMSE than the other 
two methods. In general 3SLS is the one that presents the lowest RMSE, in accordance 
with what is established in literature. Only in few cases FI LODE performs better than 
3SLS. 

TABLE 7 

Average RMSE ratio by iS , ρi  and sample size - Uniform error component in ( )−10, 10  

  ρi  

  0.1-0.2 0.4-0.5 0.8-0.9 

  FIML/ 3SLS/ FIML/ 3SLS/ FIML/ 3SLS/ 

iS  Sample size FILODE FILODE FILODE FILODE FILODE FILODE 

0.2-0.25 

20 

7.31 1.28 2.20 0.86 2.75 0.63 

0.4-0.5 5.40 0.89 1.40 0.58 2.24 0.76 

0.75-0.8 7.16 0.73 4.83 0.63 5.11 0.54 

0.2-0.25 

30 

8.38 0.48 2.02 0.49 4.49 0.49 

0.4-0.5 10.71 0.47 2.56 0.44 12.68 0.42 

0.75-0.8 15.45 0.42 4.25 0.37 6.44 0.48 

0.2-0.25 

100 

1212.57 1.05 826.84 0.43 154.21 0.48 

0.4-0.5 1018.79 0.34 491.36 0.31 579.59 0.52 

0.75-0.8 1443.01 0.35 421.59 0.44 793.35 0.38 
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While with respect to FIML the ratio between RMSE (Table 7) is showing a very 
strong prevalence of FI LODE, with respect to 3SLS the situation is almost everywhere 
in favour of the last one even if with very much smaller differences.  

 
 

7. CONCLUSION 

In this work we present a LODE estimator inspired by Gleser (1981) and by the Total 
Least Square procedure introduced by Golub and Van Loan (1980) and Van Huffel 
(2002), in which estimates of structural form parameters is obtained using the last m 
smallest singular right vectors associated to the m  smallest singular values. The 
performances of this estimator are very good both in terms of bias and RMSE. In 
particular has to be notice that it works better than 3SLS and FIML in case of small 
samples and high correlation. A quite substantial improvements of the performances of 
FI LODE is shown in standard situation like the one considered in the Monte Carlo 
experiment presented here. 

Few general considerations about LODE’s performance can be made: 
1) with regard to bias it can be said that LODE seems to perform better than the 

other two methods with which it is compared with. Both for Normal and 
Uniform distribution, LODE’s bias seems to be lower than FIML almost for all 
scenarios; it has in particular to be stressed its good performances for small 
samples and increasing correlation. The same happens with 3SLS which almost 
in all the situations present a bias greater than FILODE 

2) similar consideration can be made with regard to RMSE even if the good 
performance of FI LODE is a little less stringent than in the preceding case. In 
particular it has to be stressed its very good performance for Uniform 

( )−10, 10  errors’ distribution if compared with FIML estimator which 

performs quite badly. It is not the same with 3SLS average RMSE which is 
almost everywhere the lowest one. 

From these considerations it seems to appear that FI LODE performs at least as well 
as FIML both with respect to bias and to mean square error. With the very strong 
exception of the case of Uniform distribution in (-10,10) in which the latter is out-
performed by the former.  

If compared with 3SLS, FI LODE performs always better both for bias and mean 
square error. Only exception is the better performance of the first one with regard to 

RMSE in the case of Uniform ( )−10, 10 . 

Let’s now go back to the  many times postponed comparison between the two 
versions of FILODE: the one proposed in (Pieraccini and Naccarato 2008): and the one 
presented here.  The first one is based on SD of the errors’ variance-covariance matrix 
related to the whole system of identifying equations, while the second one  is based on 
SVD of errors’ variance-covariance matrix related only to over identifying equations, The 
comparison will then take into account both the difference between variance-covariance 
matrices considered in the two version and the computational procedure applied (SVD 
and SD). 

To this extent we will consider in detail only the case of Normal error component 
since those for both Uniform distributions do not change substantially. For the sake of 
simplicity the two versions of LODE will be indicated as 1st Version the one published in 



  
 
 
 
 
 
 
 
LODE Estimator and Total Least Square  217 

 
2008 and 2nd Version the current one. 

As ever, relative frequency distribution of lowest values will be considered and the 
actual values presented. Here too, the ratio between bias and mean square error of the 
two versions will be given. 

In terms of bias the 2nd Version of FI LODE presents the best results 19 times out of 
27 with respect to the previous version of FI LODE, frequently with very high 
percentages. 

TABLE 8 

Average bias ratio by iS , ρi  and sample size - Normal error component 

  ρi  

  0.1-0.2 0.4-0.5 0.8-0.9 

iS  Sample size 1 2st nd
 1 2st nd

 1 2st nd
 

0.2-0.25  
 

20 
 

2.00 1.90 2.25 

0.4-0.5 0.53 1.63 0.31 

0.75-0.8 0.59 0.77 1.04 

0.2-0.25  
 

30 
 

5.00 2.50 4.33 

0.4-0.5 2.67 1.85 1.64 

0.75-0.8 1.67 3.67 5.33 

0.2-0.25  
 

100 
 

3.67 2.75 7.75 

0.4-0.5 3.17 7.00 4.83 

0.75-0.8 5.80 11.33 7.00 

TABLE 9 

Average RMSE ratio by iS , ρi  and sample size - Normal error component 

  ρi  

  0.1-0.2 0.4-0.5 0.8-0.9 

iS  Sample size 1 2st nd
 1 2st nd

 1 2st nd
 

0.2-0.25  
 

20 
 

1.36 1.19 1.11 

0.4-0.5 0.39 1.25 1.02 

0.75-0.8 1.01 0.42 0.39 

0.2-0.25  
 

30 
 

1.31 1.22 1.03 

0.4-0.5 1.34 0.76 1.14 

0.75-0.8 1.43 0.83 0.64 

0.2-0.25  
 

100 
 

1.11 1.11 1.32 

0.4-0.5 1.36 1.28 1.03 

0.75-0.8 1.63 1.47 1.50 
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The average bias of 2nd Version of FILODE is almost everywhere lower than the other 
one (Table 8) sometimes presenting a very high value of the ratio (especially for = 20n ) 
showing a very strong reduction of the bias. A generalized improvement of the new 
version with respect to bias has then to be recognized. 

Also with regard to RMSE the 2nd Version of FILODE presents a generalized 
improvement: here too 19 times out of 27 it is the one with the lowest average (Table 9); 
the ratio between average RMSE of the two versions is almost every time in favor of the 
new one. 
From these consideration it becomes evident that the 2nd Version of FI LODE presents a 
strong improvement with respect to the preceding one. 
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SUMMARY 

Least Orthogonal Distance Estimator and Total Least Square for Simultaneous Equation 
Models 

Least Orthogonal Distance Estimator (LODE) of Simultaneous Equation Models’ 
structural parameters is based on minimizing the orthogonal distance between Reduced 
Form (RF) and the Structural Form (SF) parameters. In this work we propose a new 
version – with respect to Pieraccini and Naccarato (2008) – of Full Information (FI) LODE 
based on decomposition of a new structure of the variance-covariance matrix using 
Singular Value Decomposition (SVD) instead of Spectral Decomposition (SD). In this 
context Total Least Square is applied. A simulation experiment to compare the 
performances of the new version of FI LODE with respect to Three Stage Least Square 
(3SLS) and Full Information Maximum Likelihood (FIML) is presented. Finally a 
comparison between the FI LODE new and old version together with few words of 
conclusion conclude the paper. 
 


